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Algae exert great impact on soil formation and biogeochemical cycling. However,

there is no full understanding of the response of soil algal community structure to

the seasonal fluctuations in temperature and moisture and changes of soil

physicochemical properties across different forests. Here, based on 23S rRNA

gene sequencing, we analyzed soil algal community structure in four different

forest plantations in two seasons and examined soil physiochemical properties.

The results showed the significantly seasonal variation in soil algal community

structure, with the higher overall diversity in summer than in winter. In addition,

there existed significant correlations between soil algae (species composition,

relative abundance, diversity index) and physicochemical properties (pH, total

phosphorus, organic matter and nitrate nitrogen), suggesting that edaphic

characteristics are also largely responsible for the variation in soil algal community.

Nevertheless, the seasonal variation in algal community structure was greater than

the variation across different forest plantations. This suggest temperature and

moisture are more important than soil physicochemical properties in determining

soil algal community structure. The findings of the present study enhance our

understanding of the algal communities in forest ecosystems and are of great

significance for the management and protection of algal ecosystem.

KEYWORDS

gene sequencing, forest plantations, algal community structure, environmental factors,
seasonal variations
1 Introduction

Algae occur in nearly all terrestrial ecosystems on earth (Metting, 1981; Zancan et al.,

2006; Lichner et al., 2013). They are pioneering organisms in soil formation processes

(Patova et al., 2016; Marques et al., 2017; Agnelli et al., 2021). As an indispensable

component of microflora, soil algae interact with the environment to advance the soil
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1181184/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1181184/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1181184/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1181184/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1181184&domain=pdf&date_stamp=2023-07-13
mailto:zhaoqiong2019@ahu.edu.cn
mailto:cxy0910@iim.ac.cn
https://doi.org/10.3389/fpls.2023.1181184
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1181184
https://www.frontiersin.org/journals/plant-science


Wei et al. 10.3389/fpls.2023.1181184
formation (Yang et al., 2016; Maltsev et al., 2017a; Maltsev et al.,

2017b; Abinandan et al., 2019). The principal function of soil algal

communities in promote soil formation and biochemical processes

include dinitrogen fixation, stabilization of aggregates,

mineralization of organic matter, elevate soil air and water

retention capacity, improve soil microbial activity and structure,

et al. (Metting, 1981; Glaser et al., 2018; Alvarez et al., 2021).

Thereafter, algae play an important role in soil and vegetation

restoration in waste rock dumps and anthropogenically disturbed

lands (Carvalhido et al., 2021; Oliveira and Maciel-Silva, 2022).

Making clear soil algal community composition and its influencing

factors in forest ecosystems is of great significance for better

understanding their ecological functions.

Algal community structure was influenced by both biotic and

abiotic factors (Nisha et al., 2007; Kostryukova et al., 2021; Sawestri

and Rais, 2021; Rahman, 2022). Recent studies have documented

that soil pH, moisture content, and nutrients control the algal

community structure (Bohlen et al., 2001; Prasanna, 2007; Zhang

et al., 2021; Zhao et al., 2022; Gabriel et al., 2023; Graham and

Knelman, 2023). The soil algal community structure is affected by

the environment may be because different taxonomic groups prefer

to different soil pH and nutrient conditions (Baldrian et al., 2012).

For instance, Cyanobacteria tend to grow in neutral and alkaline

environment, while acidic soil is more suitable for Chlorophyta

growth (Bailey et al., 2010). Across large spatial scales, algal

community are strongly impacted by regional climate, altitude

and light intensity. Novakovskaya (Novakovskaya et al., 2020)

pointed that taxonomic diversity of algae decreases along the

altitude gradient from mountain meadow to mountain tundra.

Dirborne (Dirborne and Ramanujam, 2017) found that soil in

undisturbed broadleaf forest supported more diverse algal species

than pine forest. Such studies facilitate the understanding of the

responses of algal communities to environmental changes.

However, how seasonal variation in temperature and moisture

interact with soil physiochemistry properties to affect soil algal

community structure is still poor known.
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The traditional method for identifying algae is microscopic

observation. For soil samples, algae should be cultured before

microscopic observation. However, some algal groups can not be

cultured due to the preference of the culture medium (Amann et al.,

1995; Novakovskaya et al., 2020). Nowadays, molecular sequencing

was applied to identify the algal community structure instead of

microscopic observation (Satjarak et al., 2020). The DNA bands can

be used to directly compare the base pairs (Sherwood et al., 2008;

Jiang et al., 2017; Yan et al., 2020). This method can avoid errors

during purification, culture process and identification (Rippin et al.,

2018; Zhu et al., 2018; Mikhailyuk et al., 2019).

The objectives of this study were to: (1) Investigate whether there

were significant seasonal differences in the diversity index and

composition of soil algae in different subtropic forest plantations;

(2) Compare the relative important of effects of seasonal variation in

temperature and moisture and changes of soil physiochemistry

properties on algal community structure, and reveal their potential

relationship. To achieve these goals, samples of soils and algae were

collected from four typical forest plantations (Liquidambar

formosana, Cyclobalanopsis glauca, Pinus massoniana and

Cunninghamia lanceolata) in both winter and summer in a forest

farm in subtropical China. This work can advance our understanding

of the responses of algal community to environmental changes.
2 Materials and methods

2.1 Study area

This study was carried out in the Hule Forest Farm (30°18’52”-

30°20’55” N, 118°45’6”-118°45′54″ E) in Ningguo city, Anhui

Province, China (Figure 1). It belongs to the hilly area of the

southern Anhui Province, and has a subtropical monsoon

climate, with an annual average temperature of 15.4°C and

annual average precipitation of 1426.9 mm. The annual frost-free

period is 226 d, the sunshine duration is 2038 h, and the average
FIGURE 1

Location of Hule Forest Farm in Anhui of China and the sampling plots. (F, Liquidambar formosana; Q, Cyclobalanopsis glauca; M, Pinus massoniana;
S, Cunninghamia lanceolata).
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wind speed is 2.1 m/s (Wei et al., 2023). The main tree species in

this forest farm were Liquidambar formosana, Cyclobalanopsis

glauca, Pinus massoniana and Cunninghamia lanceolata.

In December 2020, we selected four typical forest plantations in

the farm as our study sites. The four plantations are 21-year-old

pure Liquidambar formosana, 66-year-old pure Cyclobalanopsis

glauca, 64-year-old pure Pinus massoniana and 40-year-old pure

Cunninghamia lanceolata.
2.2 Sample collection

Samples were collected on December 2020 and June 2021.

Three quadrats (20 m × 20 m) were established for sampling in

each forest plantation. The surface soil (0 - 5 cm) was collected from

four corners and center of each quadrat taken with a sterile scraper,

mixed evenly, put into sealed bags, and brought back to the

laboratory in a cool box for algal community structure analysis

(Ye, 1983). The winter and summer samples were designated as the

“Win” and “Sum” groups, respectively. Win-LF, Liquidambar

formosana plantation in winter; Win-CG, Cyclobalanopsis glauca

plantation in winter; Win-PM, Pinus massoniana plantation in

winter; Win-CL, Cunninghamia lanceolata plantation in winter;

Sum-LF, Liquidambar formosana plantation in summer; Sum-CG,

Cyclobalanopsis glauca plantation in summer; Sum-PM, Pinus

massoniana plantation in summer; Sum-CL, Cunninghamia

lanceolata plantation in summer.
2.3 Physicochemical analyses

Soil pH was measured with a glass electrode (1:2.5 soil:water

ratio) (Wan et al., 2014). Soil moisture content (moisture

percentage based on natural wet soil) is determined by drying

method. Soil organic matter (OM) was determined by K2Cr2O7-

H2SO4 oxidation method (Nelson and Sommers, 1996).

Concentration of soil total nitrogen (TN) and phosphorus (TP)

was determined on a continuous-flow autoanalyzer (AutoAnalyzer

3, Bran + Luebbe GmbH, Germany) after the soil was digested in

concentrated H2SO4 with a catalyst (mixture of CuSO4 and K2SO4)

(Lu, 1999). Concentrations of ammonia nitrogen (NH4
+−N) and

nitrate nitrogen (NO3
-− N) were analyzed colorimetrically on the

autoanalyzer after the field moist soil was extracted with 2 mol L-1

KCl (Weatherburn, 1967; Doane and Horwáth, 2003).

Concentration of soil alkali-hydrolyzed nitrogen (AN) was

determined by diffusion absorption method (Science, 1978). Soil

available phosphorus (AP) was extracted with Mehlich 3 extractant

and determined by molybdenum blue colorimetric method

(Mehlich, 2008). Concentration of soil available potassium (AK)

was extracted with ammonium acetate solution (pH = 7.0) and

determined by flame photometry (Science, 1978).
2.4 DNA extraction, PCR amplification, and
illumina sequencing

DNA extraction was conducted using the method described by Su

(Su et al., 2006; Carrigg et al., 2007). R.Sherwood demonstrated the
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feasibility of using 23S rRNA universal primers for amplification and

sequencing of this plastid marker for multiple eukaryotic algal and

Cyanobacterial groups (Sherwood and Presting, 2007). PCR

amplification of the algal 23S rRNA genes was performed using the

forward primer p23rv_f1 (5’-GGACAGAAAGACCCTATGAA-3’)

and the reverse primer p23rv_r1 (5’-TCAGCCTGTTATC

CCTAGAG -3’). The PCR components contain 5 mL of buffer (5 ×),

0.25 mL of Fast pfu DNA Polymerase (5 U/mL), 2 mL (2.5 mM) of

dNTPs, 1 mL (10 mM) of each Forward and Reverse primer, 1 mL of

DNA template, and 14.75 mL of ddH2O. Thermal cycling consist of

initial denaturation at 94°C for 2 min, followed by 35 cycles consisting

of denaturation at 94°C for 20 s, annealing at 55°C for 30 s, and

extension at 72°C for 30 s, with a final extension of 10 min at 72°C.

PCR amplicons were purified with Vazyme VAHTSTM DNA Clean

Beads (Vazyme, Nanjing, China) and quantified using the Quant-iT

PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). After

the individual quantification step, amplicons were pooled in equal

amounts, and pair-end sequencing was performed using the Illlumina

MiSeq platform at Shanghai Personal Biotechnology Co., Ltd

(Shanghai, China).
2.5 Sequencing data processing

Illumina technology was used to double-end sequencing,

quality filtering, denoising and merging of DNA sequences.

QIIME2 and R package (V3.2.0) were used to analyze the

sequence data. The ASV table was extracted and the a diversity

index of ASV level was calculated.
2.6 Statistical analysis

Physicochemical variables were displayed as the mean value ±

standard error (SE) in Excel 2016 (Microsoft Office 2016, Microsoft,

USA). Statistical analysis was performed through single factor

analysis of variance (ANOVA), and Duncan’s multiple range test

(P < 0.05) was utilized for statistical significance analysis. Heatmap

were draw in the R (4.0.2). The relationship between the algal

community and environmental factor was determined by

redundancy analysis (RDA) using RStudio (version 1.2.1335) with

the vegan package. Linear discriminant analysis (LDA) effect Size

(LEfSe) was used to identify algal taxa with significant differences

among different forest plantations, performed by an online platform

for data analysis (https://www.omicstudio.cn).
3 Results

3.1 Soil physicochemical parameters

All of the soil samples were acidic with the pH values ranged

from 5.03 to 6.43. The soil moisture content of the four forest

plantations in summer (25.01% − 32.81%) was higher than that in

winter (18.38% - 19.60%). In general, concentrations of all

inorganic nitrogen (NH4
+−N, NO3

-−N, AN) and TN were higher
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https://www.omicstudio.cn
https://doi.org/10.3389/fpls.2023.1181184
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2023.1181184
in summer than winter in all plantations. The concentrations of TP

and AK were significantly higher in summer than winter while the

AP was higher in winter than summer for most forest plantations.

There was no significant seasonal variation in OM concentration in

all plots (Table 1).
3.2 Diversity of the soil algal community

The results of diversity indices showed that the observed species

(p < 0.005) and Shannon index (p < 0.01) of the soil algae differed

significantly between winter and summer (Figure 2). According to

the spearman’s correlation analyses, soil moisture content (p <

0.001), pH (p < 0.05) and TP (p < 0.05) were positively and

significantly correlated with observed species and Shannon index.

Furthermore, AN and NO3
-−N were significantly and positively

correlated with observed species (p < 0.05) (Figure 3).
3.3 Soil algal community composition

We obtained a total of 724814 high-quality valid sequences of

23S rRNA gene in all 24 samples. We clustered the sequences based

on 100% sequence similarity and obtained 19017 ASVs
Frontiers in Plant Science 04
(Supplementary Files). A total of 11 phyla, 44 classes, 89 orders,

145 families and 205 genera were identified.

There were significant seasonal differences in soil algal

community structure, and the overall richness of soil algae was

higher in summer than that in winter (Figure 4A). In winter, 82

species of soil algae were identified, belonging to 5 phyla, 18 classes,

33 orders, 43 families, 46 genera. The richness of soil algae in winter

was highest in Cyclobalanopsis glauca plantation, and lowest in

Cunninghamia lanceolata plantation. In summer, we identified 294

species of algae, belonging to 7 phyla, 40 classes, 82 orders, 132

families, 193 genera. The richness of soil algae in summer was

highest in Liquidambar formosana plantation, and lowest in

Cyc lobalanops i s g lauca plantat ion . Chlorophyta and

Cyanobacteria were the most abundant phyla in both winter and

summer, accounting for 37.80% and 48.00% of the total

species, respectively.

The relative abundance of each phylum of soil algae in four

forest plantations changed significantly in different seasons

(Figure 4B). In winter, Chlorophyta (36.71%) was the most

abundant phylum, then decreased in the order of Bacillariophyta

(28.70%), Cyanobacteria (28.07%) and Ochrophyta (6.46%). The

most abundant phylum in summer was Rhodophyta (52.66%),

followed by Cyanobacteria (38.81%), Miozoa (6.15%) and

Chlorophyta (1.98%).
TABLE 1 Soil physicochemical properties of four forest plantations in summer and winter.

Physicochemical proper-
ties

Seasons Liquidambar
formosana

Cyclobalanopsis
glauca

Pinus
massoniana

Cunninghamia
lanceolata

Moisture content (%) Winter 19.60 ± 0.24b 24.11 ± 0.86a 18.38 ± 0.80b 20.10 ± 0.58b

Summer 32.81 ± 0.51a 25.01 ± 1.39b 22.64 ± 0.28b 31.82 ± 1.00a

pH Winter 5.88 ± 0.13a 5.03 ± 0.01c 5.35 ± 0.08b 5.12 ± 0.06bc

Summer 6.43 ± 0.06a 5.29 ± 0.04c 5.58 ± 0.13b 5.51 ± 0.04bc

NH4
+−N (mg kg-1) Winter 4.92 ± 0.26b 9.09 ± 0.12a 7.47 ± 0.80a 4.63 ± 0.87b

Summer 8.13 ± 0.24b 12.30 ± 0.47a 8.47 ± 0.71b 6.75 ± 0.87b

NO3
-−N (mg kg-1) Winter 2.81 ± 0.18c 6.16 ± 0.34a 2.89 ± 0.37c 4.97 ± 0.15b

Summer 3.69 ± 0.15c 9.06 ± 0.18a 5.06 ± 0.51b 8.45 ± 0.24a

AN (mg Kg-1) Winter 101.20 ± 2.70b 136.80 ± 8.40a 36.30 ± 1.90c 51.40 ± 1.20c

Summer 147.90 ± 14.70b 197.30 ± 4.10a 71.20 ± 6.40d 106.10 ± 6.20c

TN (g Kg-1) Winter 16.50 ± 0.40a 19.40 ± 0.30a 17.10 ± 2.20a 15.20 ± 0.20a

Summer 9.80 ± 0.80b 23.70 ± 2.50a 18.10 ± 3.10ab 20.10 ± 3.00a

AP (mg kg-1) Winter 4.94 ± 0.08c 9.64 ± 0.13b 13.94 ± 0.03a 9.24 ± 0.18b

Summer 2.74 ± 0.13d 7.93 ± 0.11b 14.40 ± 0.51a 6.25 ± 0.50c

TP (g Kg-1) Winter 1.20 ± 0.00b 1.20 ± 0.00b 2.20± 0.20a 1.20 ± 0.10b

Summer 1.60± 0.10b 1.60 ± 0.10b 1.80 ± 0.10b 3.20 ± 0.20a

AK (mg Kg-1) Winter 131.50 ± 2.20a 109.10 ± 0.40c 133.80 ± 3.30a 117.90 ± 3.00b

Summer 86.80 ± 7.00b 147.20 ± 8.90a 148.60 ± 5.20a 154.10 ± 6.50a

OM (g Kg-1) Winter 22.80 ± 0.50c 37.00 ± 0.80a 30.90 ± 0.40b 19.60 ± 1.20d

Summer 22.60 ± 0.30c 37.20 ± 0.70a 29.40 ± 0.70b 20.30 ± 0.60d
Values are means ± standard error (SE), n = 3. Different letters within each line indicate significant differences among the four forest plantations (p < 0.05).
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Analysis of the 10 most abundant family in each group revealed

significant variations in the soil algal community composition

across seasons and plantations (Figure 4C). The dominant

families differed greatly between the two seasons. In winter, the

dominant families were Gomphonemataceae, Microcoleaceae,

Osci l latoriaceae, Trebouxiophyceae, Bracteacoccaceae,

Nostocaceae, Prasiolaceae, Entomoneidaceae, Tribonemataceae
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and Coccomyxaceae. And the abundance of Microcoleaceae

(21.82%) and Nostocaceae (12.15%) in Cyclobalanopsis glauca

plantation was significantly higher than that in other three

plantations. The abundance of Oscillatoriaceae (15.36%) in Pinus

massoniana plantation was significantly higher than that in other

three plantations. In summer, the dominant families were

Rhodochaetaceae, Bangiaceae, Merismopediaceae, Calotrichaceae,
FIGURE 2

The diversity index of soil algal communities in four forest plantations in summer and winter. Win-LF, Liquidambar formosana plantation in winter;
Win-CG, Cyclobalanopsis glauca plantation in winter; Win-PM, Pinus massoniana plantation in winter; Win-CL, Cunninghamia lanceolata plantation
in winter; Sum-LF, Liquidambar formosana plantation in summer; Sum-CG, Cyclobalanopsis glauca plantation in summer; Sum-PM, Pinus
massoniana plantation in summer; Sum-CL, Cunninghamia lanceolata plantation in summer.
FIGURE 3

Correlation analysis of diversity index and environmental factors.
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Synechococcaceae, Dinophysiaceae, Prochlorotrichaceae,

Trebouxiaceae, Nostocaceaeand Aphanizomenonaceae. The

abundance of Rhodochaetaceae (50.29%) in Cyclobalanopsis

glauca plantation was significantly higher than that in the other

three plantations.

In order to explore seasonal differences in community structure

of soil algae, principal co-ordinates analysis (PCoA) and Anosim

test were used (Figure 5). The Anosim analyses showed the

significant seasonal differences in the algal community structure

in Hule Forest Farm (p = 0.001) (Figure 5B). Similarly, the PCoA

showed that the algal communities in summer and winter were well

separated on the two axes, which means the seasonal variation in

algal community structure was greater than the variation across

different forest plantationsthe (Figure 5A).

Heat map analysis can reflect the cluster analysis of soil algal

community structure and the relative abundance of each community

composition of four forest plantations in different seasons. The results

of heat map analysis of soil algal community structure were the same

as those of PCoA (Figure 5A), and there were significant seasonal

differences in soil algal community structure. Analysis of the 10 most
Frontiers in Plant Science 06
abundant genera in each group revealed characteristic changes in soil

algal community composition across seasons and forest types

(Figure 6). In winter, Microcoleus was abundant in Liquidambar

formosana plantations, Cyclobalanopsis glauca plantations and Pinus

massoniana plantations, but rarely distributed in Cunninghamia

lanceolata plantations. Leptolyngbya did not appear in

Cunninghamia lanceolata plantations. Oscillatoria (relative

abundance < 0.3%) and Nostoc (relative abundance < 0.1%) were

very rare in Cunninghamia lanceolata plantations. In addition, the

relative abundance of Entomoneis (8.89%) in Win-LF group was

significantly higher than that in the other three forests (Win-CG:

2.24%; Win-PM: 0.31%; Win-CL: 4.26%). Coccomyxa, Tribonema,

Xylochloris and Bracteacoccus were present in all four forests. In

summer, the 10 dominant genera were present in all four forests. The

relative abundance of Neoporphyra in Sum-CG group (6.79%) was

significantly lower than that in other three forests (Sum-LF:26.77%;

Sum-PM: 15.22%; Sum-CL: 20.81%). The relative abundance of

Synechococcus in Sum-CL group (12.35%) was significantly higher

than that in other three forests (Sum-LF: 4.16%; Sum-CG: 2.62%;

Sum-PM: 7.67%). Merismopedia, Calothrix and Dinophysis were
A

B

C

FIGURE 4

Algal community composition of soil sample in Hule Forest farm (A) Number of species; (B) Phylum level; (C) Family level.
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A B

FIGURE 5

Principal co-ordinates analysis (A) and Anosim test (B) of algal Community structure in winter and summer.
FIGURE 6

Heat map depicting the hierarchy cluster results for the abundance of algae at the genus level. Ten most abundant genera of each season are
shown. Red indicates high relative abundance and blue indicates low relative abundance.
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abundant in all plantations (relative abundance > 4.23%).

Lobosphaera occurred in both winter and summer and was

frequently observed in all plantations.
3.4 Significant differences in
algal community

LEfSe analysis further identified specific algae taxa that were

differentially abundant across four different plantations (Figure 7).

In winter, the results suggested that the algae in four orders (i.e.,

Surirellales, Chlamydomonadales, Thalassiosirales, Vaucheriales),

four famil ies ( i .e . , Entomoneidaceae , Vaucheriaceae ,

Stephanodiscaceae, Scenedesmaceae), four genera (i.e. ,

Entomoneis, Vaucheria, Cyclotella, Coelastrella) and two species

(i.e., Entomoneis sp, Ettlia pseudoalveolaris) were significantly

more abundant in Liquidambar formosana plantation. Algae in

one class (i.e., Chrysophyceae), one order (i.e., Ochromonadales),

two families (i.e., Eustigmataceae, Ochromonadaceae) and one

genera (i.e., Vischeria) were abundant in Cyclobalanopsis glauca

plantation. Algae in one phylum (i.e., Cyanobacteria), three families

(i.e., Synechococcaceae, Scytonemataceae, Oculatellaceae), two

genera (i.e., Synechococcus, Oculatella) and one species (i.e.,

Leptolyngbyaboryana) in Pinus massoniana plantation were

noticed to be remarkably higher than others.

In summer, Watanabea, Thermosynechococcussp_NK55a,

Watanabea reniformis, Calothrixsp_NIES_3974 were abundant in
Frontiers in Plant Science 08
Liquidambar formosana plantation. Diadesmidaceae were abundant

in Cyclobalanopsis glauca plantation. Calothrixsp_PCC7507 were

abundant in Pinus massoniana plantation. Algae in four families (i.

e., Synechococcaceae, Aphanizomenonaceae, Helicodictyaceae,

Leptolyngbyaceae), five genera (Aphanizomenon, Rhexinema,

Synechococcus, Dolichospermum, Leptolyngbya) and eight species (i.e.,

Synechococcus sp, Dolichospermum compactum, Dolichospermum

akankoense, Rhexinema sarcinoideum, Synechococcussp_CB0101,

Nosto clinckia, Nodosilinea sp, Aphanizomenon flosaquae) were

abundant in Cunninghamia lanceolata plantation.
3.5 Correlation between algal community
and soil physicochemical variables

To study the relationship between algal community structure

and environmental factors in Hule Forest Farm in different seasons,

we conducted a correlation analysis between phylum abundance of

algal community and environmental factors (Figure 8). In winter,

NH4
+−N (R = 0.69, p < 0.05), OM (R = 0.66, p < 0.05) and TN (R =

0.68, p < 0.05) was positively correlated with Cyanobacteria. There

was a negatively correlation between TN and Chlorophyta (R =

-0.67, p < 0.05). In summer, soil moisture content was positively

correlated with Ochrophyta (R = 0.56) and Bacillariophyta (R =

0.45). The AK was negatively correlated with Ochrophyta (R =

-0.61, p < 0.05) and Miozoa (R = -0.64, p < 0.05), pH was positively

correlated with Ochrophyta (R = 0.67, p < 0.01).
A

B

FIGURE 7

Linear discriminant analysis effect size (LEfSe) analysis of soil algal communities from winter (A) and summer (B) samples. (A) The left figure showing
differentially abundant taxa, the histogram length represents the impact of different species [linear discriminant analysis (LDA) score > 3]; the right
Cladogram showing the phylogenetic structure of the algae. The taxa with significantly different abundances of soil algae among different forest
plantations identity are symbolized by colored dots. In the branching diagram of evolution, circles radiating from inside to outside represent the
taxonomic level from boundary to species, and each small circle at different taxonomic levels represents a species at the taxonomic level.
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Redundancy analysis (RDA analysis) was conducted with the

abundance of soil algae used as the response variable, and soil

physicochemical properties used as explanatory variables

(environmental variables). Environmental variables in the two

RDA dimensions explained 42.26% and 42.78% of the total

variance in the algal community structure in winter and summer,

respectively (Figure 9). A series of soil physicochemical factors

including OM, TP and NO3
-−N collectively and significantly drove

the algal community structure. In winter, OM was the significant

factor that provided 16.7% (p-value = 0.008, 999 Monte Carlo

permutations) of the total RDA explanatory power, TP and NO3
-

−N were important factors as well, representing 15.4% and 12.7% of

the total RDA explanatory power, respectively. In summer, OM was

the most important factor, representing 21.4% (p-value = 0.004, 999

Monte Carlo permutations) of the total RDA explanatory power.
4 Discussion

This study showed the significant seasonal variation in the

composition and relative abundance of soil algae in subtropical

forests. The most abundant groups of soil algae in winter were

Bacillariophyta and Chlorophyta. Cyanobacteria was the most

abundant algae in summer. These findings are consistent with

previous studies in other areas (Calijuri et al., 2002). Seasonal

variation in soil algal community can be ascribed to the different
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temperature adaptation capacity of different algal groups. For

example, Bacillariophyta prefer low temperature, Cyanobacteria

tend to grow fast in warmer environment, and Chlorophyta are

thought to be the most tolerant group to adverse soil conditions

(Karsten and Holzinger, 2014). At the family level, Microcoleaceae,

Oscillatoriaceae, Nostocaceae, Prasiolaceae are dominant families in

winter. As the climate in our study area is relatively dry in winter,

and the soil moisture content is low. Algae with distinct sheath can

survive in the soil crust in dry condition, and can recover metabolic

activity after receiving rainfall to improve soil productivity. In the

present study, Eustigmatophyceae was most abundant in the Pinus

massoniana plantation in winter, whcih may be due to the

interactions of light and nutrients.

Both season and forest types had significant effects on soil algae

in our study area (Dirborne and Ramanujam, 2017). Liquidambar

formosana plantation has highest algal diversity due to the influence

of light, which is consistent with Neustupa and Skaloud (Neustupa

and Škaloud, 2008). Some algae, including Chlamydomonadales,

Scenedesmaceae, Stephanodiscaceae and Cyclotella use to grow in

shallow water, because they need strong light to grow (Calijuri et al.,

2002; Reynolds et al., 2002; Padisak et al., 2008). In our study, these

algae were found in the Liquidambar formosana. As the

Liquidambar formosana forest had lower canopy density and thus

was more conducive to the growth of these algae. The forest canopy

density of Cyclobalanopsis glauca and Cunninghamia lanceolata are

relatively high, and some areas even completely closed, which is
FIGURE 8

Correlation heatmap analysis of environmental factors and species. Environmental factors are on the horizontal axis, species are on the vertical axis,
and color is the strength of correlation.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1181184
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2023.1181184
more suitable for the growth of Leptolyngbya. Our results may

suggest that the seasonal variation in algal community structure was

greater than the variation across different forest plantations, but

further experiments are needed to prove this.

In this study, the observed species and Shannon index of soil

algae communities in four different plantations of Hule Forest Farm

reached their maximum values in summer. the activity and species

richness of algae increased with increasing temperature, which is

consistent with previous studies (Wang et al., 2015). Temperature

can directly and indirectly affect the composition and quantity of

algae. On the one hand, temperature strengthens respiration by

controlling the enzyme reaction of respiration, and then control the

growth and reproduction of algae. On the other hand, the change of

temperature would affect the dynamics of soil physicochemical

properties and the nutrient cycles, which indirectly affects the

growth and reproduction of algae. Many environmental factors

affect the diversity of soil algal community, such as moisture

content, pH, and NH4
+−N (Zancan et al., 2006; Dirborne and

Ramanujam, 2017; Agha et al., 2020). In the present study,

spearman’s correlation analyses showed that soil moisture content

was significantly and positively correlated with observed species and

Shannon index (p< 0.01). The soil moisture exerted a great

influence on the composition of soil algae. Because water plays an

important role in the growth of algae, which is needed for the

activities of algal filament breakup, cell division and reproductive

cell germination (Nisha et al., 2007). There was a significant positive

correlation between pH and algal Shannon index (p < 0.05), which

was mainly attributed to the fact that the acidic environment would

affect the photosynthetic apparatus of Cyanobacteria. Chlorophyta

tend to decompose to pheophytin under mildly acidic conditions

due to its acid lability (Thomas, 1973).

The diversity and distribution of soil algae are regulated by the

interaction of various environmental variables, and different

environmental variables have different effects on the algal

community structure. Dirborne (Dirborne and Ramanujam, 2017)

found that the vegetation, pH, moisture content, organic carbon

and nitrogen were the main factors affecting the algal community in

broadleaf sacred grove and pine forest in East Khasi Hills.
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Kharkongor (Kharkongor and Ramanujam, 2014) found that the

algal community in forest of Meghalaya was greatly affected by

sunlight, relative humidity, and rainfall. However, for Dry

Mountains of Ladakh in NW Himalaya (Rehakova et al., 2011),

site, altitude and vegetation type had significant influences on the

distribution of soil algae. This contradiction may be partially

impacted by geographical features (e.g., longitude and latitude),

forest age and season.

In this study, the spearman’s correlation and RDA analysis

showed that soil algal community was significantly correlated with

pH, NH4
+−N, NO3

-−N, TP, OM and moisture content in the

studied subtropical forests. Nitrogen and phosphorus are essential

nutrients for algal growth, the changes of their availability can affect

algal composition and diversity (Schulz et al., 2016; Liu et al., 2018).

Phosphorus was a necessary component in the production of the

ribosome, ATP, DNA, and RNA to maintain rapid growth, as well

as an indispensable nutrient for plant growth (Delgado et al., 2017).

In this study, OM was the main factor affecting soil algae in winter,

because carbon sources control the heterotrophic microorganisms

growth which can secrete metabolites in vitro to affect algae (Agnelli

et al., 2021). Abundant algae play a great role in the supply of OM.

Algae turnover can return organic matter to soil and provide carbon

source for heterotrophic microorganisms. Therefore, soil

physicochemical index can cause the change of algal community

structure and function in Hule Forest Farm.
5 Conclusion

In this study, molecular methods were used to accurately

determine the soil algal community structure of four subtropical

forest plantations in winter and summer. The effects of

environmental factors on soil algal community composition and

diversity were also analyzed. To sum up, soil algal community

structure was significantly affected by season and forest type, but the

effect of season was more obvious. The diversity of soil algal

community showed obvious seasonal differences, the overall

diversity was higher in summer than in winter. Moreover,
FIGURE 9

Relationships between soil physicochemical properties and algal communities in winter and summer indicated by RDA ordination plots for the first
two dimensions.
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Chlorophyta, Bacillariophyta and Rhodophyta were mainly affected

by season. In addition, we noted that OM, TP and NH4
+−N were

the main environmental factors affecting the distribution of algae in

Hule Forest Farm. The results of the present study provide a new

perspective to understand the soil algal community structure and

factors influencing soil algae in forests, which can enhance the

understanding of factors controlling the soil algal community

structure. This would also be of great significance for evaluating

the effects of afforestation with different tree species on soil

algal communities.
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