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Identification and functional
characterization of a
flavonol synthase gene
from sweet potato
[Ipomoea batatas (L.) Lam.]

Meng Kou1, Chen Li1, Weihan Song1, Yifan Shen1, Wei Tang1,
Yungang Zhang1, Xin Wang1, Hui Yan1, Runfei Gao1,
Muhammad Qadir Ahmad2 and Qiang Li1*

1Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute,
Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet
Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China, 2Department of Plant Breeding and
Genetics, Bahauddin Zakariya University, Multan, Pakistan
Flavonol synthase (FLS) is a key enzyme of the flavonoid biosynthetic pathway,

which catalyzes the conversion of dihydroflavonols into flavonols. In this study,

the FLS gene IbFLS1 was cloned and characterized from sweet potato. The

resulting IbFLS1 protein showed a high similarity with other plant FLSs. The

conserved amino acids (HxDxnH motifs) binding ferrous iron and residues (RxS

motifs) binding 2-oxoglutarate were found in IbFLS1 at conserved positions, as in

other FLSs, suggesting that IbFLS1 belongs to the 2-oxoglutarate-dependent

dioxygenases (2-ODD) superfamily. qRT-PCR analysis showed an organ-specific

pattern of expression of the IbFLS1 gene, which was predominantly expressed in

young leaves. The recombinant IbFLS1 protein could catalyze the conversion of

dihydrokaempferol and dihydroquercetin to kaempferol and quercetin,

respectively. The results of subcellular localization studies indicated that IbFLS1

was found mainly in the nucleus and cytomembrane. Furthermore, silencing the

IbFLS gene in sweet potato changed the color of the leaves to purple,

substantially inhibiting the expression of IbFLS1 and upregulating the

expression of genes involved in the downstream pathway of anthocyanin

biosynthesis (i.e., DFR, ANS, and UFGT). The total anthocyanin content in the

leaves of the transgenic plants was dramatically increased, whereas the total

flavonol content was significantly reduced. Thus, we conclude that IbFLS1 is

involved in the flavonol biosynthetic pathway and is a potential candidate gene of

color modification in sweet potato.
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Introduction

Flavonoids belong to polyphenolic secondary metabolites, are

widely present in plant tissues, and can be classified into various

subclasses (flavanols, dihydroflavonols, flavonoids, flavonols,

flavanols, anthocyanins, proanthocyanidins, and isoflavones)

depending on the modification of the C-ring (Iwashina, 2000).

Flavonols are the largest subgroup of flavonoids, consisting mainly

of kaempferols, quercetins, and myricetins (Jiang et al., 2020). They

play pivotal roles in plant growth and development, such as

regulating auxin transport (Kuhn et al., 2011), against UV light

(Majer et al., 2014), alleviating oxidative stress (Redha et al., 2012),

and influencing color formation (Tian et al., 2015). Flavonols have

also been demonstrated to have pharmacological functions

including anti-inflammatory, anti-angiogenesis, anti-oxidation,

antiproliferative, and cardioprotection functions (Harborne and

Williams, 2000; Lee et al., 2005; Kim et al., 2006). Flavonoids are

synthesized via the phenylpropane metabolic pathway (Czemmel

et al., 2009). Flavonol synthase (FLS) is an important enzyme in the

flavonoid metabolism; it cata lyzes the conversion of

dihydroflavonols (dihydroquercetin, dihydrokaempferol, and

dihydromyricetin) into relative flavonols (quercetin, kaempferol,

and myricetin) (Czemmel et al. , 2009). At this stage,

dihydroflavonol 4-reductase (DFR) competes with FLS for the

common substrates dihydroflavonols and produces anthocyanins.

Therefore, the FLS gene has great importance in the downstream

branch of the flavonoid pathway, affecting not only flavonol

synthesis, but also anthocyanin accumulation and plant

coloration (Luo et al., 2016).

The first FLS gene was isolated from Petunia hybrida and

functionally verified in yeast and plants (Holton et al., 1993). To

date, a number of FLS genes have been cloned and characterized in

other plant species, such as Arabidopsis thaliana (Pelletier et al.,

1997), Citrus unshiu (Moriguchi et al., 2002), Zea mays (Ferreyra

et al., 2010), Fagopyrum tataricum (Li et al., 2012), Litchi chinensis

(Liu et al., 2018), and Camellia sinensis (Shi et al., 2021).

The sweet potato [Ipomoea batatas (L.) Lam.] is one of the most

important food crops due to its wide adaptability, high nutritive

value, high yield potential, and low input requirements (Park et al.,

2020; Yan et al., 2022). It is ranked sixth worldwide in terms of total

crop production. Purple-fleshed sweet potato (PFSP) is a special

kind of sweet potato. In addition to containing a variety of

micronutrients and minerals, PFSP is also rich in natural

anthocyanins with health-promoting effects (Esatbeyoglu et al.,

2017; Jang et al., 2019); therefore, it is welcomed by more and

more consumers. To date, research on PFSP anthocyanin has

mainly focused on anthocyanin metabolism and the regulation

mechanism, while research on the effect of competition for the

flavonol branch on anthocyanin synthesis and color formation is

lacking. In the present study, cDNA of sweet potato FLS (IbFLS1)

was isolated from the commercial dark-purple-fleshed sweet potato

cultivar ‘Xuzi 8’ based on our previous transcriptome data. The

identification and characteristic of IbFLS1 can provide valuable

information about the flavonoid biosynthetic pathway and lay the

foundation for improving nutritional value in sweet potato plants.
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Materials and methods

Plant materials

The dark-purple-fleshed sweet potato cultivar ‘Xuzi 8’ was

planted in the field of Xuzhou Institute of Agricultural Sciences in

Jiangsu Xuhuai District. Young leaf (YL), leaf petiole (LP), stem (S),

fibrous root (FR), pencil root (PR), and storage root (SR) were

collected 120 days after transplanting. All tissues were frozen

immediately in liquid nitrogen and stored at –80°C until total

RNA extraction and flavonol determination
Total RNA extraction and the first-strand
cDNA synthesis

Total RNAs of all samples were extracted using the

polysaccharide polyphenol plant RNA Isolation Kit (Huayueyang

Biotechnology Co., Ltd., Beijing, China) following the

manufacturer’s protocol. RNA integrity and concentration were

verified by, respectively, 1.2% formaldehyde denaturing agarose gel

electrophoresis and a NanoDrop 1000 spectrophotometer

(ThermoFisher Scientific Inc., Waltham, MA, USA). The cDNA

was synthesized using ReverTra Ace® qPCR RT Master Mix with a

gDNA Remover kit (Toyobo, Osaka, Japan) in accordance with the

manufacturer’s instructions.
Cloning of IbFLS1

An FLS homolog was identified from the previous

transcriptome data and designated IbFLS1. The coding sequence

(CDS) of IbFLS1 was amplified by PCR from ‘Xuzi 8’ SR cDNA.

Gene-specific primers (IbFLS1-1-F and IbFLS1-1-R; see

Supplementary Table S1) and PrimeSTAR® Max DNA

Polymerase (Takara Biomedical Technology Co., Ltd., Beijing,

China) were used for this experiment under the following

conditions: 30 cycles of 98°C for 10 s, 55°C for 15 s, and 72°C for

30 s and a final extension at 72°C for 10 min. The PCR-amplified

product was cloned into a pEASY-Blunt vector (TransGen Biotech

Co., Ltd, Beijing, China), transformed into Escherichia coli (E. coli)

Trans1-T1 (TransGen Biotech Co., Ltd, Beijing, China), and then

sequenced at Sangon Biotech (Shanghai) Co., Ltd. (China).
Sequence alignment and phylogenetic
analysis of IbFLS1

The amino acid sequences of IbFLS1 and other FLS proteins

were obtained from the GenBank database. Multiple sequence

alignments were performed with DNAMAN software. A

phylogenetic tree was constructed by the maximum likelihood

method with 1,000 bootstrap replicates using MEGA 6.0.
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Gene expression analysis by quantitative
real-time PCR (qRT-PCR)

cDNAs of all samples were diluted 10-fold for qRT-PCR analysis.

qRT-PCR primers (IbFLS1-2-F and IbFLS1-2-R) of the IbFLS1 gene

were designed according to the full-length sequence (primers are

listed in Supplementary Table S1), and IbARF was used as the

internal control gene (Park et al., 2012). The mRNA levels were

quantified by qRT-PCR amplification using a StepOnePlus™ real-

time PCR system (ABI, USA) in a total volume of 20 mL, containing
10 mL of SYBR®Green Realtime PCRMaster Mix (TOYOBO, Osaka,

Japan), 2 mL of cDNA templates, 1 mL of forward and reverse primer

(10 mM), and 7 mL of ddH2O. The reaction program was performed

as presented in a previous study (Kou et al., 2019). Gene transcript

levels were calculated using the 2–DDCT method (Livak and

Schmittgen, 2001), and each reaction was performed in triplicate.
Expression of IbFLS1 in E. coli and
enzyme activity assay

Using the pEASY-Blunt : IbFLS1 vector as a template, the

forward primer (IbFLS1-3-F) and reverse primer (IbFLS1-3-R)

were separately designed with NdeI and BamHI restriction sites

(primers are listed in Supplementary Table S1) to construct the

pET-28a(+):IbFLS1 vector, as mentioned in the previous study

(Kou et al., 2019). The recombinant protein expression and

purification method used were reported previously by Kou et al.

(2019). The enzyme activity of IbFLS1 was measured in

international enzyme units (IU), as described by Li et al. (2012).

One IU is the amount of FLS that produces 1 mmol of quercetin or

kaempferol per minute (Prescott and John, 1996).
Subcellular localization of IbFLS1

Using the pEASY-Blunt : IbFLS1 vector as a template, the

coding region of IbFLS1 without a termination codon was

inserted between the SalI and SpeI sites of the pCAMBIA1301S

vector (replacing GUS with GFP),using T4 DNA ligase to generate a

pCAMBIA1301S-GFP : IbFLS1 fusion construct (primers are listed

in Supplementary Table S1). The transient GFP fusion vector was

infiltrated into tobacco leaves via an Agrobacterium-mediated

infiltration method (You et al., 2022), and the transformed leaves

were monitored with a laser confocal microscope (Nikon C2).
Expression vector construction and stable
sweet potato transformation

Using the pEASY-Blunt : IbFLS1 vector as a template, the FS and

RS parts of IbFLS1-RNAi were cloned with FLS1i-F(KpnI)/FLS1i-R

(ClaI) and FLS1i-F(BamHI)/FLS1i-R(XhoI) (see Supplementary

Table S1). First, the FS part of IbFLS1-RNAi was inserted between

the KpnI and ClaI sites of the PBS-RNAi vector (modified

intermediate vector), using the T4 DNA ligase to generate the
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recombinant vector PBS-RNAi-FS. Then, the RS part of IbFLS1-

RNAi was inserted between the BamHI and XhoI sites of PBS-RNAi-

FS to generate the fusion construct PBS-RNAi-FS/RS. Finally, the

pCAMBIA1301S-IbFLS1-RNAi vector was successfully created by

linking PBS-RNAi-FS/RS and pCAMBIA1301S (with KpnI and

BamHI cutting sites) together. Subsequently, the IbFLS1:RNAi

vector was introduced into ‘Xuzi 8’ via Agrobacterium tumefaciens-

mediated transformation, as described previously (You et al., 2022).
Determination of flavonol and anthocyanin

The fresh samples were ground to powder in liquid nitrogen,

transferred to the centrifugal tube, and 10 mL of extracting solution

(Vmethanol : Vacetone:Vamylalcohol = 2:2:0.5) was added. After adding the

glass ball, the ultrasonic extraction was performed for 20 min (100 W),

followed by heating for 5 min in a microwave oven (200 W), and then

filtered through 0.22-µm Millipore filters. LC-MS analysis was carried

out with a TripleTOF® 4600 System (AB SCIEX, USA) connected to a

HALO-C18 column (2.7 mm, 100 × 4.6 mm; AMT, USA). The mobile

phase consisted of 0.5% (v/v) formic acid (A) and acetonitrile containing

0.5% (v/v) formic acid (B). The gradient profile was optimized as follows:

0min, 95%A/5%B; 10min, 30%A/70%B; 15min, 0 A/100%B; 20min,

0% A/100% B; 25 min, 95% A/5% B. The flow rate was 0.5 mL/min.

Then the processed sample was analyzed by a tandemmass spectrometer

with an electrospray ion source (EIS), monitored undermultiple reaction

monitoring (MRM) mode. The standard curve and regression equation

were established (quercetin: y = 410,287x – 10,152.3367, R2 = 0.9984;

kaempferol: y =257,442x – 16,761.2444, R2 = 0.9997; myricetin:

y = 716,220x – 40,014.6274, R2 = 0.9949). The total flavonol content

was the sum of quercetin, kaempferol, and myricetin content. The total

anthocyanin content of sweet potato tissues was measured in accordance

the method proposed by Guo et al. (2015) and calculated using the

equation QAnthocyanin = (A530–0.25 × A657) × 0.1M–1. All samples were

performed in three biological replicates.
Statistical analysis

Significant differences between treatments and multiple

comparisons were analyzed using Microsoft Office Excel 2010,

and all data are represented as the mean ± standard deviation (SD).
Results

Cloning and sequence analysis of IbFLS1

In this study, we used already available transcriptome data and

explored a FLS homolog designated IbFLS1. The CDS of IbFLS1 was

isolated from the sweet potato cultivar ‘Xuzi 8’, and was found to

encode 337 amino acids with a molecular weight of 38.17 kDa and a

theoretical pI of 5.70 analyzed online by the ProtParam tool (http://

web.expasy.org/protparam/). The genomic DNA of IbFLS1 was also

isolated, and was found to consist of 1,568 nucleotides, including

two introns and three exons (Figure 1A).
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Comparison of the deduced amino acid sequence of IbFLS1 with

other FLS proteins revealed that IbFLS1 possessed the typical conserved

HxDxnH motifs (His223, Asp225, and His279) for binding ferrous

iron and RxS motifs (Arg289 and Ser291) for binding 2-oxoglutarate

(Figure 1B). This indicated that IbFLS1 belongs to the soluble Fe(II)-

and 2-oxoglutarate-dependent dioxygenases (2-ODD) superfamily.

Therefore, it is inferred that IbFLS1 protein plays a similar function

to other plant FLS proteins in flavonol synthesis.

BLASTP alignment of the amino acid sequence of IbFLS1 in

NCBI showed that the IbFLS1 protein had the highest homology

with Ipomoea triloba (98.81%), followed by Ipomoea nil (95.25%).

To further investigate the relationship between the IbFLS1 protein

and other plant FLSs, we constructed a phylogenetic analysis using

functionally characterized plant FLSs (Figure 2). The phylogenetic

tree showed that plant FLSs could be classified into two distinct

clades: dicotyledonous and monocotyledonous. IbFLS1 protein

belonged to the dicotyledonous clade, which is closely related to

PhFLS (Petunia hybrida), NtFLS1 (Nicotiana tabacum), and StFLS

(Solanum tuberosum), and then clustered together with EgFLS

(Lilium regale) and PcFLS (Petroselinum crispum). These results

demonstrate that the phylogenetic analysis matched well with the

genetic relationships among the plant species.
Tissue-specific expression analysis of the
IbFLS1 gene

To study the expression levels of the IbFLS1 gene in different

tissues, qRT-PCR was used to detect the expression pattern (Figure 3).
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The results indicated that IbFLS1 expression was significantly high in

YL, andmarkedly lower in PR, SR, and FR, whereas IbFLS1 expression

was barely detectable in leaf petiole (LP) and stem (S).
Recombinant IbFLS1 protein exhibits
bifunctional activity

The prokaryotic expression vector pET-28a(+): IbFLS1 was

transformed into E. coli, induced by isopropylthio-b-galactoside
(IPTG), and then confirmed by SDS-PAGE. The results showed that

the recombinant protein generated a band with a relative molecular

mass of approximately 40 kDa (marked by red arrows; Figure 4)

with IPTG treatment. The measured relative molecular mass was in

accordance with the theoretical value. However, the control group

without IPTG did not express this protein. The recombinant

protein was purified and the enzyme activity was determined.

First, the linear regression equations of quercetin (y = 0.002x,

R2 = 0.993) and kaempferol (y = 0.0175x, R2 = 0.998) were

established. Then, the measured absorbance values were

substituted into the linear regression equation. Finally, the

reaction system produced 390 mg (1.29 mmol) of quercetin and

145.7 mg (0.51 mmol) of kaempferol within 20 min. In conclusion,

the FLS activities were 1.29 ×10–3 IU/mL and 0.51×10–3 IU/mL using
dihydroquercetin and dihydrokaempferol as substrate, respectively.
In vivo localization of IbFLS1

The recombinant plasmid IbFLS1:GFP, along with the nucleus

(or cytomembrane) localization marker, was infiltrated into tobacco
B

A

FIGURE 1

Analysis of the IbFLS1 gene structure. (A), intron analysis of the IbFLS1 gene; (B), alignment of IbFLS1 with other FLS proteins. The Fe2+-binding sites
and oxoglutarate binding sites are indicated by black arrowheads and asterisks, respectively, and the conserved Fe2+/2-ODD domain is underlined.
Petunia hybrida (PhFLS, CAA80264.1), Nicotiana tabacum (NtFLS1, ABE28017.1), Solanum tuberosum (StFLS, CAA63092.1), Vitis vinifera (VvFLS,
BAE75810.1), Camellia nitidissima (CnFLS, ADZ28516.1).
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leaves. Compared with empty vector (Figure 5A), under different

excitation light irradiation, the IbFLS1:GFP fusion protein emitted

green fluorescence, while the nucleus localization marker emitted

red fluorescence (Figure 5B). After combining the two images, we

found that the red fluorescence and the green fluorescence merged

together and created yellow signals, indicating that the IbFLS1:GFP
Frontiers in Plant Science 05
fusion protein was localized in the nucleus. As shown in Figure 5C,

we found that the fluorescence from the IbFLS1:GFP fusion protein

and from the cytomembrane localization maker overlapped,

suggesting that the IbFLS1:GFP fusion protein was also localized

in the cytomembrane. In summary, IbFLS is both a nuclear and a

cytomembrane protein.
FIGURE 2

Phylogenetic tree of IbFLS1 and other FLS proteins. Arabidopsis thaliana (AtFLS1, AAB41504.1), Petunia hybrida (PhFLS, CAA80264.1), Nicotiana
tabacum (NtFLS1, ABE28017.1), Solanum tuberosum (StFLS, CAA63092.1), Camellia nitidissima (CnFLS, ADZ28516.1), Citrus unshiu (CuFLS,
BAA36554.1), Cyclamen purpurascens (CpurFLS1 and CpurFLS2, BBA27023.1 and BBA27024.1), Rosa rugosa (RrFLS, KM099095), Fagopyrum
tataricum (FtFLS, AEC33116.1), Fagopyrum dibotrys (FdFLS, AHN19765.1), Antirrhinum majus (AmFLS, ABB53382.1), Eustoma grandiflorum (EgFLS,
AAF64168), Petroselinum crispum (PcFLS, AAP57395.1), Muscari aucheri (MaFLS, QBO54037.1), Dendrobium officinale (DoFLS, ATD53725.1), Allium
cepa (AcFLS-H6 and AcFLS-HRB, AAO63023.1 and AAT68476.1), Zea mays (ZmFLS, XP_008646309.1), Lilium regale (LrFLS, ASV46329.1), Narcissus
tazetta (NtaFLS, AFS63900.1), Brachypodium distachyon (BdFLS1, XP_003570562.1), Sorghum bicolor (SbFLS1, XP_002454608.1). The scale bar
represents genetic distance.
FIGURE 3

The expression profiles of IbFLS1 in different tissues. Young leaf (YL), leaf petiole (LP), stem (S), fibrous root (FR), pencil root (PR), and storage root
(SR). Each bar represents the mean ± SD) of three independent replicates. Significant differences between means are indicated by asterisks
(**p < 0.01) above the bars. The significance analysis was carried out using YL as the control.
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Identification of transgenic sweet
potato plants

The IbFLS1:RNAi vector was transferred into the calli of ‘Xuzi

8’ via A. tumefaciens EHA105. After screening the hygromycin

selection medium, more than 10 transgenic sweet potato lines were

obtained. Compared with wild-type plants, the leaves of transgenic

lines had significant anthocyanin pigmentation (Figure 6). Silencing
Frontiers in Plant Science 06
of IbFLS1 expression by RNA interference suppressed flavonol

accumulation but promoted anthocyanin accumulation in

transgenic sweet potato leaves (Figure 7). Furthermore, qRT-PCR

analysis showed that the expression level of IbFLS1 was significantly

reduced. Similarly, the expression levels of other key genes (C4H,

4CL, CHI, F3H, and F3′H) involved in the upstream pathway of

anthocyanin biosynthesis were also decreased, but those of

structural genes (DFR , ANS, and UFGT) related to the
FIGURE 4

The expression of the recombinant protein induced by IPTG. M, protein marker; lane 1, the recombinant protein without IPTG induction; lane 2 and
lane 3, the recombinant protein with IPTG induction, respectively. The red arrow represents the protein band induced by IPTG.
B

C

A

FIGURE 5

Subcellular localization of IbFLS1 proteins. Green fluorescence, GFP; red fluorescence, nucleus and cytomembrane makers; yellow fluorescence,
combined signals. Scale bars: 25 mm.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1181173
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kou et al. 10.3389/fpls.2023.1181173
downstream pathway of anthocyanin biosynthesis were increased

(Figures 8, 9; primers are listed in Supplementary Table S1).
Discussion

Transcriptome sequencing is a fast and efficient method of

obtaining a large number of gene fragments. It plays an important

role in gene discovery, transcription analysis, and molecular marker

development without reference genomes (Grabherr et al., 2011;

Wang et al., 2011). It also helps researchers uncover key candidate

genes in biological metabolic pathways (Li et al., 2021). In this

study, using sweet potato transcriptome data, a key candidate gene
Frontiers in Plant Science 07
(IbFLS1) that may be involved in flavonol formation was screened

out. Afterwards, the IbFLS1 gene was cloned from sweet potato for

the first time (to the best of our knowledge). Sequence comparison

showed that the IbFLS1 protein is highly similar to FLSs from other

known plants, with the typical HxDxnH motifs binding to ferrous

ions and the RxS motifs binding to 2-oxoglutarate (Figure 1B). The

phylogenetic tree grouped IbFLS1 with dicotyledonous plants, such

as Petunia hybrida, Nicotiana tabacum, and Solanum tuberosum,

but it was far from monocotyledonous plants, such as

Brachypodium distachyon and Sorghum bicolor (Figure 2). These

results indicated that FLS proteins in monocotyledonous plants and

dicotyledonous plants are dissimilar and that IbFLS1 is more closely

related to FLSs in dicotyledonous plants. Therefore, it was
FIGURE 6

Leaves of the transgenic sweet potato plant. Leaves were collected 120 days after transplanting. Scale bars: 2 cm.
A B

FIGURE 7

The flavonol (A) and anthocyanin (B) content in transgenic sweet potato leaves. Leaves were collected 120 days after transplanting. The significance
analysis was done with wild type as the control. We used a one-way analysis of variance. **Significant differences within the different groups (p < 0.01).
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speculated that it is likely that FLS genes appeared after the

evolution of monocotyledonous and dicotyledonous plants.

qRT-PCR analysis demonstrated that the expression of IbFLS1 was

tissue-specific and was highest in YL, while lower in stems, PRs, and

SRs. This result is consistent with previous reports that in Vitis vinifera

activity of FLS is highest in young tissues (Fujita et al., 2006), and that

this helps to protect young tissues from UV-B damage (Zhang et al.,

2015). Since the expression level of IbFLS1 was lower in the SRs of
Frontiers in Plant Science 08
PFSP, it was supposed that the SR is not the main organ of flavonol

accumulation. Due to the anthocyanin-rich SRs of PFSP, the synthesis

of flavonols is relatively lower. This phenomenon is in line with

previous reports that FLS and DFR compete for common substrates,

and that a low expression of FLSmakes flavonoid synthesis flow to an

anthocyanin biosynthetic pathway (Luo et al., 2016).

Wellmann et al. (2002) reported that FLS in Citrus unshiu had a

different Kmfor converting dihydrokaempferol (Km 45 mmol/L) and
FIGURE 8

Expression levels of anthocyanin synthesis-related genes in transgenic sweet potato leaves. Leaves were collected 120 days after transplanting. The significance
analysis was done with WT as the control. We used a one-way analysis of variance. ** Significant differences within the different groups (p < 0.01).
FIGURE 9

Silencing of IbFLS1 regulates anthocyanin metabolism pathway in transgenic sweet potato leaves. Blue arrows represent downregulated gene
expression, while red arrows represent upregulated gene expression.
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dihydroquercetin (Km 272 mmol/L) to the corresponding flavonols.

In Zea mays, dihydrokaempferol (Km 58 mmol/L) is the preferred

substrate, rather than dihydroquercetin (Km 151 mmol/L) for

ZmFLS1 (Ferreyra et al., 2010). The catalytic activity of FtFLS1

was detected by thin-layer chromatography (TLC) and

spectrophotometric assays, and dihydroquercetin, which had a

higher specific activity than dihydrokaempferol, was the

predominant substrate of FtFLS1 (Li et al., 2012). This result

might raise the possibility that rutin in Fagopyrum tataricums

may be synthesized from the hydroxylation of dihydrokaempferol

to dihydroquercetin by F3′H, and oxidation of dihydroquercetin to

quercetin, then glycoylation of quercetin to rutin (Li et al., 2015). In

our study, using a similar method to that previously mentioned, the

recombinant IbFLS1 was more effective at converting

dihydroquercetin to quercetin than dihydrokaempferol to

kaempferol, and had a specific activity similar to that of FtFLS1

(Li et al., 2015). Taken together, these results verified that IbFLS1

belongs to a flavonol synthase.

Sweet potato is a plant of the family Convolvulaceae originating

from Central and South America. It has been widely cultivated as a

food crop around the world due to its various advantages. The

ornamental characteristics of the sweet potato have long been

overlooked; normally, people only focus on the underground

edible parts rather than the colorful flowers, leaves, and branches.

Nowadays, the sweet potato has become an ornamental plant of

great value and established a new use for germplasm resources. In

this study, we have developed special transgenic sweet potato plants

by RNA interference on IbFLS1 expression. Silencing of IbFLS1

increased the anthocyanin content and the reduced flavonol content

of transgenic plant leaves (Figure 6). In conclusion, our work

highlights potential methods for regulating anthocyanin and

flavonol concentration of sweet potato by metabolic engineering.
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