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and dynamics
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Sciences (CEPLAS), Germany
Membrane identity and dynamic processes, that act at membrane sites, provide

important cues for regulating transport, signal transduction and communication

across membranes. There are still numerous open questions as to howmembrane

identity changes and the dynamic processes acting at the surface of membranes

are regulated in diverse eukaryotes in particular plants and which roles are being

played by protein interaction complexes composed of peripheral and integral

membrane proteins. One class of peripheral membrane proteins conserved across

eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins

(SEC14L-PITPs). These proteins share a SEC14 domain that contributes to

membrane identity and fulfills regulatory functions in membrane trafficking by its

ability to sense, bind, transport and exchange lipophilic substances between

membranes, such as phosphoinositides and diverse other lipophilic substances.

SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated

organisms orwith amodular domain structure asmulti-domain proteins in animals

and streptophytes (comprising charales and land plants). Here, we present an

overview on the functional roles of SEC14L-PITPs, with a special focus on the

multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group

(PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles

from membrane trafficking to organism fitness in plants. We concentrate on the

structure of SEC14L-PITPs, their ability to not only bind phospholipids but also

other lipophilic ligands, and their ability to regulate complex cellular responses

through interacting with proteins at membrane sites.

KEYWORDS

lipid binding site, lipid transfer, SEC14, PATELLIN, membrane, phosphatidylinositol,
multi-domain, tocopherol
Abbreviations: a-TOC, a-tocopherol; C-terminal, carboxy-terminal; CTN, CRAL-TRIO-N-terminal

extension; ER, endoplasmic reticulum; N-terminal, amino-terminal; N region, N-terminal region of

PATLs; PATL, patellin; PC, phosphatidylcholine; PE, phosphatidyl ethanolamine; PI, phosphatidylinositol;

PIP, phosphatidylinositol phosphate; PITP, phosphatidyl transfer protein; PS, phosphatidylserine; ROS,

reactive oxygen species; SEC14L-PITP, SEC14-like PITP.
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Highlights

• SEC14-like phosphatidylinositol transfer proteins (SEC14L-

PITPs) can bind phospholipids and other lipophilic ligands.

• The occurrence of multi-domain SEC14L-PITPs in higher

eukaryotes including land plants underlines their functional roles.

• Plant SEC14 proteins function as cellular regulators via

protein-protein and/or protein-lipid interaction and lipid transfer

to achieve chloroplast functioning, cell polarity and development,

and to control the response to environmental stimuli and

iron nutrition.
1 Introduction

Cells are surrounded by membranes, which function as

hydrophobic permeable barriers regulating the exchange of

molecules and the flow of information. Within the cell,

membranes have different compositions resulting in their

specific identity and allowing them to fulfill specific tasks

(Watson, 2015; Heilmann, 2016; Mamode Cassim et al., 2019).

The plasma membrane, for example, is involved in uptake of

molecules from the environment, cell-to-cell communication or

cell shape changes (Cooper, 2000; Luschnig and Vert, 2014). The

thylakoid membrane, on the other hand, is essential for

photosynthesis and uses an electron gradient to generate ATP

(O'Connor and Adams, 2010). In addition to building the basic

membrane backbone, lipids may have regulatory roles (Stevenson

et al., 2000). Minor changes in lipid composition and structure can

result in major modifications to essential cellular processes

(Harayama and Riezman, 2018). Especially the phospholipid

composition of a membrane has significant effects on the

regulation of cellular and tissue functions (Heilmann, 2016). A

crucial group of regulatory phospholipids are the phosphorylated

derivatives of phosphatidylinositol (PI), which are the

phosphoinositides (PIPs) PI(3)P, PI(4)P, PI(5)P, PI(3,4)P2, PI

(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3 (Irvine, 2016). PI and PIPs

provide cues to membrane identity, although they make up less

than 1% of membrane lipids (Simon et al., 2014; Simon et al., 2016;

Gerth et al., 2017; Noack and Jaillais, 2020). They are key players

controlling growth, development and polarization as well as

influencing multiple processes through binding to a great

number of interaction partners in adaptation to, e.g. ,

environmental changes (Heilmann, 2016; Roman-Fernandez

et al., 2018). It is among the open compelling questions in plant

cell biology how membranes are remodeled and controlled and

how identity and dynamics of membrane systems are determined,

maintained or changed (Roeder et al., 2022). Here, we review one

class of peripheral membrane proteins, namely SEC14 domain-

containing lipid transfer proteins, that are promising candidates

to alter the phospholipid identity and membrane dynamics in

their functions as lipid transfer, lipid-binding and membrane-

associated proteins with protein-protein interaction capabilities.
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2 Overview of phosphatidylinositol
transfer proteins

Lipids can be distributed in the cell through vesicle-independent

trafficking, which includes spontaneous lipid transfer, flip-flop

exchange within bilayers, lateral diffusion or single-lipid transfer by

lipid-transfer proteins, that act, for example at membrane contact sites

(Lev, 2010; Peretti et al., 2019). On the other hand, trafficking of

proteins, lipids and other metabolites between cell compartments is

achieved by the highly regulated and coordinated vesicular trafficking

mechanism, in which macromolecules are transported within

membrane vesicles (Tokarev et al., 2013; Goring and Di

Sansebastiano, 2017). Generally, single-lipid transfer and membrane

vesicular trafficking are controlled by regulatory proteins in response to

developmental cues and external stimuli. It is not yet well investigated

how this is controlled in plant cells. One group of proteins able to link

lipid recognition, metabolism and signaling are phosphatidylinositol

transfer proteins (PITPs). PITPs can be clustered in two independent

protein families with distinctly separated biological functions

(Wirtz, 1991).

The first group is simply named the phosphatidylinositol

transfer protein (PITP)-superfamily, defined through its e.g.

phosphatidylinositol transfer protein and Lipin/Ned1/Smp2

(PITP/LNS2) domain (InterPro accession number (IPR):

IPR031315). Such a domain is thought to promote the exchange

of phospholipids at the membrane contact sites of the endoplasmic

reticulum (ER) and the plasma membrane by non-vesicular lipid

transport (Cockcroft and Raghu, 2018). Proteins containing a PITP/

LNS2 domain can be found in mammals, invertebrates and plants

(Hsuan and Cockcroft, 2001; Cockcroft, 2012). Defects in PITP

proteins can lead to for example neurodegenerative diseases (Hsuan

and Cockcroft, 2001; Cockcroft, 2012). In Arabidopsis thaliana

(Arabidopsis) the PITP/LNS2 domain can for example be found

in two phosphatidate phosphohydrolase proteins involved in

galactolipid synthesis and necessary to maintain membrane

structure by lipid remodeling due to phosphate starvation

(Nakamura et al., 2009; Yoshitake et al., 2017). These examples

show that PITPs have profound functions in cellular and

physiological integrity of higher eukaryotes.

The second PITP-superfamily and subject of this review is defined

through its SEC14 domain (IPR001251), named the SEC14-like

phosphatidylinositol transfer protein (SEC14L-PITP)-superfamily.

SEC14L-PITPs are able to recognize, bind, exchange and transfer

small lipophilic molecules between membranes by non-vesicular

transport (Figures 1A–F) (Bankaitis et al., 1990; Cleves et al., 1991).

Additionally, they are involved in regulation of membrane trafficking

within a cell (Bankaitis et al., 2010). SEC14 proteins are found in yeast,

plants, invertebrates, and mammals, suggesting a conserved and

essential role (Ren et al., 2011; Aravind and Iyer, 2012). In the

following sections, we will review their general characteristics,

distinguish functions of single- and multi-domain SEC14-PITPs and

highlight recent work describing their roles in plants, focusing on

Arabidopsis thaliana.
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3 General characteristics
of SEC14L-PITPs

The SEC14 domain forms a characteristic hydrophobic

phospholipid-binding pocket at its carboxy (C)-terminus (Sha

et al., 1998). Yeast Sec14p (304 AA) is the prototype for the

SEC14 domain ([37-279AA] 12x a - helices, 6x b-strands, 8x 310-
Frontiers in Plant Science 03
helices; 2x distinct domains) (Sha et al., 1998) and was initially

identified in a screen for secretory mutants (termed “SEC”) (Novick

et al., 1980). An identical phospholipid-binding pocket was

observed in several mammalian proteins, including the

CELLULAR RETINAL-BINDING PROTEIN (CRALBP), TRIO

and a-TOCOPHEROL-TRANSFER PROTEIN (a-TTP) (Crabb

et al., 1998; Min et al., 2003). That is why the SEC14 domain is
A B

D

E

F

C

FIGURE 1

Functions and regulation modes of SEC14L-PITPs. (A), SEC14 protein-mediated lipid transfer and heterotypic exchange of lipids between two
membranes. (B), Lipid presentation model, interaction of SEC14 protein with PI kinase and phosphorylation of lipid during transfer (de Campos and
Schaaf, 2017). (C), Regulation of membrane binding by phosphorylation of SEC14 domain by a protein kinase. (D), Increase in the number of
potential protein-protein interactions of multi-domain versus single-domain SEC14L-PITPs. (E), Alphafold model of the multi-domain SEC14 protein
PATL2 (At1g22530). The arrows point to a) intrinsically disordered N-terminal region; b) CTN domain; c) SEC14 domain with lipid-binding site, gate
and anchor helices; d) GOLD domain. Alphafold was used, as described (Jumper et al. 2021; Varadi et al. 2021). (F), Symbols used in (A–D).
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also known as CRAL-TRIO domain (Panagabko et al., 2003). A

unique feature of the SEC14 domain is that the lipophilic ligand is

bound and enclosed as a whole molecule in the hydrophobic lipid-

binding pocket (Min et al., 2003; Schaaf et al., 2006), while other

lipid-binding domains, like FYVE or PH, only bind lipid

headgroups (Stahelin, 2009). The alpha helical amino (N)-

terminus of Sep14p is defined as CRAL-TRIO-N-terminal

extension (CTN) (IPR011074) and cannot be identified in all

SEC14L-PITPs (Saito et al., 2007a). The ability to open and close

the SEC14 lipid-binding pocket by structural changes seems to be

essential for domain activity and the biological function of this

domain (Ryan et al., 2007; Schaaf et al., 2008; Schaaf et al., 2011;

Kono et al., 2013). The open status is believed to be the membrane-

attached structure, while the closed conformation, the one binding a

substrate, is understood as the cytosolic version of the SEC14

domain (Tripathi et al., 2014). This fits the observation that the

CTN-SEC14 module is crucial for membrane association of

SEC14L-PITPs, since loss of the module leads to the

accumulation of the protein in the cytosol (Skinner et al., 1993;

Sirokmany et al., 2006; Sun et al., 2006; Saito et al., 2007a; Saito

et al., 2007b; Montag et al., 2020). The lipid-presentation model of

SEC14L-PITP function is based on results indicating that the SEC14

domain is essential for promoting membrane trafficking by

supporting PI(4)P-OH kinase activity (Strahl and Thorner, 2007)

(Figure 1B). For example, the SEC14 domain can recognize

membrane-bound phosphatidylcholine (PC) and present PI
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bound in the lipid-binding pocket of the SEC14 domain to a PI

(4)P-OH kinases for phosphorylation, as proposed for Arabidopsis

SEC14 protein named SFH1 (Figure 1C), according to (Kf de

Campos and Schaaf, 2017). Phosphorylation of SEC14 protein

may regulate the association of SEC14 proteins with membranes

(Suzuki et al., 2016) (Figure 1C). It is remarkable that unicellular

organisms have SEC14-only single-domain SEC14L-PITPs,

whereas multicellular organisms of the animal and plant lineage

have single-domain and multi-domain SEC14L-PITPs

(Figures 1D, 2) (Montag et al., 2020). The SEC14 domain

represents a hydrophobic pocket-like lipid-binding site, in which

a hydrophobic lipid substrate can bind (Sha et al., 1998). This site

was found to be flanked by helical regions termed the anchor helix

and gate helix. The anchor helix confers association with the

membrane. The amphipathic gate helix keeps the lipid-binding

site in an open or close conformation (Sha et al., 1998; Schaaf et al.,

2008; Sugiura et al., 2021; Hornbergs et al., 2022; Yao et al., 2023)

(Figure 1E). Additional residues may favor orientation either

towards the negatively charged membrane or the cytosol, and

they may also steer specificity for the lipid substrate (Sha et al.,

1998; Schaaf et al., 2008; Sugiura et al., 2021; Hornbergs et al., 2022;

Yao et al., 2023). Upon a heterotypic lipid exchange, an

intermediate with two different lipophilic substrate-binding sites

can form (Schaaf et al., 2008).

While the functions of several single-domain SEC14-only

proteins are studied well, only a few multi-domain SEC14L-PITPs
A

B

D

E

C

FIGURE 2

Schematic structures of representative SEC14L-PITPs showing the differing complexity between single- and multi-domain SEC14L-PITPs in
unicellular and multicellular species. SEC14-PITPs in (A), yeast Saccharomyces cerevisiae; (B), Homo sapiens, (C), Chlamydomonas reinhardtii;
(D), Arabidopsis thaliana. The presence of different types of domains is indicated in colors, and example names are provided on the right. (E) Symbols
used in (A–D). Unicellular eukaryotes have simple single-domain SEC14L-PITPs, while multicellular eukaryotes have single- and various multi-
domain proteins with various types of additional domains attached. Some multidomain proteins have independently evolved in the animal and plant
lineage, e.g. SEC14-GOLD domain proteins, while others are unique in one of the lineages, e.g. SEC14-nodulin proteins in land plants.
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are characterized. At the same time, their abundance in higher

eukaryotes highlights their importance. This raises several

fundamental questions: Which are the pathways that single- and

multi-domain SEC14L-PITPs are integrated in? What are the

functions of the different domains within the multi-domain

SEC14L-PITPs? Which protein-protein and protein-ligand

interactions are relevant for the functions of SEC14L-PITPs?

Herein, we review SEC14L-PITPs and focus on structure and

function of single- and multi-domain SEC14-PITPs, especially in

plants. We highlight particularly the subgroup of SEC14-GOLD

proteins. We analyze which role might be played by subdomains to

allow binding with phospholipids of the membrane and protein-

protein interaction.
4 Single-domain SEC14-only PITPs

In addition to Sec14p and its homologs in yeast (Bankaitis et al.,

1990; Cleves et al., 1991; Schnabl et al., 2003; Griac, 2007), single-

domain SEC14-only proteins can be identified in Chlamydomonas

and in higher eukaryotes, either with or without CTN (Figure 2)

(Saito et al., 2007a; Montag et al., 2020). While all SEC14-only

proteins in yeast are well characterized by demonstrating their roles

in different aspects of the phospholipid metabolism, for example

organization of the actin cytoskeleton, activation of phospholipase

D or prevention of saturated fatty-acid accumulation (Li et al., 2000;

Desfougeres et al., 2008; Yakir-Tamang and Gerst, 2009), only few

SEC14-only proteins have been studied till now in higher

multicellular eukaryotes. In spite of this, the studies of human

SEC14-only proteins have increased the knowledge about the

functions of SEC14L-PITPs and their essential roles within

organisms. For example, human CRALBP is able to transport 11-

cis retinaldehyde, the photosensitive component of rhodopsin, in its

SEC14 lipid-binding pocket (Crabb et al., 1998; Fishman et al.,

2004). This feature makes CRALBP essential for photoreceptor

function. Mutations in its SEC14 domain can be the causes of

neurodegenerative diseases affecting the eyesight by photoreceptor

involution (Maw et al., 1997; Burstedt et al., 2001; Eichers et al.,

2002). Another important human SEC14-only protein is a-TTP
found to be most abundant in liver cells, where it is involved in

vitamin E secretion, especially as a-tocopherol (a-Toc), but it is
also expressed in mammalian uterine and placental cells during

embryogenesis (Sato et al., 1993; Arita et al., 1997; Miller et al.,

2012). Vitamin E is known to be an important antioxidant

neutralizing reactive oxygen species (ROS) and radical formation

involving membrane lipids (Nukala et al., 2018). Important for the

biological function and localization of a-TTP is its ability to not

only bind a-Toc (in its lipid-biding pocket) but also PIPs (at the

entrance of the lipid-binding pocket) (Kono et al., 2013; Chung

et al., 2016). PIP binding mediates the release of a-Toc at

membranes by inducing the conformational change of the SEC14

binding pocket from closed to open (Meier et al., 2003; Kono et al.,

2013). Mutations in a-TTP lead to the neurodegenerative disease

AVED (ataxia, with vitamin E deficiency) caused by dramatic

vitamin E deficiency, which results in disturbance of muscle

activity (Ouahchi et al., 1995; Min et al., 2003). These two
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examples of human single-domain SEC14-only proteins show

their critical roles in binding and transporting additional

lipophilic ligands besides PI, PIPs and PC. Generally, the

presence of SEC14-only proteins in unicellular and multicellular

eukaryotes demonstrates the importance of regulating lipophilic-

substance transport within a cell.

Out of the 15 described single-domain SEC14-only proteins of

A. thaliana, a functional role and structural characteristics are

known for CPSFL1, also known as PITP7 (Figure 2; Table 1)

(Montag et al., 2020). This chloroplast-localized single-domain

SEC14 protein is involved in formation of vesicles from the inner

thylakoid membrane, where it may transfer phosphatidic acid and

PIPs (Hertle et al., 2020; Kim et al., 2022). Interestingly, a similar

single-domain SEC14 protein function was described for

Chlamydomonas reinhardtii, where CPSFL1 defects also caused

chloroplast dis-functioning, light sensitivity and low carotene

contents in plastoglobuli and eyespot (Garcıá-Cerdán et al., 2020).

Chlamydomonas CPSFL1 is able to bind besides phosphatidic acid

also carotene and precursor substrates (Garcıá-Cerdán et al., 2020).

Hence, this CPSFL1 single-domain SEC14 proteins seem to

function in the development of chloroplasts by transporting and

transferring relevant lipophilic substances inside chloroplasts.
5 Multi-domain SEC14L-PITPs

The number and modular complexity of SEC14L-PITPs increases

in multicellular eukaryotes (Figure 2) (Montag et al., 2020). Through

the presence of one or more additional domains the functions of

SEC14L-PITPs are extended, the functions of different domains are

better coordinated with respect to each other in a cell and upon loss of

function the risk of second-site dominant effects is reduced

(Figure 1D). Multi-domain SEC14L-PITPs are not only regulators of

lipophilic substance transport but they may have the ability to function,

e.g. as proteins with enzymatic functions, guanine exchange factors

(GEFs) or GTPase-activating proteins (GAPs). For example, the

human multi-domain SEC14L-PITP TYROSINE-PROTEIN

PHOSPHATASE NON-RECEPTOR TYPE 9 (PTPN9) has an

additional protein phosphatase catalytic (PTP) domain (IPR000242)

and functions as a tyrosine phosphatase (Denu and Dixon, 1998). The

CTN-SEC14 module of PTPN9 is responsible for protein localization

to the outer surface of secretory vesicles binding either

phosphatidylserine (PS) or PI(3,4,5)P3 (and other PIPs) (Kruger

et al., 2002; Krugmann et al., 2002; Huynh et al., 2003; Zhao et al.,

2003; Saito et al., 2007a; Saito et al., 2007b). The membrane targeting

function of the (CTN)-SEC14 domain and its role in intracellular

vesicle trafficking could also be recognized in human multi-domain

SEC14L-PITPs functioning as GEFs and GAPs and thereby regulating

the Ras/Raf-signaling pathway (Ueda et al., 2004; Sirokmany et al.,

2006; Sun et al., 2006). For example, human SEC14L-PITPs with a

GAP function are KALIRIN, Dou or RhoGAP, while MCF2 orMCF2L

are functioning as GEFs. Mutations in all these proteins are linked to

neurodegenerative diseases or cancer. Defects in human

NEUROFIBROMIN 1 (NF1), a putative negative regulator of the

Ras-signaling pathway, are disease-associated, especially when

occurring in the double domain structure of SEC14-PH (Rad and
frontiersin.org
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Tee, 2016). The Pleckstrin homology (PH) domain (IPR001849) has a

phospholipid-binding specificity for PI(4,5)P2 and seems to be involved

in protein recruitment to membranes (Hyvonen et al., 1995; Lemmon

and Ferguson, 1998; Lemmon, 2007). Patients with an NF1 mutation

are developing the Recklinghausen disease/Watson syndrome and have

a significantly increased cancer risk (Rasmussen and Friedman, 2000;

D'Angelo et al., 2006; Yap et al., 2014; Peltonen et al., 2017). Another

example of SEC14L-PITPs playing an important role in human health

is the prostate cancer suppressor PROTEIN Prune Homolog 2 With
Frontiers in Plant Science 06
BCH Domain (PRUNE2) containing the additional BINP2 domain

and DHHA2 domain (IPR004097) at its N-terminus (Salameh et al.,

2015). The human multi-domain SEC14L-PITP GANGLIOSIDE-

INDUCED DIFFERENTIATION-ASSOCIATED PROTEIN 2

(GDAP2) contains a GDAP macro domain (IPR035793) at its N-

terminus, which possibly binds ADP-ribose, and is localized to the

lysosomal membrane (Martzen et al., 1999; Hassa et al., 2006). Its exact

function is unknown, but recently homologs were identified in plants,

suggesting a conserved function (Montag et al., 2020).
TABLE 1 Selected Arabidopsis thaliana SEC14L-PITPs and their functions.

protein
names

gene ID
number

additional
domains
(other
than
SEC14)

protein-
ligand

interactions

protein-
protein

interactions

cellular roles physiological effects references

SFH1/
COW1

At4g34580 CTN, nodulin PC, PI, PIP oligomers plays role in polarizing
root hairs; rice orthologs
OsSNDP2 and OsSNDP3
play a role in polar tip
growth of pollen

essential for root hair
elongation; rice orthologs
OsSNDP2 and OsSNDP3
important during pollen cell
elongation

Bohme et al., 2004;
Vincent et al., 2005;
Preuss et al., 2006
Huang et al., 2013;
Ghosh et al., 2015;
Moon et al., 2022

SFH5 At1g75370 CTN, nodulin PA transport of phosphatidic
acid from ER to
chloroplast

Chloroplast functioning Yao et al., 2023

SFH7 At2g16380 CTN, nodulin PA transport of phosphatidic
acid from ER to
chloroplast

Chloroplast functioning Yao et al., 2023

PATL1 At1g72150 CTN, GOLD PI, PIPs CaM4; SOS1;
AMSH3;
EXO70A1

plays a role in membrane
trafficking; regulator of
CaM4 and SOS1

plays a role in plant
tolerance to abiotic stress
and plant development

Peterman et al., 2004;
Isono et al., 2010;
Tejos et al., 2017;
Chu et al., 2018;
Zhou et al., 2018

PATL2 At1g22530 CTN, GOLD PI, PIPs,
a−Toc

IRT1; AMSH3;
MPK4;
EXO70A1

prevents membrane
damage; plays a role in
ROS prevention, iron
acquisition and
membrane trafficking

plant tolerance to abiotic
stress, iron acquisition, plant
development

Suzuki et al., 2016;
Tejos et al., 2017; Wu
et al., 2017; Montag
et al., 2020;
Hornbergs et al.,
2022

PATL3 At1g72160 CTN, GOLD PIPs EXO70A1;
AMV viral
movement
protein

plays a role in plant
development; inhibits alfalfa
mosaic virus infection

Peiro et al., 2014;
Tejos et al., 2017; Wu
et al., 2017

PATL4 At1g30690 CTN, GOLD EXO70A1 plays a role in plant
development

Tejos et al., 2017; Wu
et al., 2017

PATL5 At4g09160 CTN, GOLD plays a role in plant
development

Tejos et al., 2017

PATL6 At3g51670 CTN, GOLD Tomato
homolog:
a−Toc

EXO70A1;
AMV viral
movement
protein

plays a role in plant
development; inhibits alfalfa
mosaic virus infection; a
tomato homolog is required
for chloroplast functioning

Peiro et al., 2014;
Tejos et al., 2017; Wu
et al., 2017;
Bermudez et al., 2018

CPSFL1/
PITP7

At5g63060 CTN PA, PIPs vesicle budding at inner
thylakoid membrane in
chloroplast

Chloroplast functioning Hertle et al., 2020;
Kim et al., 2022
a-Toc, a-tocopherol; CTN, CRAL-TRIO N-terminal extension; GOLD, Golgi dynamics; PA, phosphatidic acid; PC, phosphatidylcholine; PI, phosphatidylinositol; PIP, phosphoinositide/
phosphoinositol phosphate; SEC14L-PITP, SEC14-like phosphatidylinositol transfer protein.
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5.1 SEC14-nodulin proteins (plant-specific)
A plant-specific subfamily of multi-domain SEC14L-PITPs are

SEC14-nodulin proteins exhibiting an additional C-terminal nodulin

domain, present in this combination in seed plants (Figure 2; Table 1)

(Kapranov et al., 2001; Denancé et al., 2014; Montag et al., 2020). The

nodulin name is derived from nodulin genes and proteins highly

expressed and accumulating during the nitrogen-fixing symbiosis of

legume plants at the root hair invasion, infection and nodule

developmental and nitrogen-fixing site (Denancé et al., 2014). It

was therefore very interesting to find that one function of SEC14-

nodulin proteins is to be basic regulators in polarizing membrane

trafficking (Vincent et al., 2005; Huang et al., 2013; Ghosh et al.,

2015). A well-studied member of this protein family in this context is

A. Thaliana SFH1, also known as CAN OF WORMS1 (COW1),

which is involved in root hair biogenesis by controlling the tip-

directed gradient of PI(4,5)P2 (and PI(4)P) (Bohme et al., 2004;

Vincent et al., 2005; Preuss et al., 2006; Ghosh et al., 2015). Sfh1 loss-

of-function mutant plants have short root hairs defective in

elongation (Ghosh et al., 2015). Essential for this are both the

SEC14 domain and the nodulin domain including the C-terminal

poly-lysine motif stretch of the nodulin domain (Ghosh et al., 2015).

The SEC14 domain lipid-binding activity is important, since

mutations leading to reduced phosphatidylinositol transfer in vitro

do not complement the root hair phenotype of sfh1 mutants (Huang

et al., 2016). The poly-lysine stretch is presumably required for PI

(4,5)P2 binding and assembly of the SEC14-nodulin protein at the

plasma membrane since mutants devoid of such a stretch do not

complement the sfh1 phenotype, do not locate at the plasma

membrane in yeast cells and have an altered oligomerization

behavior. According to the working model proposed by Ghosh

et al., (2015), oligomers of SFH1 present PI contained inside the

SEC14 domains at membrane sites to phosphatidylinositol-4 or -5-

phosphate kinase, thereby changing the phosphatidylinositol

landscape and properties of the plasma membrane. Subsequently,

oligomeric SFH1 complexes may form at the plasma membrane.

These events may trigger root hair cell elongation. A similar function

is proposed for rice OsSNDP2 and OsSNDP3 during pollen tube

elongation (Moon et al., 2022). Two further SEC14-nodulin proteins

from Arabidopsis have been recently studied in physiological

contexts, which are SFH5 and SFH7 (Yao et al., 2023). These two

proteins were found to localize at ER and chloroplast membranes.

SFH5 and SFH7 were able to bind phosphatidic acid and transfer it

between membranes in vitro. Additionally, it was shown that double

knockout mutants had aberrant thylakoid membrane structures in

chloroplasts. Interestingly, phosphatidic acid is the precursor to

several lipids produced in chloroplasts and required for thylakoid

assembly, and the sfh5 sfh7 double mutants had reduced amounts of

such lipids. Hence, these findings strongly suggest that the SEC14-

nodulin proteins SFH5 and SFH7 mediate the transport of

phosphatidic acid from ER to chloroplast perhaps at interorganellar

contact sites (Yao et al., 2023). SEC14-nodulin proteins therefore play

roles in different organs (roots and leaves) and are involved in

different processes requiring lipid transfer, such as polarity control

and organellar contacts.
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5.2 SEC14-GOLD proteins

A well-studied family of multi-domain SEC14L-PITPs is the

SEC14-GOLD family. All SEC14-GOLD proteins contain a Golgi

dynamics (GOLD) domain (IPR009038) at their C-terminus

(Figures 2, 3; Table 1). They can be found in insects and

vertebrates. In the green lineage, SEC14-GOLD proteins were

identified in bryophytes Marchantia polymorpha and vascular

plants (Montag et al., 2020). It has been shown that the GOLD

domain functions in membrane trafficking along the secretory

pathway by mediating diverse protein-protein and protein-

membrane interactions (Sohda et al., 2001; Anantharaman and

Aravind, 2002; Carney and Bowen, 2004; Pastor-Cantizano et al.,

2016; Pastor-Cantizano et al., 2018). The GOLD domain is either

present in single-domain proteins or co-occurs with other domains,

which are all involved in lipid-binding (Anantharaman and

Aravind, 2002; McPhail et al., 2017; Pastor-Cantizano et al., 2016).

The analyses of SEC14-GOLD proteins revealed two subgroups

of this family in humans (Figure 3A). Next to the two defining

domains, SEC14-LIKE1 (SEC14L1) and SEC14-LIKE5 (SEC14L5)

have an additional N-terminal PRELI/MSF1 domain (IPR009038/

IPR006797) (Anantharaman and Aravind, 2002). Similar SEC14-

GOLD proteins with additional PRELI domain can also be

identified in other higher eukaryotes like Zebrafish, Drosophila

melanogaster, Mus musculus, and Caenorhabditis elegans, but not

in any of the checked plant and yeast species. It is assumed that the

PRELI/MSF1 domain could function in protein association to

membranes as well as in transferring lipids (Anantharaman and

Aravind, 2002; Yu et al., 2015), due to its involvement in

mitochondrial protein sorting and phosphatidylethanolamine

metabolism (Nakai et al., 1993; Hall et al., 2011). For example,

hSEC14L1 is able to associate with two transporters, the
A

B

C

FIGURE 3

Overview of human and Arabidopsis thaliana SEC14-GOLD proteins.
Phylogenetic trees of (A), human and (B), Arabidopsis SEC14-GOLD
proteins and their modular architecture. [Phylogenetic analysis,
domain identification and alignments were performed as described
in Montag et al., 2020]. (C), Symbols used in (A, B) Plant PATLs have
differing N-terminal regions, while human SEC14-GOLD proteins
have either no extensive N-terminal region or a N-terminal region
with PRELI domain. CTN, cellular retinal-binding protein and TRIO
protein N-terminal extension; PRELI, PRELI/MSF resembling human
PRELI protein; SEC14, secretory mutant 14 protein; GOLD, Golgi
dynamics.
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VESICULAR ACETYLCHOLIN TRANSPORTER (VACht) and

the CHOLINE TRANSPORTER 1 (CHT1), on synaptic vesicles

(Ribeiro et al., 2007). This indicates that hSEC14L1 may play a

fundamental role in intracellular vesicle trafficking (Ribeiro et al.,

2007). Additionally, it has a negative regulatory function on

RETINOIC ACID-INDUCIBLE GENE I (RIG-I), important for

antiviral immunity response. RIG-I interaction with other proteins

is inhibited through its interactions with hSEC14L1, via its PRELI

domain and SEC14 domain (Li et al., 2013). hSEC14L5 was

characterized as a potential target for post-traumatic stress

disorder (PTSD) found in a study to identify molecular and

genetic key players in this disease (Chitrala et al., 2016). Human

TOCOPHEROL-ASSOCIATED PROTEINs (TAPs), TAP1 (SPF/

SEC14L2), TAP2 (p45/SEC14L3) and TAP3 (SFP2/SEC14L4), have

a SEC14-GOLD domain combination with no additional N-

terminal extensions (termed “N region”) (Figure 3A). They have

the ability to bind a-Toc, a-Toc derivatives, squalene,

phosphatidylglycerol, phosphatidylcholine (PC), PI and PIPs

(Chin and Bloch, 1985; Kempna et al., 2003; Stocker and

Baumann, 2003). TAP proteins have a Rab-like small GTPase

activity (Habermehl et al., 2005; Gong et al., 2017). Furthermore,

the ability to bind a-Toc and its derivatives indicates a role of

human TAPs in preventing lipid peroxidation. This is supported by

the observation that phosphorylated hTAP1 is able to stimulate

cellular cholesterol biosynthesis, since protecting low density

lipoproteins from oxidation may inhibit cholesterol uptake

(Neuzil et al., 1997; Shibata et al., 2001; Stocker and Baumann,

2003). Another hint to that assumption is that the presence of

hTAP1 is able to increase vitamin E-mediated membrane

protection from lipid peroxidation, which positively influences

RNA replication of the hepatitis C virus in cell cultures (Saeed

et al., 2015; Li et al., 2018). Additionally, hTAP1 and its functional

orthologue Cgr-1 in C. elegans are playing a conserved role in the

Ras/Raf pathway by being regulators of the Raf-signal activation

and thereby suppressing its oncogenic capacity (Johnson and

Kornfeld, 2010). Here again its ability to bind a-Toc positively

influences health by regulating the uptake of a-Toc into cancer cells
to stop cell growth and amplification. But hTAP1 is not only

involved in tumor suppression by mediating a-Toc uptake and

lipid protection, it also contributes to the regulation of PI(3)P

Kinase g (PI3Kg) activity, either by blocking its subunit

interaction or starting its activity, which then leads to

VASCULAR ENDOSOMAL FACTOR (VEGF) expression (Ni

et al., 2005; Wang et al., 2009; Zingg et al., 2014; Zingg et al.,

2015; Zingg et al., 2017). Another fact linking hTAP1 to

carcinogenesis is the observation that it is highly expressed in

breast and prostate tissue, but downregulated in prostate and

breast cancer cell lines, as well as in human breasts with invasive

breast carcinomas (Ni et al., 2005; Wang et al., 2009). In zebrafish,

TAP2 is crucial for the hydrolysis of PI(4,5)P2 by phospholipase C

(Gong et al., 2017). Rat (Rattus norvegicus) p45, a hTAP2 homolog,

especially binds PI(3,4,5)P3 in vitro and localizes with it in secretory

vesicles, the cytoplasm and the extracellular space (Merkulova et al.,

2005). Deletion of the SEC14 domain leads to inhibited secretion

into the extracellular space, indicating that the SEC14 domain is

essential for secretion (Merkulova et al., 2005). The expression of rat
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SPF2, a homolog of hTAP3, is mainly observed in skin and

respiratory tissue (Merkulova et al., 1999; Kempna et al., 2003).

Recombinant SPF2 is able to stimulate the monooxygenase but not

as efficient as TAP1 (Mokashi et al., 2004). Its activity is thereby

stronger dependent on regulation by protein kinase A

phosphorylation, guanine nucleotides and a-Toc, than TAP1

(Mokashi et al., 2004). An alternative splicing pattern was

obtained for human TAP3 (Kempna et al., 2003). Due to this,

reduced levels of biologically active hTAP3 could increase the risk of

disease outbreak associated with the secretory capability of tissues/

cells (Zingg et al., 2008; Kempna et al., 2010), underlining possible

roles of TAPs as tumor suppressors. Thus, the data on animal

SEC14-GOLD proteins demonstrate SEC14-GOLD protein roles in

intracellular vesicle trafficking by interaction with PIPs.

Additionally, it shows their function as negative regulators via

protein-protein interactions and demonstrates their oncogenic

role. Furthermore, the data highlights their possible function as

tumor suppressers, e.g. by mediating vitamin E transport and by

preventing cellular damage by ROS and radicals.

In Arabidopsis and other plants, SEC14-GOLD proteins are

called PATELLINs (PATLs), named after patella, the Latin word for

small plate, referring to PATL1 localization at the developing cell

plate (Peterman et al., 2004). Analysis of the SEC14L-PITP

superfamily in Arabidopsis revealed six PATL proteins, with a

CTN-SEC14 and GOLD domain but no other N-terminal

domains (Figure 3B; Table 1) (Peterman et al., 2004). PATLs

display a variable N region of unknown structure, however

different small motifs (coiled coil- and PXXP motifs) can be

found (Peterman et al., 2004; Neduva and Russell, 2006; Diella

et al., 2008; Montag et al., 2020). The N regions of PATLs vary in

amino-acid sequences and are unique for each protein (Montag

et al., 2020). PATLs, except of PATL6, show an overall acidic N

region due to repeats of glutamate (E) (Peterman et al., 2004). But

they also show a pattern of lysines (K) surrounding the E repeats in

PATL1, PATL2 and PATL4 (Montag et al., 2020). Independently of

the N regions, plant SEC14-GOLD proteins form three clades with

subgroup-specific amino acid substitutions in the GOLD domain,

which may define different functional categories (Peterman et al.,

2006; Bermudez et al., 2018; Montag et al., 2020). Expression

analyses of PATLs uncovered overlapping and clade-specific

clusters, and together with studies on multiple knock-out plants,

this indicates partial redundancy within the family (Tejos et al.,

2017; Montag et al., 2020). Multiple patl mutants demonstrated the

essential role of PATLs in Arabidopsis patterning and polarity by

revealing auxin response phenotypes and developmental defects

due to decreased polarization of the auxin transporter PIN-

FORMED 1 (PIN1) (Tejos et al., 2017). The role of PATLs during

plant development can be confirmed by the observation that PATL1

expression was increased in developing leaves and vascular tissues

and by cellular localization of PATL1 at the plasma membrane and

the cell plate during cell division (Peterman et al., 2004). Distinct

and overlapping localization patterns, were found for all other

PATLs. PATLs are peripheral membrane proteins found to

localize at the plasma membrane, at the cell plate and/or were

found to be cytosolic. PATL genes were expressed in leaf epidermis

cells, vascular tissues, during embryogenesis, during development of
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lateral-root primordia and during differentiation of the root apical

meristem (Suzuki et al., 2016; Tejos et al., 2017; Wu et al., 2017).

Protein localization during development and differentiation links

PATLs closely to membrane trafficking supported through the

observation that PATL1, PATL2 and PATL3 bind PIPs

(Peterman et al., 2004; Suzuki et al., 2016; Wu et al., 2017).

PATLs are involved in a number of different protein interactions

at membrane sites (Figure 4). Although PATL1 preferentially binds

PI(5)P, PI(3)P and PI(4,5)P2 and AtPATL3 mainly binds PI(4)P

and PI(4,5)P2, both still have the ability to associate with all other

PIPs (Peterman et al., 2004; Wu et al., 2017). All domains of PATL2

contributed to PIP association (Montag et al., 2020) (Figure 4). The

CTN-SEC14 module of PATL2 was found to govern membrane

association of the protein, and the GOLD domain to specify plasma

membrane localization, presumably by recognizing PI(4,5)P2
maybe through its lysine motif (Montag et al., 2020). A hint

linking PATLs to plasma membrane protein regulation and
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membrane trafficking is the observation that PATL1 and PATL2

were able to interact with plasma membrane proteins (Chu et al.,

2018; Zhou et al., 2018; Hornbergs et al., 2022) (Figure 4). Through

its GOLD domain PATL1 interacted with CALMODULIN-4

(CaM4), a multifunctional sensor for Ca2+, and via its N region it

interacted with SALT OVERLY-SENSITIVE 1 (SOS1), a Na+/H+

antiporter localized at the plasma membrane (Chu et al., 2018; Zhou

et al., 2018). Its closest homologue PATL2 interacted through its N

region with IRON-REGULATED TRANSPORTER 1 (IRT1), an

essential protein for iron acquisition by roots in soil (Hornbergs

et al., 2022) (Figure 4B). PATL1 and PATL2 contribute to stress

tolerance by affecting plant responses to cold, salt and iron

nutrition-related stress. In addition, both seem to be involved in

preventing damage caused by reactive oxygen species (ROS) and

radicals (Zhou et al., 2018; Hornbergs et al., 2022). patl2 loss-of-

function mutants exhibited enhanced iron reduction activity in

roots, a response required for iron acquisition via IRT1 in

Arabidopsis, as well as enhanced lipid peroxidation phenotypes

(Hornbergs et al., 2022). Interestingly, interactome analysis of

tagged PATL2 retrieved ROS response/metabolism proteins and,

under iron deficiency, endomembrane trafficking regulators.

PATL2 protein was found to bind the antioxidant a-Toc in the

lipid-binding SEC14 domain (Hornbergs et al., 2022). Vitamin E

deficiency also caused iron utilization phenotypes. Taken together,

PATL2 may recruit a ROS response interactome to IRT1 sites and

present or transfer a-Toc to IRT1 membrane sites. Since IRT1

mediates uptake of reactive iron and other metal ions, vitamin E

compounds may protect from potential oxidative stress due to lipid

peroxidation catalyzed in the presence of these reactive Fenton

metal ions. Subsequently, endomembrane trafficking may affect the

regulation of IRT1 (Hornbergs et al., 2022). In this context, it is

interesting to note that phosphorylation of the N region was

identified under Fe deficiency (Lan et al., 2011) and during salt

stress, in response to oligogalacturonides, and brassinosteroid

signaling (Tang et al., 2008; Hsu et al., 2009; Chang et al., 2012;

Mattei et al., 2016), indicating that protein interaction of PATL2

with IRT1 may be under control of protein phosphorylation of the

interacting N region. PATL1 and PATL2 co-immunoprecipitated

with ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF

STAM3 (AMSH3), a deubiquitinating enzyme required for

intracellular trafficking and vacuole biogenesis in Arabidopsis,

next to other proteins with reported or expected function in

intracellular trafficking processes (Isono et al., 2010). PATL2 is

phosphorylated by MAP KINASE4 (MPK4) within the SEC14

domain, which might be important for the release of PATL2 from

the membrane (Suzuki et al., 2016) (Figure 4A). Additionally,

phosphorylation of the SEC14 domain of PATL2 could be

detected after short- term cytokinin treatment and sugar stress

(Niittyla et al., 2007; Cerny et al., 2011). This indicates that PATL2

might undergo dynamic post-translational regulation in response to

plant stress. PATL3 recruitment to the plasma membrane depended

on interaction of its GOLD domain with EXO70A1, a subunit of the

exocyst complex participating in intracellular vesicle transport (He

and Guo, 2009; Fendrych et al., 2013; Wu et al., 2017). Interestingly,

all other PATLs except of PATL5, were able to interact with

EXO70A1 (Wu et al., 2017). Moreover, PATL3 and PATL6
A
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FIGURE 4

Summary model of SEC14-GOLD protein functions. (A), Summary of
various interactions with proteins, lipids or ligands, described for
different parts of SEC14-GOLD proteins. (B), Model of AtPATL2,
binding to phospholipids and interacting with transport protein in
the plasma membrane, leading to prevention of oxidative stress and
lipid peroxidation; PATL2 may exchange or present the antioxidant
a-tocopherol. The cellular physiological effect may comprise vesicle
formation and regulation of transporter abundance and activity. (C),
Explanations of symbols used in (A, B).
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inhibited stem infection spread of the alfalfa mosaic virus by

interfering with virus movement through interaction with a

PLASMODESMATA TARGETING MOVEMENT PROTEIN

(AMV MP) and thereby preventing subcellular targeting (Peiro

et al., 2014) (Figure 4A). Tomato TOCOPHEROL BINDING

PROTEIN (SlTBP) is a homologue of Arabidopsis PATL6 and

clusters together with other plant PATLs due to a plastid-targeting

signal (Bermudez et al., 2018). The SlTBP gene is mainly expressed

in photosynthetic active tissues and the protein is localized to

plastids. Its potential ability to bind a-Toc makes it a key player

in controlling possibly vitamin E movement between plastids and

the ER, which affects lipid metabolism within these organelle

(Bermudez et al., 2018). Additionally, SlTBP is involved in

maintaining chloroplast membrane structure, affecting its lipid

profile (Bermudez et al., 2018). Interestingly, PATL1, PATL2 and

PATL5 were identified as putative cargo receptors in proteomic

studies searching for components of the chloroplast vesicle

transport pathway. The proteins were identified localizing to the

chloroplast envelope (Kleffmann et al., 2004; Ferro et al., 2010;

Khan et al., 2013).

Taken together, PI/PIP and a-Toc binding, cell plate and

membrane localization, phosphorylation, increased expression

during stress responses, and interaction with membrane and

trafficking proteins indicate that PATLs are basic cell regulators

adapting the cell/organism during cell division and growth and to

altered environmental influences and in response to external

stimuli. As regulatory proteins PATLs may be involved in

membrane trafficking, e.g., by initiating vesicle formation.

Furthermore, they might play a role in protecting the cell from

ROS and radical damage, by offering a-Toc as an antioxidant or

through regulating the activity of membrane proteins.
6 Conclusion

The SEC14 domain is the common feature of SEC14 proteins.

The domain is capable to recognize, bind, transport, and exchange

single lipophilic molecules between membranes inside a lipid-

binding site. Unlike other lipid-binding domains, the SEC14

domain not only binds phospholipids, but also other lipophilic

substances, e.g., a-Toc, carotenoids. This ability leads to further

cellular and physiological effects when these lipid transfer activities

are required. This characteristic and the presence of SEC14L-PITPs

in higher eukaryotes indicates a conserved function and highlights

the need of controlling lipid signaling and membrane trafficking.

Especially, the presence of additional domains in multi-domain

SEC14L-PITPs of higher multi-cellular eukaryotes indicates an

increasing variety of functions due to enhanced possibilities for

protein interaction, cellular localization or enzyme activities. These

additional domains could be involved in the sensing of the lipid

environment at the membrane or in changes of lipid-signaling

pathways leading to environmental adaptation. The idea is

supported by the findings that multi-domain SEC14L-PITPs are

able to influence cell division, vesicle formation, lipid signaling,

environment responsiveness and organism development, which
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directly affects the organism fitness/health. The SEC14 domain is

also of special interest, since mutations in the SEC14 domain result

in defects in development and in the plant-stress response and

tolerance, as well as in neurodegenerative diseases and an increased

cancer risk in humans.

Not all complex tasks of SEC14L-PITPs are understood right

now and many interesting questions remain to be answered. For

example, are SEC14L-PITPs regulated by post- transcriptional

regulation? What are the effects of protein phosphorylation?

What is the function of the plant-specific regions of SEC14L-

PITPs? How do SEC14L-PITPs influence protein activity and

metabolic reactions? In which pathways do yet uncharacterized

proteins of this kind play a role? Identifying the functions of

SEC14L-PITPs on cellular levels can help to understand the

adaptation of regulatory pathways to environmental changes.
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