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for Phakopsora pachyrhizi
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Weiguo Lu3 and Ainong Shi1*

1Department of Horticulture, University of Arkansas, Fayetteville, AR, United States, 2Sugarcane
Research Unit, Untied State Department of Agriculture – Agriculture Research Service (USDA-ARS),
Houma, LA, United States, 3Henan Academy of Crops Molecular Breeding, National Centre for Plant
Breeding, Zhengzhou, China
Soybean brown rust (SBR), caused by Phakopsora pachyrhizi, is a devastating

fungal disease that threatens global soybean production. This study conducted a

genome-wide association study (GWAS) with seven models on a panel of 3,082

soybean accessions to identify the markers associated with SBR resistance by

30,314 high quality single nucleotide polymorphism (SNPs). Then five genomic

selection (GS) models, including Ridge regression best linear unbiased predictor

(rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least

absolute shrinkage and selection operator (Bayesian LASSO), Random Forest

(RF), and Support vector machines (SVM), were used to predict breeding values of

SBR resistance using whole genome SNP sets and GWAS-based marker sets.

Four SNPs, namely Gm18_57,223,391 (LOD = 2.69), Gm16_29,491,946 (LOD =

3.86), Gm06_45,035,185 (LOD = 4.74), and Gm18_51,994,200 (LOD = 3.60),

were located near the reported P. pachyrhizi R genes, Rpp1, Rpp2, Rpp3, and

Rpp4, respectively. Other significant SNPs, including Gm02_7,235,181 (LOD =

7.91), Gm02_7234594 (LOD = 7.61), Gm03_38,913,029 (LOD = 6.85),

Gm04_46,003,059 (LOD = 6.03), Gm09_1,951,644 (LOD = 10.07),

Gm10_39,142,024 (LOD = 7.12), Gm12_28,136,735 (LOD = 7.03),

Gm13_16,350,701(LOD = 5.63), Gm14_6,185,611 (LOD = 5.51), and

Gm19_44,734,953 (LOD = 6.02), were associated with abundant disease

resistance genes, such as Glyma.02G084100 , Glyma.03G175300 ,

G l yma . 0 4 g 1 8 9 500 , G l yma . 0 9G02 3 800 , G l yma . 1 2G 1 6 0400 ,

Glyma.13G064500 , Glyma.14g073300 , and Glyma.19G190200 . The

annotations of these genes included but not limited to: LRR class gene,

cytochrome 450, cell wall structure, RCC1, NAC, ABC transporter, F-box

domain, etc. The GWAS based markers showed more accuracies in genomic

prediction than the whole genome SNPs, and Bayesian LASSO model was the

ideal model in SBR resistance prediction with 44.5% ~ 60.4% accuracies. This

study aids breeders in predicting selection accuracy of complex traits such as

disease resistance and can shorten the soybean breeding cycle by the

identified markers
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Introduction

Soybean brown rust (SBR) is one of the most devastating fungal

diseases of soybean (Glycine max) (Hartman et al., 2005). It first

emerged around 1900 as a threat to soybean production in China

and Japan and has since spread globally, in part due to human

activities and meteorological phenomena (Hartman et al., 1991).

The disease arrived in Africa and the Pacific Islands in the 1980s

and 1990s and later reached the American continents in the 2000s

(Miles et al., 2004). The risk of SBR attracted more attention with

the disease outbreak in China in 1975 and in Brazil in 2001, that

caused 10 billion US dollar losses in each country (Yorinori et al.,

2005; Godoy et al., 2016). Comparing to the native American rust

pathogen (Phakopsora meibomiae), the exotic one (Phakopsora

pachyrhizi) was much more aggressive and caused an epidemic

on soybean in South America and spread to North America

(Pivonia and Yang, 2004).

Soybean plants are susceptible to SBR at any stage of growth

and development and Phakopsora pachyrhizi can quickly spread

over a long-range through wind-borne urediniospores (Isard et al.,

2005). Therefore, it is important to develop control strategies for

controlling SBR. Currently, the SBR can be managed by applying

fungicides and employing specific cultivation practices (Levy, 2005).

However, considering the high cost and the harm to non-target

beneficial fungi, a more economic, safer, and environmental

friendly solution is to raise varieties’ own resistance by developing

new resistance lines through breeding or engineering (Bromfield

and Hartwig, 1980). In the past 30 years, the well-known Rpp 1–7

genes were mapped to chromosome 3, 6, 16, 18, and 19 (Garcia

et al., 2008; Pandey et al., 2011; Li et al., 2012; Kashiwa et al., 2020).

However, Rpp genes were race-specific and provided resistance

exclusively to specific P. pachyrhizi isolates. Currently, there is no

resistant soybean genotype that can ward off all known P. pachyrhizi

isolates (Childs et al., 2018a). In addition, Rpp gene-mediated

resistance can be overcome swiftly in the field due to pathogen’s

adaptation and evolution to resistant host (Godoy and Meyer,

2020). Pyramiding three or more Rpp genes into one genotype to

obtain broader and/or more durable resistance has been reported on

other crops like wheat or barley, but traditional breeding is still

time-consuming and may introduce unwanted traits (Childs et al.,

2018a). Another promising strategy for sustainable and effective

SBR resistance is to utilize alternative R gene combinations and

dynamic turnover in the field (Childs et al., 2018a). However, the

identity of these Rpp genes needs to be revealed (Gebremedhn et al.,

2020). Under the current conditions, it is also impractical to rely

only on several major genes or combinations of these genes to

control the SBR disease in field production.

In addition to major genes, many recent molecular studies have

revealed more disease-resistant pathways in soybeans (Childs et al.,

2018b). The resistance usually occurs in the form of signals,

transcription factors, NB-LRR, or secondary metabolites

(Gebremedhn et al., 2020; Waheed et al., 2021). They usually

improve not only the resistance to a particular pathogen but the

overall resistance of the plant as well. In addition, many minor

resistance/tolerance genes are widely distributed throughout the

whole soybean genome and exhibit partial defense response (PDR)
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to SBR (Langenbach et al., 2016). PDR is characterized by low

infection frequency, long-lasting latency, small lesions, and reduced

spore production per uredinium (Langenbach et al., 2016). At the

molecular level, their specific functions are sometimes very similar

or overlapping to the context components; however, they are more

complex and obscure (Langenbach et al., 2016). Screening for or

silencing susceptibility is another strategy that can provide durable

disease resistance in breeding, because of susceptible (S) gene

function either as susceptibility factors or suppressors of plant

defense, thus potential targets of fungal effectors (De Wit, 1992).

For example, absence of the S gene Mlo in barley results in an

incompatibility interaction with Blumeria graminis hordei that

resembles nuclear hormone receptors (Büschges et al., 1997;

Lucas, 2020). However, the identification and mapping of S gene

are more difficult than those of major R genes by linkage mapping,

and only one [Cys(2)His(2) zinc finger TF palmate-like

pentafoliata1, PALM1] would classify as a S gene so far

(Uppalapati et al., 2012).

Molecular marker-assisted selection (MAS) has been applied

in soybean breeding to accelerate the development of disease-

resistant varieties, and the GWAS is of vital help to MAS

(He et al., 2014). Comparing with linkage mapping, GWAS can

not only find the major genes, but also has the incomparable

ability to map and identify the minor and S genes. Moreover,

since the mapping populations such as natural population and

multi-parent advanced generation inter-cross, contain more

diversity, the markers developed have more universal

applicability (Visscher et al., 2012). So far, only one SBR-

related GWAS has been reported by Chang et al. (2016), who

used GWAS to discover five SBR-related loci from USDA

germplasm. Genomic selection (GS) has gained popularity in

recent years in modern and large-scale crop breeding programs.

GS can predict the breeding value of an individual plant based on

its genotype to estimate the field performance of the plant,

whereas MAS relies on the detection of a few QTLs using a

simple linear model. Therefore, molecular breeding would shift

from marker-assisted selection to genomic selection, as the

genetic architecture of resistance changes from a single major R

gene to multiple minor diffusion gene architectures (Poland and

Rutkoski, 2016). Additionally, GS has been reported to be a useful

tool in soybean breeding to predict a wide range of traits,

including both agronomic and quality traits (Lorenz et al.,

2011). However, no research has been done with respect to

investigating GS accuracy for SBR resistance/tolerance.

The objectives of this study were to identify SBR resistance-

associated SNP markers and to characterize the ability of genomic

prediction in order to use SNP markers in selecting soybean

breeding lines highly resistant to SBR.
Materials and methods

Plant materials and phenotyping

SBR disease scores and phenotyping data of 3,082 soybean

accessions (Table S1) were downloaded from the USDA GRIN
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website (https://npgsweb.ars-grin.gov/gringlobal/method?

id=492634) (Miles et al., 2006). Based on the website, a

greenhouse study was initiated. Soybean plants of 3,082

accessions were spray-inoculated between the first and second

trifoliate stage with a mixture of urediniospores (60,000 spores

per ml) from four Phakopsora pachyrhizi isolates, incubated

overnight in a dew chamber at 22–25°C, and placed in a

greenhouse at 20–25°C for 14 days. Disease severity was evaluated

on the first trifoliate leaves for most accessions; however, the

unifoliate leaves were evaluated for a few accessions due to slow

germination (Miles et al., 2006). Based on the symptom and lesion

development, a disease severity scale of 1 to 5 was used, where 1 =

no visible symptom, 2 = light infection: only a few small (less than

1 cm) rust lesion present on the leaves, 3 = light to moderate

infection: moderately sized (1–2 cm) rust lesion present on a limited

number of leaves, 4 = moderate to severe infection: large (greater

than 2 cm) rust lesion present on a significant number of leaves, and

5 = severe infection: nearly all leaves are covered in large rust lesion,

and the disease is causing a significant damage to the plant growth

(Walker et al., 2011).
Genotyping

The Soy50K SNP Infinium Chips (Song et al., 2013) and a total

of 42,292 SNPs across 3,082 soybean accessions were downloaded

from the Soybase at https://www.soybase.org/snps/download.php.

SNPs with >10% missing data, >8% heterozygous genotypes,

and <10% minor allele frequencies (MAF) were removed, and

30,314 SNPs were included in the GWAS study.
Population structure and genetic diversity

LEA is an R package for population structure and genomic

signature analysis of local adaptation. The inference algorithms

used by R are based on a fast version of structure available from

the R package LEA (Frichot and François, 2015). The structure

analysis identifies K clusters by measuring an optimum DK based

on the SNP data provided. A preliminary analysis was performed

in multiple runs by inputting successive values of K from 2 to 20.

After an optimum K was determined, each soybean accession was

assigned to a cluster (Q) based on the probability that the

accession belonged to that cluster. The cut-off probability for

the assignment to a cluster was 0.5. Based on the optimum K, a bar

plot with “Sort by Q” was obtained to visualize the population

structure among the 3,082 accessions. Phylogenetic relationships

among the accessions was generated by TASSEL 5.2.13 and

phylogenetic tree was drawn using R package: Phytologist and

Phytools (Revell, 2012). During the drawing of the phylogeny

trees, the population structure and the cluster information were

imported for the combined analysis of genetic diversity. For sub-

tree of each Q (cluster), the shape of “Node/Subtree Marker” and

the “Branch Line” was drawn using the same color scheme of the

STRUCTURE analysis.
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Linkage disequilibrium analysis and SNP
based haplotype blocks

TASSEL 5.0 (Bradbury et al., 2007) was used to calculate the

linkage disequilibrium (LD) for all pairwise loci. Only SNPs with a

minor allele frequency (MAF) greater than 0.10 and less than 10%

missing data were included in the LD estimation process. Haplotype

blocks (HAP) were estimated by Plink 2.0 (Purcell et al., 2007) within

200kb (r2 ≈ 0.4), and a minimum threshold value 0.05 for MAF.
Genome-wide association study

GWAS was performed using the Generalized Linear Model

(GLM), Mixed Linear Model (MLM) (Jiang and Nguyen, 2021),

Compressed Mixed Linear Model (CMLM), Multiple Loci Mixed

Model (MLMM) (Wen et al., 2018), Settlement of MLM Under

Progressively Exclusive Relationship (SUPER) (Wang et al., 2014),

Fixed and Random Model Circulating Probability Unification

(FarmCPU) (Liu et al., 2016), and Bayesian-information and

Linkage-disequilibrium Iteratively Nested Keyway (BLINK)

(Wang et al., 2014) in R software GAPIT 3 (Genomic Association

and Prediction Integrated Tool version 3) (Wang and Zhang, 2021;

Lipka et al., 2012; https://zzlab.net/GAPIT/index.html; https://

github.com/jiabowang/GAPIT3) by setting PCA = 6, with the

Kinship for MLM, CMLM, MLMM, SUPER; and Pseudo QTNs

for FarmCPU and BLINK.
SNP selection accuracy and
selection efficiency

The accuracy and efficiency of SNP selection were computed to

evaluate the significant SNP by the allele proportion in

the population.

Selection accuracy (SA) = 100*[(Number of S or R genotypes

with the favorable SNP allele)/(Number of R genotypes with the

favorable SNP allele + Number of S genotypes with the favorable

SNP allele)]/DE, where DE = E1/E2, E1 = Observed number of S or R

genotypes/(Number of R genotypes + Number of S genotypes); E2=

Expected number of S or R genotypes/(Number of R genotypes +

Number of S genotypes).

Selection efficiency (SE) =100*[(Number of S or R genotypes with

the favorable SNP allele)/(Total number of S or R genotypes)]/DF,
where DF = F1/F2, F1 = Observed allele frequency of SNP, and F2 =

Expected allele frequency of SNP. In this study we set the E2 and F2 as

an ideal equilibrium value (50%).
Candidate gene prediction

Candidate genes were selected based on the peak significant SNP

in each LD region located within 50 kb on either side of significant

SNPs (Zhang et al., 2016), and furtherly by 0 kb (on the gene), 1 kb, 5

kb, 10 kb, 20 kb, 30 kb, and 50 kb, respectively. Candidate genes were
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retrieved from the reference annotation of the soybean reference

genomeWm82.a2.v1 from the SoyBase (http://www.soybase.org) and

the Phytozome database (https://phytozome.jgi.doe.gov).
Genomic prediction

GP was conducted using seven SNP sets: All SNP set (30,314

SNPs) and six GWAS-derived SNP marker sets. The six GWAS-

derived SNP marker sets consisted of those significant SNPs from

highest LOD [–log(P-value)] to low LOD value (2.0) to make each

set as 28, 100, 500, 1,000, 2,000, and 5,000 SNPs, respectively.

Genomic estimated breeding value (GEBV) was computed using

five statistical models: Ridge regression best linear unbiased

predictor (rrBLUP) (Endelman, 2011), Genomic best linear

unbiased predictor (gBLUP) (Zhang et al., 2007), Bayesian least

absolute shrinkage and selection operator (Bayesian LASSO)

(Heslot et al., 2012), Random Forest (RF) (Poland et al., 2012),

and Support vector machines (SVM) (Ogutu et al., 2011) (Table S2).

A five-fold cross-validation was performed for each GP. The

association panel was randomly divided into 5 disjoint subsets, 4

subsets were used as training set, and the remaining set was

considered testing set. A total of 100 replications were conducted at

each fold. Mean and standard errors corresponding to each fold were

computed. Genomic prediction accuracy was obtained by computing

the Pearson’s correlation coefficient (r) between GEBV and the

observed phenotypic value for the testing set (Shikha et al., 2017).
Results

Germplasm evaluation of
Phakopsora pachyrhizi

Out of 3,082 soybean accessions evaluated for TAN lesion type,

71 (2.3%) were rated 1~2, 1,009 (32.7%) were rated 2.3~3, 1,746

(56.7%) were rated 3.1~4; and 256 (8.3%) were rated 4.2~5 in a

rating scale of 1 to 5. Accessions with a mean severity of 2.7 or less

(299, 9.5%) were considered resistant, while those with a mean

severity of 4.0 or more (791, 25.6%) were considered susceptible.

Accessions between the two categories were considered moderate.

There was a large range in the distribution of each category

(Figure 1). Majority of accessions displayed a disease severity

rating of 3 or 4 being susceptible to SBR.
SNP profile

A total of 30,314 high quality SNPs were used to perform

GWAS in the soybean accessions. Number of SNPs per

chromosome ranged from 1,027 on chr20 to 1,898 on Chr16,

with an average of 1,515.7 SNPs (Figure 2). The average distance

between two SNPs per chromosome varied from 23.6 kb to 46.6 kb,

with an average of 33.1 kb. The shortest average distance between

SNPs was found on Chr18, whereas the longest one was on Chr20.

Average MAF per chromosome ranged between 25.8% and 30.1%,
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with an average of 28.7% (Table S3). Percentage of heterozygous

SNPs across all chromosomes were below 0.7%, and the percentage

of missing SNPs per chromosome varied from 0.3% to 0.7%.
Population structure and LD haplotype

The structure analysis helped identify the most promising

genetic variations to better understand the genetic basis of the

trait. The population structure of the soybean accessions was

analyzed using the R packages “LEA” and the peak of DK was

observed at K = 6, indicating of the presence of six subpopulations

or clusters (Figure 3A). A total of 337 (10.9%) accessions were

assigned to subpopulation Q1; 306 (9.9%) assigned to Q2; 543

(17.6%) assigned to Q3; 534 (17.3%) assigned to Q4; 358 assigned to

Q5; and 1,004 (32.5%) assigned to Q6 (Figure 3B). Phylogenetic

analysis and population admixture map using R packages “Phytool”

and “LEA” also revealed that the clustering of accessions was

consistent with that inferred by structure K = 6 (Figure 3C).

Additionally, there was a clear tendency of clustering by

geographical areas. The controlling for population structure by

taking geography into account is crucial for accurate GWAS

results and for identifying true genetic associations with the trait
FIGURE 1

Combined violin-boxplots based on SBR ranking of the 3,082
soybean accessions, including Susceptible (red), Moderate (yellow)
and Tolerant (green) groups.
FIGURE 2

The distribution of 30,314 SNPs among the 20 chromosomes of
soybean within 1 Mb size.
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of interest. As Q6 was dominant in South and Central China and

Southeast Asia, Q3 and Q4 were main populations in Northeast and

Northwest Asia, and the population in Europe was dominated by

Q2 and Q5 (Figure 3D and Table S1). Kinship matrix, based on

30,314 polymorphic SNPs for the studied genotypes, indicated that

there was no clear clustering among the 3082 genotypes.

We examined the linkage disequilibrium (LD) decay patterns by

30,314 genome-wide SNPs. To visualize the LD decay patterns across

distances, we plotted the LD decay curves by GAPIT 3 (Figure 4). The

LD decay curves showed a clear distance-dependent pattern, with steeper

decay curves at longer distances. Specifically, at a distance of 103 kb, the

LD decayed with an R2 value of 0.6, indicating a relatively strong LD

correlation between nearby variants. At 216 kb, the LD decayed with an

R2 value of 0.4, indicating a moderate level of LD correlation between

nearby variants. Finally, at 296 kb, the LD decayed with an R2 value of

0.2, indicating a weak level of LD correlation between nearby variants

(Figure S1). A total of 4,940 haplotype blocks were identified based on

30,314 SNPs. Number of blocks per chromosome varied from 170 on

Chr11 to 357 on Chr18. Number of SNPs within each block varied from

2 to 67. Many haplotype blocks contained more than two significant

SNP markers, for example, Gm01_47,462,126, Gm01_47,476,910,

Gm01_47,481,216, Gm01_47,495,955, Gm01_47,503,665,

Gm01_47,516,500, and Gm01_47,548,257 were in the same haplotype

block on Chr1 (Table S4).
Genome-wide association study

The high convergence and consistency of the GWAS were

observed among seven models. For example, the top six
Frontiers in Plant Science 05
significant SNPs from the FarmCPU model including:

Gm09_1 ,951 ,644 (10 .06 ) , Gm20_36 ,724 ,867 (6 .54 ) ,

Gm03_38 , 913 , 0 29 ( 6 . 1 0 ) , Gm19_44 , 7 34 , 953 ( 5 . 7 ) ,

Gm02_7,235,181 (5.18), and Gm04_47,132,429 (5.06) also had

the high LOD values, which were at least 5.20, 2.67, 3.77, 3.59,

3.69, and 4.00 in other models. SNPs Gm04_45,884,688,

Gm10_39,142,024, Gm14_2,492,139, Gm16_4,935,328, etc. were

significant among all seven models (Figures 4, S2). A total of 100

SNPs were collected in this study by considering both model

consistency and significance (Table S5). These SNPs were

positioned at 47 haplotype blocks (Table S4). Then the top 28

SNPs with LOD > 5.50 were listed in Table 1 for future discussion.

These 28 SNPs were located on 13 chromosomes (Chr. 2, 3, 4, 6, 8,

9, 10, 12, 13, 14, 16, 19, and 20), indicating their wide distribution

and presence of genes that confer SBR resistance across the genome.

Several SNPs were found in the same blocks, such as

Gm02_7,235,181 and Gm02_7,234,594 in block 436;

Gm09_1,944,730, Gm09_1,943,831, and Gm09_1,951,644 in block

1902; Gm10_5,573,877, Gm10_5,573,007, Gm10_5,559,592,

Gm10_5,541,691, and Gm10_5,578,693 in block 2331; and

Gm10_39,142,024 and Gm10_3,9147,121 in block 2215, which

might be due to the gene clustering or pleiotropy.
Candidate genes of significant SNPs

Due to variations in LD decay across different regions, a

conservative distance of 50 kb was set to select candidate genes as

the region of the significant SNPs. There are four SNPs (loci) out of

the top 100 associated markers, including Gm18_57,223,391,
FIGURE 3

Structural and phylogenetic analysis of 3,082 soybean accessions based on 30,314 SNPs. (A) Delta K values for different numbers of populations
assumed (K=20) in the STRUCTURE analysis. (B) Classification of soybean accessions in six groups (K=6) using STRUCTURE. The distribution of
accessions to different populations is color coded, Q1 (green), Q2 (blue), Q3 (yellow), Q4 (pink), Q5 (red), Q6 (cyan). The x-axis shown the accessions of
each subgroup, and the number on the y-axis shows the Q likelihood of accessions. (C) Phylogenetic analysis of the 3,082 soybean accessions with the
corresponded labels used in (B). (D) Geographical distribution of the soybean accessions by colored pie chart corresponding with the group
proportion (B).
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Gm16_29,491,946, Gm06_45,035,185, and Gm18_51,994,200, were

identified to locate in close proximity to four main P. pachyrhizi R

genes Rpp1, 2, 3, and 4, respectively, which were verified and

reported in last decades.

Thirty-five candidate genes that might be associated with SBR

disease resistance were found in the regions of the top 28 significant

SNP markers (Table 1). Disease related annotations of these

candidate genes were included but not limited to: LRR (Leucine

Rich Repeat class protein), cytochrome 450, cell wall structure,

RCC1 (regulator of chromosome condensation 1), AKR (ankyrin

repeat-containing protein), F-box domain, NAC (NAM, ATAF and

CUC family). Furthermore, most of the top 28 significant SNP

regions were harboring more than one candidate gene, for example,

the region of Gm02_7,235,181 and Gm02_7,234,594 contained

three candidate genes, Glyma.02G083500, Glyma.02G083300, and

Glyma.02G084100, coding for cell wall constituent, LRR-RLK, and

RCC1, respectively.
Selection accuracy and selection efficiency

Selection accuracy (SA) and Selection efficiency (SE) reflect the

contributions of selected alleles from the top 100 significant SNP to

the resistance or susceptibility to Phakopsora. For the resistance

alleles, SE varied from 50.0% to 84.2%, with an average of 57.5%;

and the SA varied from 50.0% to 82.2%, with an average of 58.2%.

SNP Gm09_1,951,644 had the highest values in both SA and SE in

resistance effect. For susceptible alleles, the SE varied from 50.0% to

69.8%, with an average of 55.1%; and the SA varied from 50.3% to

56.9%, with an average of 52.7%. SNP Gm04_46,295,839 (52.7%)

had the highest values in both SA and SE in susceptible effect
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(Table S6). This result identified the specific nucleotide of SBR-

related alleles.
Genomic prediction

The 100 significant SNPs not only had the highest LOD value

but were most repeatable across all GWAS methods as well.

Following the same approach, six additional GWAS-based SNP

sets were created, each consisting of 28, 100, 500, 1,000, 2,000, and

5,000 SNPs, respectively. In this study, we applied seven datasets,

namely, All_SNPs (30,314), GWAS_5000SNPs, GWAS_2000SNPs,

GWAS_1000SNPs, GWAS_500SNPs, GWAS_100SNPs and

GWAS_28SNPs for GP analysis by five different GS models

(Figure 5). The average GS accuracies of the All_SNPs set were at

a medium level that was similar to those, ranging from 28.0% (RF)

to 32.4% (gBLUP), among all the models.

Although the number of SNPs fluctuated by GWAS datasets, all

the accuracy curves showed a similar pattern among the five models.

The trend depicted by the left side of the curves indicated that as the

number of SNPs decreases from 5,000 to 1,000, the accuracy of the

prediction increases, too. The highest accuracies were observed when

using the 1,000 SNP set, which were varying from 35.7% (RF) to

60.4% (Bayesian LASSO). And, as the number of SNPs continued to

decrease from 1,000 to 100, the accuracy of GP also decreased. In all

six GWAS based SNP sets, the Bayesian LASSO achieved the highest

average GS accuracy of 53.0%, followed by rrBLUP with an average

accuracy of 51.9%. On the other hand, the lowest accuracy of 36.2%

was recorded when using the RF model. The GS accuracies of gBLUP

and SVM models were at almost the same level but were relatively

lower using the SVM model (Table S7).
FIGURE 4

The circular Manhattan plots of seven GWAS models: (A) Settlement of MLM Under Progressively Exclusive Relationship (SUPER), (B) Bayesian-
information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), (C) Fixed and Random Model Circulating Probability Unification
(FarmCPU), (D) Multiple Loci Mixed Model (MLMM), (E) Mixed Linear Model (MLM), (F) Generalized Linear Models (GLM) and (G) Compressed Mixed
Linear Model (CMLM) for SBR. The red asterisk points to the significant spots associated with SBR on 20 chromosomes. The outmost circle indicates
the hotspots associated with SBR response among seven models.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1179357
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiong et al. 10.3389/fpls.2023.1179357
TABLE 1 The genes within 50 kb genomic region of the top 28 significant SBR-associated SNPs with functional annotations.

SNP GWAS model (Ranking) LOD Allele
Type Gene name Functional annotations

Gm02_7235181
SUPER(1), FarmCPU, CMLM(5),

MLMM(10)
7.91 T/C Glyma.02G083500

Glyma.02G083300
Glyma.02G084100

LRR; RCC1; response to bacterial origin; defense
response; structural constituent of cell wall

Gm02_7234594 SUPER(2), MLMM(11) 7.61 C/T

Gm02_7315227
SUPER(3), GLM,MLM, Blink(5),

MLMM(6)
7.52 G/A

Glyma.02G084100
Glyma.02G084900

RCC1 repeat; Ankyrin repeat family protein/
domain

Gm03_38913029
GLM, MLM, Blink (2), FarmCPU,

CMLM(3), MLMM(7), GLM
6.85 T/C

Glyma.03G175800
Glyma.03G177400
Glyma.03G175300

Response to aluminum ion; cell wall; ABC
transporter

Gm04_45884688
MLM, Blink(7), SUPER(15), MLMM

(16), FarmCPU, CMLM(26)
6.23 T/C Glyma.04g188000 LRR

Gm04_46003059 SUPER(20), MLMM(24) 6.03 G/A
Glyma.04G189300,
Glyma.04g189500

Membrane; Cytochrome P450

Gm04_46295839 SUPER(16), MLMM(18) 6.08 C/T
Glyma.04G192300 Cell wall organization; cellular membrane fusion;

Gm04_46389651 SUPER(22), MLMM(27) 5.94 C/T

Gm04_47132429
MLMM(4), FarmCPU, CMLM(6),
GLM, MLM, Blink(13), SUPER(25)

5.78 T/C
Glyma.04G211100,
Glyma.04G212000

NAC domain

Gm06_36808946
SUPER(6), GLM, MLM, Blink(9),

FarmCPU, CMLM(34)
6.73 G/A Glyma.06G232500 Response to molecule of bacterial origin

Gm08_43955878
FarmCPU, CMLM(19), SUPER(32),

MLMM(33)
5.61 A/C

Glyma.08g319300,
Glyma.08G321700

LRR; response to abscisic acid stimulus/cold/water
deprivation

Gm09_1944730 MLMM(2), SUPER(27) 5.77 C/A

Glyma.09G024700 LRR-RLKs
Gm09_1943831 MLMM(3), SUPER(28) 5.73 G/A

Gm09_1951644
FarmCPU, CMLM, MLMM (1),

GLM, MLM,
Blink (4),SUPER(18)

10.07 T/G

Gm10_5573877
SUPER(5), MLMM(12), GLM, MLM,

Blink(14)
6.73 C/T

Glyma.10G060100,
Glyma.10G060200,
Glyma.10G060600

Respiratory burst involved in defense response,
response to bacterium/chitin; cell wall organization

Gm10_5573007 SUPER(7), MLMM(15) 6.58 C/T

Gm10_5559592 SUPER(9), MLMM(20) 6.48 C/A

Gm10_5541691 SUPER(33), MLMM(44) 5.60 C/T

Gm10_5578693 SUPER(23), MLMM(32) 5.93 G/A

Gm10_39142024
GLM, MLM, Blink(1), MLMM(8),
SUPER(10), FarmCPU, CMLM(14)

7.12 C/T
Glyma.10g157500 LRR-RLKs, regulation of plant immunity

Gm10_39147121 MLMM(9), SUPER(21) 6.02 T/G

Gm12_28136735
SUPER(4),GLM,MLM, Blink(8),

MLMM(39)
7.03 G/A

Glyma.12G160100,
Glyma.12G160400

NAC domain protein; Cytochrome P450

Gm13_16350701
FarmCPU, CMLM(16), GLM, MLM,

Blink(23), SUPER(29)
5.63 T/C Glyma.13G064500

F-box and WD40 domain protein, disease resistance
protein

Gm14_2492139
GLM, MLM, Blink(6), SUPER(13),
FarmCPU, CMLM(25), MLMM(26)

6.26 A/C
Glyma.14G034200,
Glyma.14G040000

RCC1 family protein; LRR-RLKs

Gm14_6185611
MLMM(28), SUPER(36), GLM,

MLM, Blink(46)
5.51 C/T

Glyma.14g073300,
Glyma.14G073800

F-box domain; regulation of defense response

Gm16_4935328
GLM, MLM, Blink(10), MLMM(22),
SUPER(31), FarmCPU, CMLM(32)

5.61 T/G
Glyma.16G051800,
Glyma.16G052200

NAC domain protein; LRR-RLKs

Gm19_44734953
GLM, MLM, Blink(3), FarmCPU,

CMLM(4), MLMM(25)
6.02 G/A

Glyma.19G189900,
Glyma.19G190200,
Glyma.19G190800

Defense response to bacterium; LRR-RLKs; plant-
type cell wall

Gm20_36724867 FarmCPU, CMLM(2) 6.54 C/T Glyma.20G124700 QSOX1 regulates plant immunity
F
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Discussion

Phenotype

Resistance to P. pachyrhizi is commonly evaluated based on three

types of SBR lesions: “TAN”, “RB”, and “Mixed”. The “TAN” lesion

type is characterized by heavy fungal sporulation typically develop on

susceptible soybean leaves, while the RB or “reddish-brown” lesion

type has been linked to resistance in known single gene resistance.

The “Mixed” reaction is recorded when both RB and TAN lesions

were observed on the same leaf (Miles et al., 2006). The simple

classification of TAN and RB lesions had been widely used decades

ago; however, it had been noted as oversimplified to the symptom

observation. Nowadays, the appropriate practice is to separately

divide TAN and RB into multiple classes to provide more accurate

descriptions of disease symptoms while taking into account variations

in fungal sporulation. Considering data consistency and method

popularity, we took the TAN lesion as the phenotype of the

association analysis for this study, which had sufficient observations

and good distribution of SBR resistance. In the present study, the

resistance resources were primarily sourced from China, Japan, and

Korea, comprising 40%, 16%, and 21% of the total resources,

respectively. These figures closely align with the respective

proportions of 43%, 13%, and 18% observed in the overall

population. In addition, according to the ANOVA between groups,

it is obvious that the variability (99%) within groups is greater than

the variability (1%) between groups (Table S8).
GWAS and candidate genes

Specific resistance to P. pachyrhizi is controlled by seven single

dominant genes, namely, Rpp1 (Chr 18), Rpp2 (Chr16), Rpp3 (Chr6),

Rpp4 (Chr7), Rpp5 (Chr3), Rpp6 (Chr18), and Rpp7 (Chr19) (Calvo

et al., 2008; Meyer et al., 2009; Lemos et al., 2011; Childs et al., 2018b).

The single genes played an important role in SBR resistance, but this

kind of resistance is not durable, and the usefulness of the sources

loses its effectiveness once it is identified and applied in breeding

(Chander et al., 2019). GWAS was performed in efforts to discover

loci contributing SBR resistance, thus helping find all genes for SBR

control (Chang et al., 2016). Multiple models were developed for
Frontiers in Plant Science 08
GWAS based on linkage disequilibrium, including GLM, MLM,

CMLM, MLMM, SUPER, FarmCPU, and BLINK (Wang and

Zhang, 2021). Previous studies demonstrated that the differences of

the models were caused by the interactions between the methods and

other factors, including populations, sample size, mapping resolution,

trait complexity, and quality of the data. Typically, all GWAS

methods perform well when the aforementioned factors are

favorable; however, each model may have varying numbers of false

positives depends on the strengths and weaknesses of the model in

different circumstance. Therefore, it is important to carefully consider

the advantages and limitations of each GWAS method and choose

the most appropriate one for the specific study and data.

Additionally, multiple methods and independent replication studies

are often used to confirm the validity of the results and minimize the

risk of false positive findings. However, GWAS studies on SBR

resistance were scarce, with the exception of a few studies that used

a single model to discover loci contributing to general disease

resistance in soybean (Kang et al., 2012; Chang et al., 2016). In this

study, we applied all seven models and also considered both

significance and consistency of each model for candidate SNPs of

SBR resistance to hedge the false positives.

A total of four significant SNPs were located on or nearby the

reported R genes. SNP Gm06_45,035,185 in chromosome 6 was

located at gene Rpp3; Gm18_51,994,200 and Gm18_57,223,391 in

chromosome 18 were nearby the genes Rpp4/Rpp4-b and Rpp1/

Rpp1-b, respectively; and Gm16_29,491,946 in chromosome 16 was

located at Rpp2, which showed the promise of GWAS on SBR

resistance (Sharma and Gupta, 2006). However, we only observed

moderate significance for these four SNPs in GWAS analysis,

probably due to the following reasons: 1) different genetic

variants contributing to the trait, rather than a single major gene;

2) major genes are often rare, the signal from a major gene may be

diluted by underrepresented or even missing gene(s) in the samples.

Except for the major Rpps, some significant SNPs also associate

with LRR class genes that were considered to be the majority of

disease resistance genes in plants (Kang et al., 2012). Genes encoding

cytochrome P450 have been shown to contribute to both plant

development and defense under pathogen attack (Siminszky et al.,

1999). The F-box family proteins have been demonstrated to be

directly involved in plant defense against pathogens(Liu and Xue,

2011). The QSOX1 (quiescin sulfhydryl oxidase homolog) were
FIGURE 5

Genomic prediction (GP) accuracy for rust using five GP models: Ridge regression best linear unbiased predictor (rrBLUP) = blue, Genomic best
linear unbiased predictor (gBLUP) = dark yellow, Bayesian least absolute shrinkage and selection operator(Bayesian LASSO) = red, Random Forest
(RF) = green, Support vector machines (SVM) = purple based on seven datasets: All_SNPs (30314), and six GWAS based SNP sets with top28, 100,
500, 1,000, 2,000 and 5,000 SNPs.
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reported to negatively regulate plant immunity against a pathogen

(Chae et al., 2021); WD40 repeat-containing proteins which played

an important effect on plant defense (Miller et al., 2016). The results

were indicative of the robustness of the significant SNPs identified in

this study. Other functional annotations pertaining to the candidate

genes of cell wall structure/organization/construction and membrane

fusion/proteins/structure/transporters have been demonstrated to

play some roles in plant passive defense to pathogens (Mellersh

and Heath, 2001; Hématy et al., 2009). The RCC1, NAC domain

protein, ABC (ATP-binding cassette) transporters, etc. involve in

many plant response-associated physiological activities to biotic or

abiotic stresses and are widely annotated to the candidate genes

(Table 1, S5) (Langenbach et al., 2016; Gautam et al., 2020; Oh et al.,

2022). Furthermore, previous studies have reported the involvement

of LRR (leucine-rich repeat), ABC transporters and F-box proteins in

conferring resistance to rust fungi in other crop species belonging to

the same order of Pucciniales, including wheat (Vikas et al., 2022),

barley (Sallam et al., 2017), and maize (Juliana et al., 2018).
Selection accuracy and selection efficiency

SE and SA were computed for the significant SNPs associated

SBR resistance or susceptibility (Ravelombola et al., 2017). The SA

and SE of the marker were measured by relative proportion of an

allele type (A/T/C/G) in resistant or/and susceptible accessions, as has

been highlighted in other GWAS-related reports (Shi et al., 2016;

Ravelombola et al., 2019). Specifically, the proportion of allele type for

a completely un-associated SNP should be close to 50% in either

resistant or susceptible group. Therefore, when the SA or SE value of

the allele type is more than 50%, it contributes positively to the

corresponding trait, or vice versa. In general, the two different

nucleotides of any significant SNP must have opposite effects on

disease resistance or susceptibility, which are defined as “R” or “S”

alleles. We observed significant difference between “R” and “S” alleles

in one SNP. For example, the “R” allele of SNP Gm04_46,295,839(C/

T) has a “C” nucleotide with low SE and SA values (52.6% and

53.9%), but its “S” allele has a “T” nucleotide with high SE and SA

values (67.8% and 57.%). This locus may relate to a S gene encoding a

cellular membrane fusion protein as annotated in this study. On the

contrary, the “A” allele of SNP Gm08_46,674,632(G/A) has high SE

(84.2%) and SA (82.2%) values with resistance effect, whereas its “G”

allele has low SE (51.5%) and SA (51.4%) values with susceptible

effect. This locus is more likely to associate with a R gene coding for a

LRR-containing protein in this study. In this study, all significant

SNPs have higher than expected SA and SE values (>50%), suggesting

that these SNPs can be used for further marker-assisted selection to

enhance SBR resistance breeding in soybean.
Genomic prediction

The study discovered 28 significant SNPs located in 20 loci with

genes that are associated with plant disease response or resistance.

However, before applying these findings in breeding, further

verification work is needed (Jannink et al., 2010; Crossa et al., 2017).
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GS has gained popularity in recent years in large-scale crop breeding

programs. Previous studies have shown that GS achieves a more

robust prediction of genotypic values compared to QTLs for traits

controlled by many genes with small effects. GS tends to have a better

and more reliable prediction than the traditional QTL approach,

because it uses more markers that are distributed throughout the

genome and captures more genetic variation of a trait (Bhat et al.,

2016). GS can make predictions about an individual’s performance

even before it is phenotyped, which can save time and resources in the

breeding process (Zhang et al., 2016; Ravelombola et al., 2019).

However, no research has investigated GS or GP for SBR

resistance/tolerance. In this study, we performed GP with seven

models on one All_SNP set and six GWAS-based SNP sets. The

accuracies of All_SNP set (28.0%~32.4%) were similar to former

studies on resistance/tolerance traits to abiotic and biotic stresses of

several plant species, including wheat (Poland and Rutkoski, 2016),

rice (Xu, 2013), maize (Technow et al., 2013), canola (Jan et al.,

2016), alfalfa (Hawkins and Yu, 2018), cassava (Ly et al., 2013), oats

(Asoro et al., 2011), miscanthus (Olatoye et al., 2020), grapevine

(Brault et al., 2022), and intermediate wheatgrass (Crain et al.,

2020). On the other hand, GWAS_SNPs-based GP accuracies were

higher than those of All_SNP set-based, demonstrating the

importance and contribution of significant SNPs in SBR

resistance/tolerance. The accuracy using linear model gBLUP

(45.5% in average) was close to those from machine learning

(SVM), 47.5% in average, but lower than rrBLUP (51.2% in

average) and Bayesian LASSO (52.0% in average) that had been

considered to be the optimal approaches (Ravelombola et al., 2019).

Consistently with former reports (Bao et al., 2014; Li et al.,

2018), we observed in this study that the accuracy of GP varied by

the number of SNPs. For those GWAS-based SNP sets, a greater

proportion of SNPs with more significance were retained for GS

after further filtering of markers from 5,000 to 1,000, which led to

increased accuracy. The accuracies of all models were improved

until the number of SNPs reached 1,000, after which the accuracies

began to decline until the number of markers dropped to 28. The

apex of predictive accuracy was observed at a SNP count of 1,000,

likely due to its ability to robustly capture LD and account for

relatedness among soybean genotypes. An excess of SNPs beyond

this threshold would introduce extraneous information to the

models and elevate model complexity, while a SNP count lower

than 1,000 would result in the loss of relevant information regarding

LD and relatedness capture. Then again, the objective of this GWAS

study was primarily to identify the associated loci and candidate

genes related to SBR. The use of multiple SNP sets and GS models

was employed to ensure the consistency of the GWAS results, rather

than to quantitatively evaluate the superiority or variations between

the models and data sets. However, the above results can still serve

as a reference for future GS research in disease resistance.

Phenotypic selection has been successfully implemented for

disease resistance, but without controlled experiments, it is difficult

to determine whether the resistance is quantitative or qualitative.

Therefore, it is difficult to determine whether the resistance will be

durable in the long term. In this study, the SBR-related markers we

identified can be used to select for both quantitative and qualitative

disease resistance within the breeding lines to bypass the need for
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controlled experiments through the use of conventional MAS.

Additionally, by utilizing GP, the breeders can select for the

accumulation of QTL associated with resistance, thereby taking

advantage of both quantitative and qualitative resistance genes, even

those that have not yet been characterized. This allows them to

select the most promising lines for further development and testing

without multiple generations of phenotyping.
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SUPPLEMENTARY FIGURE 1

The linkage disequilibrium decay rate was estimated as squared correlation

coefficient (r2) using all pairs of SNPs located within 4 Mb of physical distance

in euchromatic. The red line is the moving average of the (r2) value of the ten
adjacent markers.

SUPPLEMENTARY FIGURE 2

The Manhattan plots for SBR by multi-GWAS models: (A) Blink, (B) GLM, (C)
MLM, (D) CMLM, (E) FarmCPU, (F) SUPER, (G) MLMM. Additionally: (H) QQ-

plots of the above seven models.
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