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Quantification of reaction fluxes of metabolic networks can help us understand

how the integration of different metabolic pathways determine cellular

functions. Yet, intracellular fluxes cannot be measured directly but are

estimated with metabolic flux analysis (MFA) that relies on the patterns of

isotope labeling of metabolites in the network. For metabolic systems, typical

for plants, where all potentially labeled atoms effectively have only one source

atom pool, only isotopically nonstationary MFA can provide information about

intracellular fluxes. There are several global approaches that implement MFA for

an entire metabolic network and estimate, at once, a steady-state flux

distribution for all reactions with identifiable fluxes in the network. In contrast,

local approaches deal with estimation of fluxes for a subset of reactions, with

smaller data demand for flux estimation. Here we present a systematic

comparative review and benchmarking of the existing local approaches for

isotopically nonstationary MFA. The comparison is conducted with respect to

the required data and underlying computational problems solved on a synthetic

network example. Furthermore, we benchmark the performance of these

approaches in estimating fluxes for a subset of reactions using data obtained

from the simulation of nitrogen fluxes in the Arabidopsis thaliana core

metabolism. The findings pinpoint practical aspects that need to be considered

when applying local approaches for flux estimation in large-scale plant

metabolic networks.

KEYWORDS
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1 Introduction

Fluxes of biochemical reactions are the results of transcriptional, translational, and

post-translational processes (Stitt et al., 2010). They affect and determine how and with

which efficiency cellular resources are used, ultimately resulting in an observed cellular

phenotype. As a consequence, quantifying metabolic fluxes is important to uncover the
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functionality of metabolic networks and provides the basis for

identifying promising targets for metabolic engineering

(Stephanopoulos, 1999; Segrè et al., 2002; Lewis et al., 2010;

Razaghi-Moghadam and Nikoloski, 2021; Treves et al., 2022)

Intracellular reaction fluxes cannot be measured directly and,

instead, are estimated by applying computational methods that

integrate data from labeling experiments into a metabolic model.

Stoichiometric models provide a mathematical description of

biochemical reactions; together with assumed optimality

principles and physiological constraints (e.g. maximized growth

rate and steady state, respectively, as in flux balance analysis (FBA)

(Orth et al., 2010)), such models are integral part of the constraint-

based modeling framework (Bordbar et al., 2014) that allows

prediction of steady-state flux distributions. However, estimation

of fluxes by integration of data into metabolic models, as performed

in metabolic flux analysis (MFA) (Antoniewicz, 2018; Basler et al.,

2018), in addition to the mathematical description of reactions,

requires an accurate mapping of the atom transitions taking place in

the metabolic reactions. This does not only allow the integration of

data gained from isotope tracer feeding experiments, but also leads

to an increased precision of the flux estimates (Leighty and

Antoniewicz, 2013).

MFA has two variants with respect to whether data from

isotopically stationary or nonstationary state are used (Basler

et al., 2018). Isotopically stationary state provides a snapshot of

the system at which the incorporation of the label has reached

stationarity. In contrast, experiments at isotopically nonstationary

state imply performing time-resolved measurements that provide

temporal data on the incorporation and redistribution of the label in

the network. A wide range of biological systems has been studied

using stationary 13C-MFA, from Escherichia coli metabolism

(Sandberg et al., 2016; Fischer and Sauer, 2003) to central carbon

metabolism in heterotrophic plant tissues (Williams et al., 2008;

Masakapalli et al., 2010) and cancer cell lines (Antoniewicz, 2018;

Liang et al., 2021).

For labeling experiments with plants grown under mixo- or

hetero-trophic growth, with partially labelled C atoms in glucose as

an (additional) carbon source the isotopically stationary state can be

informative for flux estimation. This is the case since at the

isotopically stationary state, for this labeling set-up, not all C

atoms of all metabolites will be fully labelled, and classical

approaches from MFA can be employed for flux estimation. For

labeling experiments with plants grown autotrophically, CO2 is the

only carbon source; as a result, labeling its single carbon will lead to

an isotopically stationary state in which all metabolites are fully

labeled. As a result, measuring the isotopic stationary state will have

equivalent information about fluxes as measurements of total pool

sizes. Similar issue arises for nitrogen labeling experiments with

ammonium and nitrate, not only in plants but also in model

bacteria, like E. coli (Yuan et al., 2006). The second variant of

MFA, referred to as INST-MFA, considers data from an isotopically

nonstationary state and was developed to specifically address the

estimation of fluxes for such scenarios.

The integration of labeling patterns into metabolic models in

INST-MFA can be performed on a global level, using all reactions in

a given metabolic model and imposing constraints on exchange
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fluxes. This global INST-MFA approach leads to a computationally

difficult problem for which widely applied toolboxes exist (e.g.

INCA (Young, 2014)) alongside other implementations (e.g. using

the general algebraic modeling system (GAMS) (Lugar and Sriram,

2022) or MATLAB (Gopalakrishnan et al., 2018)). The mentioned

implementations rely on the concept of elementary metabolite units

(Antoniewicz et al., 2007) to simulate all labeling patterns for a

steady-state flux distribution in a given metabolic network.

However, application of the global INST-MFA may be

challenging for several reasons. For instance, a large-scale

metabolic network usually contains metabolites that have very

different labeling time scales determined by the ratio of the

metabolite pool size and the sum of the flux values of reactions

involving this metabolite. The global INST-MFA must then be able

to handle the different time scales arising in large-scale metabolic

models. Further, the sheer number of metabolites and reaction

contained in a large-scale metabolic network requires solving of a

large inverse problem underlying the estimation of a steady-state

flux distribution that yields the observed labeling patterns. Such

inverse problems often lead to numerical instabilities. Finally, the

estimation of steady-state fluxes in a given large-scale metabolic

network is further aggravated by the limited number of metabolites

for which isotopic labeling patterns are gathered in labeling

experiments. Nevertheless, the global approaches can be used to

obtain estimates of all identifiable fluxes in the network at once,

allowing genome-scale insights in the flux patterns over multiple

experimental scenarios.

In contrast, local approaches for INST-MFA, that only estimate

the flux of a specific reaction or a subset of reactions in a sub-

network, circumvent these issues due to the much smaller size of the

resulting computational problems. Therefore, local INST-MFA

approaches offer an alternative if fluxes of only few reactions are

of interest. In this analysis review, three such local approaches for

INST-MFA, namely: kinetic flux profiling (KFP) (Yuan et al., 2006),

non-stationary metabolic flux ratio analysis (NSMFRA) (Hörl et al.,

2013), and ScalaFlux (Millard et al., 2020), are compared and

contrasted in two flux estimation scenarios. In the first scenario,

we used a simple synthetic example network, which is part of the

IsoSim repository (https://github.com/MetaSys-LISBP/IsoSim).

This existing test case was further modified to determine the

effect of the number of simulated measurements and different

simulated measurement errors. In the second scenario, these local

INST-MFA approaches were tested on the nitrogen flux through the

metabolic network model AraCore of A. thaliana central

metabolism (Arnold and Nikoloski, 2014). The review points at

important consideration for planning of labeling experiments for

application of local approaches for INST-MFA, particularly of

interest to plant biology research.
2 Input and output of local
INST-MFA approaches

All three local approaches for INST-MFA require as input the

structural information of the sub-network containing the reaction
frontiersin.org
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whose fluxes are to be estimated. This structural information

consists of the reactions in the network along with the involved

metabolites and their stoichiometry. In addition, NSMFRA and

ScalaFlux also require the mappings of atom transitions for the

considered reactions. For instance, for 13C or 15N labeling

experiments, the transition map of all carbon or nitrogen atoms

must be provided alongside with the subnetwork.

The input for all approaches also includes the experimental data

of the isotopomer distribution for the metabolites involved in the

sub-network. In experiments which use mass spectrometry to

identify mass isotopomer distributions (MIDs) of the considered

metabolites, usually the relative abundance of isotopomers with the

same mass, called cumomers, is measured (Wiechert et al., 1999).

The class of a cumomer is denoted by M+x, where x represents the

number of occurrences of the heavier isotope. We note that KFP

makes use of only the unlabeled (M+0) isotopomer fraction; in

contrast, ScalaFlux and NSMFRA consider all isotopomer fractions.

The output of KFP is limited to estimate the total flux through

one metabolite, instead of individual reactions. Both KFP and

NSMFRA require data on absolute metabolite concentration data

only in the case when absolute fluxes are of interest; in absence of

such data, these approaches can still estimate relative fluxes, i.e. the

fractional turnover of metabolites. We note that NSMFRA is the

only of the three compared approaches that uses simulated labeling

data based on Hill kinetics for metabolites without measured

isotopomers. However, the applicability of NSMFRA is limited to

specific metabolites in the metabolic network, where pathways

converge. The approach estimates the relative local fluxes at these

nodes. In contrast, ScalaFlux is designed to estimate fluxes for any

reaction or a subnetwork for which sufficient labeling data are

available. The principle of KFP can also be adapted to many more
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network motifs than the simple one, shown in Figure 1A, as was

done in eKFP (Szecowka et al., 2013).

All three approaches then solve the ODEs describing the change

of the MID fractions with the reaction fluxes as parameters,

optimized to fit the measurements or specified analytic functions

(see below for details). In the case of ScalaFlux/IsoSim, the ODEs to

solve are constructed from the network structure in an automated

fashion. In contrast, for KFP and NSMFRA, setting up the ODEs

must be performed manually, since no automated implementation

is available. In the following, we provide a brief overview of the

mathematical formulation and computational details of the three

existing INST-MFA approaches.
3 Mathematical formulation of local
INST-MFA approaches

KFP relies on a system of ODEs for the unlabeled fraction of

two metabolites, or which one is a product of a single reaction that

uses a labeled substrate; in addition, some amount of recycling from

other, unlabeled molecules is allowed; on (Figure 1A). The system of

ODEs can be solved analytically yielding the flux through the

product metabolite (Figure 1B).

In NSMFRA, the ODEs are defined for two reactions that

converge at one metabolite – a network motif particular to

NSMFRA. This motif defines the ODE which is used to estimate

the flux ratio of the two reactions. The two reactions can both be

unimolecular (Figure 1C); in addition, the approach is applicable to

the case where one of the reactions is either a cleavage or a

condensation reaction. Figure 1D shows the equations for the

MID fractions of the involved metabolites for two converging
B

C D

A

FIGURE 1

Reaction motifs and resulting ODEs for KFP and NSMFRA. (A) Network motif for which KFP is applicable includes a metabolite, B, that is a product of
a reaction using the labeled metabolite A as substrate as well as a product of macromolecule degradation. Labeled atoms are introduced only from
metabolite A, that is a product of fully labeled nutrients and unlabeled macromolecule degradation. (B) A system of ODEs for the motif on panel
(A), along with its analytical solution. (C) The simplest network motif for NSMFRA, consisting of two unimolecular reactions converging at one
metabolite. (D) A system of ODEs for the MIDs. The system of ODEs allows the estimation of the parameters v1, v2, and PZ.
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unimolecular reactions. As the molecules in the example have three

atoms each, the MIDs are m+0, m+1, m+2 and m+3, the system of

corresponding ODEs allows the estimation of the parameters v1, v2,

and PZ.

ScalaFlux/IsoSim estimates the fluxes of reactions for a

subsystem in a given metabolic network, where enrichment

measurements are given for all input and output metabolites. This

subsystem may contain only one reaction, but it can also be

successively scaled to include the entire network. For the

estimation, ScalaFlux/IsoSim follows a three-step approach. In the

first step, the MIDs of all metabolites, which serve as input to the

subsystem, are fitted to a logistic function (Figure 2B) and a double

logistic function (Figure 3B). The selection of a (double) logistic

function to fit the enrichment of label inputs in IsoSim is purely

based on the observed goodness-of-fit. If the labeling dynamics of

some metabolite is not described by the selected function, another,

better suited function can be used. The fitting is performed using

particle swarm optimization (Clerc 2006) multiple times for both

functions employed. The fit with the smallest sum of squared

distances between the time-resolved measurements and the

simulated values of the fitted function is then chosen. In the

second step, these functions serve now as part of the ODEs in the

optimization problem to estimate the fluxes of the reactions in the

subsystem. The ODEs are automatically created according to the

network structure of the subsystem, with the flux values of the

reactions as parameters. The system of ODEs allows to simulate the

evolution of the MIDs of the considered metabolites. To estimate

fluxes, nonlinear least square optimization is used to minimize the

sum of squared distances of the time-resolved simulated and

measured MID values. In a third step, a sensitivity analysis is

conducted by repeating the second step a specified number of

times with addition of noise according to the expected variance of
Frontiers in Plant Science 04
MID measurements. The noise is added to the measurements of

output metabolites, which are used as optimization targets. The

resulting distribution of estimates defines the confidence intervals of

the actual estimate.
4 Implementations of local
INST-MFA approaches

ScalaFlux is the only of the compared local INST-MFA

approaches that is available in a ready-to-use implementation.

The implementation is available in the form of IsoSim (Millard

et al., 2020), a software toolkit that is readily applicable to any

combination of metabolic network and experimental data. In

contrast, NSMFRA (Hörl et al., 2013) and KFP (Yuan et al.,

2006) are only available as mathematical formulations. To

compare the three approaches, we first implemented NSMFRA

and KFP in R (https://github.com/sebahu/Local_INST-MFA),

allowing us to apply them on the example network included in

the IsoSim implementation.
5 Comparative analysis
of performance for
INST-MFA approaches

To compare the three approaches, we applied them with

simulated data from two distinct networks: (1) the synthetic

example network from ScalaFlux/IsoSim and (2) nitrogen fluxes

in the AraCore model network with atom mappings obtained from

Huß et al. (2022). The performance of the approaches was
B

C D

A

FIGURE 2

Impact of number of time points and added noise on labeling curve fit. (A) Synthetic network from ScalaFlux (Millard et al., 2020). (B) Logistic
function used in fitting the enrichment data. (C) Plots of 100 fitted functions for the enrichment of M, obtained while labeling data with 6 and 11
time points were used, compared with the original simulation data. (D) Distribution of the sum of the squared errors between the fitted functions
and the original simulation data. We used labeling data with 6, 11, 21 and 81 time points, each with 100 instances of randomly added noise. The
usage of more time points expectedly leads to smaller variance in the fitted function.
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investigated with special consideration on the number of used

measurement time points. We opted to examine the effect of this

factor since measuring isotope labeling distributions is resource-

intensive, and, thus, the number of time points is a limiting factor to

obtain reliable flux estimation.

The simulation data for the synthetic example was sampled at

161 time points, specified by ti = 10(i-1)log10
(16)/160-1, 1 ≤ i ≤ 161,

from a 15-minute-long simulation of the network. More

specifically, the second time point was ~1 second after the start of

the simulation and the second to last timepoint was ~16 seconds

before the end of the simulation. The nitrogen labeling of the

AraCore model network was sampled equidistantly at 81 time

points for a 320-minute-long simulation. For the performance

analysis, four subsets of these samples, containing 6, 11, 21 and

81 measurements, were used for each network.
Frontiers in Plant Science 05
6 Discrimination of input functions
based on goodness of fit

KFP uses an exponential decay function to describe the decay of

the unlabeled fraction of the input metabolite (Am+0 in Figure 1B).

For metabolites with only one atom that can be labeled, the

enrichment of labeling equals one minus the unlabeled fraction of

that metabolite. We denote the resulting function (Figure 3A) as

reversed exponential decay function. This reversed exponential decay

function and the input fitting functions of IsoSim were tested with

simulated data from the synthetic network (Figure 2A). The synthetic

network contains 17 metabolites with one atom and one metabolite,

H, with two atoms. The input fitting was tested for all one-atom

metabolites except Sout (since Sout was set to be fully labeled from the

start). IsoSim fits the input labeling data for each metabolite to a
B

C D

E F

G H

I J

A

FIGURE 3

Enrichment curve fitting for reversed exponential decay and double logistic functions. (A) Reversed exponential decay function, as described for KFP
(Yuan et al., 2008). (B) Double logistic function, that is a part of IsoSim/ScalaFlux (Millard et al., 2020). (C, E, G, I) The results of fitting 20 instances of
simulated enrichment data with added random noise to the reversed exponential decay function. (D, F, H, J) The results of fitting 20 instances of
simulated enrichment data with added random noise double logistic function.
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logistic and a double logistic function, each multiple times with

randomized starting values. The fit with the smallest distance to

measurements is then chosen as the input function to the system of

ODEs used for the flux estimation. In the case of the synthetic

network and simulated flux distributions, in all but one case, a logistic

function (Figure 2B) was selected as the best-fitting input function.

Next, we investigated the impact of the number of time points

used as well as the impact of noise added to the measurements. We

used labeling data with 6, 11, 21 and 81 time points as input, each

with 100 instances of randomly added noise. This is equivalent to

conducting a sensitivity analysis for the input fitting. Figure 2C

shows the plots of 100 fitted functions for the enrichment of

metabolite M in the synthetic network, resulting from the usage of

labeling data with 6 and 11 time points. When only 6 time points

were used, the variance of the fitted functions was expectedly the

largest of the four scenarios (Figure 2D). The fitted functions were a

poor match to the data, in some cases resulting in step-like fits

(Figure 2C, gray lines). Already when using data from 11 time points,

no step-like fits were observed in the fitting and the overall variance

of the functions was already considerably smaller (Figure 2D). The

plot shows that the use of more time points leads to even smaller

variance in the fitted function, yet the most significant reduction was

observed for the increase from 6 to 11 time points.

The simple reversed exponential decay function of KFP

(Figure 3A) and the double logistic function from IsoSim (Figure 3B)

resulted in worse fits for all but one atom pool (metabolite O,

Figure 3J). The simple reversed exponential decay function of KFP is

based on the metabolite being produced from fully labeled reactants

(Figure 1A); as a result, it fails to describe the delayed start of isotope

enrichment of atom pools (Figure 3G). For metabolites close to the

input reaction of the network, which have only a small delay in the

labeling, the simple reversed exponential decay function leads to fits

nearly as good as those based on a logistic function, with a small

distance to the measured data (Figures 3C, E). From its formulation, a

double logistic function must be able to fit the data at least as good as a

logistic function; this is the case since appropriate choice for the

parameters of a double-logistic function render it a logistic function.

Yet, as the results of fitting the double logistic function to 20 instances

of simulation data with randomly added noise (Figures 3D, F, H) show,

this is often not the case. This may be due to the increased number of

parameters to fit in the double-logistic function, compared to four

parameters for the logistic function, and can be explained by local

optima in the fitting process and the effect of noise.

The metabolite O is at the junction where two metabolic paths

with distinct delays of enrichment converge. These two paths end in

the metabolites F and N, which show an enrichment following a

logistic curve with differing parameters. This is the exact use case for

fitting the double logistic function; as a result, the double logistic

function has a better fit for metabolite O (Figures 3I, J).
7 Flux estimation for the
synthetic network

Here, we aimed to estimate the flux of individual reactions, the

most fine-grained local setting, since it also enabled us to compare
Frontiers in Plant Science 06
the performance between approaches. First, we tested the

approaches on simulated data from the synthetic network

provided with the IsoSim implementation (https://github.com/

MetaSys-LISBP/IsoSim). After careful evaluation of the source

code, we decided to change the method of sensitivity analysis to

be used with the data. IsoSim conducts a sensitivity analysis by

repeating the second step of its process with randomized noise

added to the measured (or in the test case, simulated) data, based on

the standard deviation of the actual measurements (or expected

standard deviation for the simulation). In doing so, however, the

fitting of the input labeling data is not repeated. Since the fitting of

input data is the first step in the process, with major impact on the

resulting estimation, we decided to conduct our sensitivity analysis

by repeating the whole process with noisy data. In addition, the

default number of repetitions in IsoSim was rather low (fixed to 4),

and we increased it to 100. This modified approach also allowed us

to conduct comparative analyses with the other compared

approaches. While these modifications increase the computation

time, the steps are easy to parallelize.

Tests on an Intel Core-i5 8250U with all methods set to run on a

single thread showed the following computation times: a single

KFP-run for one reaction takes less than 0.1 seconds. The input

fitting in IsoSim, which we also used for our implementation of the

basic principle of NSMFRA, takes 40-60 seconds per metabolite.

This includes multiple runs with randomized starting values for the

logistic and the double logistic function, choosing the best run. The

flux estimation for NSMFRA takes < 0.1sec per reaction. One

estimation run in IsoSim for one reaction takes 1-4 sec.

The analysis of the input fitting showed a major impact of the

number of measurements on the result (Figure 2). To further

evaluate the effect of this finding on flux estimation, we used

labeling patterns with 6, 11, 21 and 81 time points as input. The

results show good estimates for most reaction fluxes when labeling

patterns with at least 11 time points were used as input (Figure 4).

The noticeable exceptions include the flux of the backward reaction

6 and reaction 7 (Figure 4B); note that the product of reaction 7

serves as a reactant to the backward reaction 6. This kind of motif is

best handled by including the surrounding network structure, e.g.

by using the full coupling between the reactions 3 and 7 and the fact,

that the sum of the flux of reactions 8 and backward 6 equals the

sum of reactions 7 and forward 6 (Figure 2A). Instead of using the

poor estimates for reactions 7 and backward 6, the estimates for

reactions 3, 8 and forward 6 can be used to calculate reliable

estimates for reactions 7 and backward 6.

As stated above, KFP estimates the total flux through a

metabolite. If a metabolite is only produced by one reaction, the

flux of this reaction equals the total flux through the metabolite and

can be estimated by KFP. For our comparison, we chose such

reaction/metabolite pairs for flux estimation with KFP. The input

fitting derived from KFP worked well only on metabolites upstream

in the network. Therefore, we focused the investigation on the effect

of the labeling delay on the flux estimates. The results confirmed the

applicability of KFP for reactions whose reactants are labeled

shortly after the label is introduced (Figure 5). Interestingly, the

confidence intervals for the respective reactions (r2 and r3) using six

time points for the estimation were smaller than those obtained
frontiersin.org
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from IsoSim in the same setting. On the other hand, reactions

further downstream in the network, with a delayed onset of labeling

in their reactants, also have a small confidence interval; yet, the true

flux value is not contained in these intervals. This is likely due to the

systematic error in the input fitting to an reversed exponential decay

curve (e.g. metabolite L, Figure 3G) and the assumptions of the KFP

approach, detailed above. Such a fit also has a large sum of squared

errors, showing that the method is not applicable for this reaction.

NSMFRA is applicable to the reaction pair of reactions 4 and 9,

and the to the reaction pair of reactions 17 and 18 in the synthetic

network on Figure 2A. For NSMFRA, our implementation did not
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provide conclusive results (Figure 6). For instance, the reaction pair of

reactions 4 and 9 could be estimated rather well, while for reactions 17

and 18 the method fails to provide reliable flux estimates (Figure 6).
8 Flux estimation for the AraCore
model with labeled nitrogen input

To test the flux estimation for realistic metabolic networks, we

employed the AraCore model (Arnold and Nikoloski, 2014) of

Arabidopsis thaliana as a second model to simulate a labeling
B

C

A

FIGURE 4

Flux estimates and sensitivity analysis of IsoSim for 6, 11, 21 and 81 time points from a synthetic network. (A) For reactions r1, r2, r3, r4, r5 and r9.
(B) For reactions r6r, r6f, r7, r8, r10, r11 and r12. (C) For reactions r13, r14, r15, r16, r17, r18 and r19. In general, using eleven time points from the
simulation of a synthetic network leads to flux estimates close to the true values, with small confidence intervals.
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experiment and estimate fluxes. We simulated a nitrogen labeling

experiment with 15N-labeled ammonium and nitrate as nitrogen

sources to get insights in the challenges of characterizing nitrogen

fluxes in this model plant. This simulation scenario is also a good

match for the previously analyzed synthetic model, since in many

reactions only one or two nitrogen atoms are involved.

The simulation was performed for the whole network labelled

for 320 hours, with a flux distribution and metabolite pool sizes

derived from a previous work (Huß et al., 2022). To further simplify

the estimation process, the simulated labeling data were used in the

compartmentalized form (in the cytoplasm, mitochondrion, and

chloroplast). For the flux estimation, we focused on six reactions

that satisfy the network motifs where the local INST-MFA

approaches are applicable. Specifically, we chose Aspartate

aminotransferase, Arogenate dehydratase, branched-chain amino

acid aminotransferase and Methionine synthase since their

products are not created by any other reactions in the model. As

a result, the flux of these reactions equals the total flux through their

respective products, and they can also be used to compare the

estimates from the KFP approach. In addition, we selected the

Threonine aldolase and Glycine hydroxymethyltransferase

reactions as they converge into the same product, allowing the

application of NSMFRA. In addition, these reactions were selected

since they have an amino acid with one nitrogen atom as product,

which is quite similar to the synthetic network tested.
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As for the synthetic network, the fluxes of these reactions from

the AraCore model were estimated with 6, 11, 21 and 81 time

points. The sensitivity analysis was also conducted in the same

fashion as for the synthetic model, using 100 repetitions with

randomized noise added to the simulation data according to the

expected standard derivation of actual experiments.

IsoSim results in estimates with confidence intervals that

include the true value for all reactions tested. While this means

that the method is reliable, most of the confidence intervals are very

large and, as a result, the actual flux is not precisely estimated. We

observed that the usage of 81 time points led to a higher precision

for the flux estimates of Aspartate aminotransferase and

Methionine synthase, and with confidence intervals whose upper

bound is 2.5 to 3-fold larger than the lower bound (Figure 7).

One factor to be considered in interpreting these findings is the

very small difference in the labeling of reactant and product in the

reactions whose fluxes are estimated. This difference reaches a

maximum of around 0.01, well within the expected standard

deviation of the measurements (Figure 8), which leads to bad

estimates. To overcome this issue, additional measurements with

possible supply of another label (e.g. 13C) could be employed, if

applicable. The consequence of these findings is that IsoSim is

applicable for reliable estimate of fluxes of reactions that involve

metabolites with a difference of their label enrichment that is bigger

than the standard deviation of the enrichment measurements.
FIGURE 5

Flux estimates and sensitivity analysis of KFP for 6, 11, 21 and 81 time points for reactions of synthetic network. The confidence intervals of the
estimated fluxes of individual reaction from IsoSim’s example network are very narrow, yet for many reactions, the true flux values are outside of
these intervals.
FIGURE 6

Flux estimates and sensitivity analysis of NSMFRA for 6, 11, 21 and 81 time points for reactions of synthetic network. The confidence intervals of the
estimated fluxes for reactions 4 and 9 from the synthetic network are very small, yet for r18 and r17 the confidence intervals are bigger and the true
flux values are outside of them.
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The test of KFP on the reactions from AraCore failed, the

confidence intervals are small, but the true values are not contained

in these intervals (Figure 9). Further analysis showed multiple

potential reasons for our findings, indicating that the basic

version of KFP may not be suitable in our settings. One factor

again is the very small difference of only 0.01 in the labeling of

reactant and product in the reactions whose fluxes are to be

estimated. This is particularly relevant, as the fit for the labeling

of the reactant has an error larger than this difference. Furthermore,

the labeling of the metabolites only reached 0.4 in the simulated

time span, further complicating the fitting of the input function(s).

For NSMFRA, our implementation showed poor results for the

pair of reactions chosen (Threonine aldolase and Glycine

hydroxymethyltransferase). For both reactions the confidence

interval is rather big and still the true flux values are not covered

(Figure 10). The flux value of Glycine hydroxymethyltransferase

was mostly estimated to be zero although the true value in the

simulations was 0.027 mmol*gdw-1*h-1. The comparative analysis

estimates are based on our implementation of the core principles of

NSMFRA using the input fitting method of IsoSim. NSMFRAmight

perform better with their original implementation, which, however,

is not publically available.
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9 Discussion

The goal of this comparison of local INST-MFA approaches for

isotopically nonstationary metabolic flux analysis was to evaluate

their performance in estimating fluxes of individual reactions. To

this end, we used simulated enrichment data for a small synthetic

metabolic network and for a large-scale metabolic network model of

A. thaliana. We note that the cases considered in the simulations

are not representative of all metabolic flux analysis, since there are

few atoms to be labeled when feeding 15N in comparison to 13C-

labeled nutrients. We used data sets with varying number of time

points to investigate the effect that this factor has on the precision

and accuracy of flux estimates.
9.1 Best performing method

IsoSim was the overall best performing method and is applicable

to any part of the metabolic network for which labeling enrichment

data of sufficient metabolites are available. We found that its

estimates were reliable, although their confidence intervals were

not very precise in all cases. Nevertheless, we recommend increasing
FIGURE 7

Flux estimates and sensitivity analysis of IsoSim for 6, 11, 21 and 81 time points for AraCore reactions. The confidence intervals of the estimated
fluxes of individual reaction from AraCore generally span several orders of magnitude. Only the estimates for flux values for Aspartate
aminotransferase and Methionine synthase have confidence intervals of less than one order of magnitude, but this was achieved using the very high
number of 81 time points.
FIGURE 8

Actual and noisy data for simulated enrichment of Glutamate and Aspartate in AraCore. The distance between the enrichment of Glutamate and
Aspartate, being reactant and product of Aspartate aminotransferase, is smaller than the expected random deviation of the measurements.
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the number of Monte Carlo runs of the flux estimation for sensitivity

analysis significantly, e.g. to 100 instead of the default value of 4. The

simpler KFP approach in its basic form is limited to a specific

reaction pattern (Figure 1A). It showed comparable results for

metabolites near the labeled input of the metabolic network but

was not applicable in other cases. The addition of a delay parameter

could extend the applicability of KFP to reactions further

downstream of the metabolic network, as could the usage of other

fitting functions for other network constellations (Szecowka et al.,

2013). NSMFRA is limited to the network motif of converging

alternative pathways (Figure 1C) and without the original

implementation it is not reliable in difficult settings as the reaction

from AraCore, with a very small difference in the enrichment level

of reactants and products. The main difference to IsoSim is

the ability to calculate the ratio of the two converging reactions

without measurement of the absolute concentrations of the

involved metabolites.
9.2 Impact of network structure

The position of a reaction in the network and the resulting delay

of enrichment of its reactants and products, along with the size of the

resulting difference in the enrichment labels of reactants and

products, have a big impact on the performance of all three
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methods. IsoSim is able to handle the delay of the enrichment of

reactants and metabolites of a reaction rather well, while the basic

form of KFP, like NSMFRA, is not applicable with a large delay, as the

exponential decay functions used for fitting do not cover this case.

The position in the network has an even stronger effect for

reactions in the larger network of AraCore. For the selected

reactions of AraCore, IsoSim did not result in accurate flux

estimates, in contrast to the findings for the synthetic network.

Importantly, all flux estimates were associated very large confidence

intervals. NSMFRA and KFP failed to accurately estimate the fluxes

of these reactions, and the true values were outside the confidence

intervals of the estimates. One common characteristic of all six

reactions from AraCore is the very small difference in the labeling

between reactants and products (Figure 8), which is a likely reason

for the observed difficulties in flux estimation.
9.3 Recommendations

Our findings demonstrated that the availability of sufficient time

points proved essential to achieve flux estimates with small

confidence intervals. IsoSim required at least 11 time points for

precise flux estimates in the test cases considered. Consequently, flux

estimation should be performed with data from experiments that

include as large number of time points as possible. The large number
FIGURE 9

Flux estimates and sensitivity analysis of KFP for 6, 11, 21 and 81 time points for AraCore reactions. The confidence intervals of the estimated fluxes
of individual reaction from AraCore are narrow, yet the true flux values are outside of them.
FIGURE 10

Flux estimates and sensitivity analysis of NSMFRA for 6, 11, 21 and 81 time points for AraCore reactions. The confidence intervals of the estimated
fluxes of individual reactions from AraCore are rather big and yet the true flux values are outside of them. The flux value of Glycine
hydroxymethyltransferase was mostly estimated to be zero.
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of time points at which measurements are taken is necessary to

estimate fluxes even for reactions where reactants and products show

a larger difference in their labeling. While this leads to increased

effort, it does not invalidate the advantage of lower computational

complexity of local vs. global INST-MFA approaches. We stress that

in the cases where KFP is applicable, it produced estimates with a

small confidence interval even with only 6 time points.

One point found in all six reactions fromAraCore is the very small

difference in the labeling between reactants and products (Figure 8),

which is one likely reason for the observed difficulties in flux

estimation. Our recommendation to address this problem is to select

reactions close to the labeled input or to choose reactions where the

product has a sufficiently large pool size to slow down its enrichment;

this will in turn result in a larger difference of the enrichment levels

between the products and the reactants of the reaction.

Further, for all three local approaches, the flux estimates are

expected to improve as more of the adjoining metabolic network is

integrated in the estimation (Szecowka et al., 2013, Hörl et al., 2013;

Millard et al., 2020). One obvious example are fully coupled

reactions, as r3 and r7 in the synthetic example (Figure 2A): they

are fully coupled and have in steady state the same flux values, yet

the estimate of IsoSim for r3 (Figure 4A) has a much smaller

confidence interval than the estimate for r7 (Figure 4B).

Accordingly, the estimate of r3 should also be used for r7.

ScalaFlux/IsoSim can be scaled to include larger sub-networks or

even the entire network, as long as the enrichment of all input and

output metabolites is measured. The number of measured

metabolites thus limits the size of the sub-network. The

recommended proximity to the input or to metabolites with large

pool sizes can further limit the network selection.

Regarding further developments of local isotopically

nonstationary MFA, it is worth noting that for IsoSim the

medians of confidence intervals for the flux estimates even for the

reactions from AraCore were rather close to the true values. If the

flux estimates could be further filtered by yet unused, but valid

criteria to exclude unlikely flux values, this will reduce the number

of outliers in the estimates; this in turn will improve the confidence

intervals by rendering them smaller. A possible candidate for this

filtering is the goodness of the individual label input fits. Another

option is to identify if for some simple reaction patterns the

resulting ODEs can be solved analytically (as in KFP), which is

expected to improve the quality of the estimate.
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Even if good local estimates are only possible for a small range

of reactions in a large network, the inclusion of those local flux

estimates as constraints in flux balance analysis (FBA) problems can

lead to more pronounced reductions in the solution space of FBA

problems due to the imposed reaction couplings.
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