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Dynamic monitoring of
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on remote sensing data
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Sijia Zhou1, Selimai Ma1 and Rongwan Wang1

1College of Resources and Environmental Sciences, China Agricultural University, Beijing, China,
2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),
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Remote sensing data have been widely used to monitor crop development, grain

yield, and quality, while precise monitoring of quality traits, especially grain starch

and oil contents considering meteorological elements, still needs to be

improved. In this study, the field experiment with different sowing time, i.e., 8

June, 18 June, 28 June, and 8 July, was conducted in 2018–2020. The scalable

annual and inter-annual quality prediction model for summer maize in different

growth periods was established using hierarchical linear modeling (HLM), which

combined hyperspectral and meteorological data. Compared with the multiple

linear regression (MLR) using vegetation indices (VIs), the prediction accuracy of

HLMwas obviously improved with the highest R2, root mean square error (RMSE),

and mean absolute error (MAE) values of 0.90, 0.10, and 0.08, respectively (grain

starch content (GSC)); 0.87, 0.10, and 0.08, respectively (grain protein content

(GPC)); and 0.74, 0.13, and 0.10, respectively (grain oil content (GOC)). In

addition, the combination of the tasseling, grain-filling, and maturity stages

further improved the predictive power for GSC (R2 = 0.96). The combination

of the grain-filling and maturity stages further improved the predictive power for

GPC (R2 = 0.90). The prediction accuracy developed in the combination of the

jointing and tasseling stages for GOC (R2 = 0.85). The results also showed that

meteorological factors, especially precipitation, had a great influence on grain

quality monitoring. Our study provided a new idea for crop quality monitoring by

remote sensing.
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1 Introduction

As one of the most widely grown crops in the world, maize plays an important role in

the fields of food, fodder, and biofuel in a global context (Ranum et al., 2014).

Approximately 72% starch, 10% protein, and 4% fat are stored in maize kernel, which

provide essential nutrients and energy for people around the world (Paraginski et al., 2014).
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In addition, maize can be used as a raw material for food and

industrial processing to produce oil, starch, sweeteners, and

industrial alcohol (FAO, 2020). All the above applications pose

challenges to maize quality. However, previous studies have largely

focused on grain yield prediction and the response of crop growth

to biotic and abiotic stresses (Vaughan et al., 2018; Pradawet et al.,

2022; Shuai and Basso, 2022) studies related to maize grain quality,

especially quality parameters other than protein content, have yet to

be given due attention (Nuttall et al., 2017).

Accurate and timely regional crop growth monitoring and

grain quality evaluation as early as possible are important

directions of field management. However, the traditional way for

assessing grain quality, i.e., biochemical test, though accurate, is

limited by many issues, such as low efficiency, weak regional

representation, and high cost. Thus, remote sensing technology

and hyperspectral analysis have been widely applied to crop

production estimation because of their advantages in terms of

high-throughput, non-destructive, and prospective monitoring

(Rodrigues et al., 2018; Xu et al., 2020; Ma et al., 2022). Crop

remote sens ing monitor ing is real ized by obta in ing

electromagnetic wave reflection information from the canopy

through a passive sensor (Ma et al., 2022). The crop traits can

be inferred by vegetation index (VI) output from remote sensing

images in the visible, near-infrared, and short-wave infrared bands

(Khanal et al., 2017). Moreover, the remote sensing data that

indicate the growth and vitality of crop canopy can provide

necessary information for estimating maize grain quality. Cho

and Kang (2020) suggested that glucose produced by plant

photosynthesis can be polymerized into sucrose, which is

transported to the grain as the main source of starch

accumulation. VIs reflecting nitrogen and chlorophyll contents

of the canopy are good indicators of crop photosynthetic state

(Schlemmer et al., 2013), so they can indirectly represent the level

of starch accumulation. Grain oil content (GOC) can also be

inferred from plant nitrogen and carbohydrate accumulation

(Ghafoor et al., 2021). Grain protein formation depends on

nitrogen transport and water availability, and spectral index

with high sensitivity to canopy water content and nitrogen

status may reflect grain protein content (GPC) effectively (Zhao

et al., 2005; Ma et al., 2022). However, VIs strongly related to

maize grain quality, especially grain starch content (GSC) and

GOC, are not clear. In addition, with significant differences

discovered across growth stages in spectral characteristics of

maize (Panigrahi and Das, 2018), the determination of the

optimum VIs at different stages is of importance for grain

quality assessment.

The spectral information obtained by remote sensing has been

used to construct the evaluation model of grain quality in recent

years, mainly for GSC and GPC. In terms of the GSC prediction, Tan

et al. (2011) established a direct prediction model of GSC using the

structure insensitive pigment index (SIPI). The accuracy of the

indirect model of GSC based on leaf nitrogen content (LNC) and

SIPI was 9.7% higher than that of the direct model. Zhao et al. (2005)

found that VI derived from the canopy spectral reflectance at green
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and red bands was significantly correlated to the final GPC. Onoyama

et al. (2011) used the normalized difference vegetation index (NDVI)

with partial least squares regression (PLSR) analysis to estimate GPC

clearly, but they also found that prediction error increased twice or

more when one prediction model used data from other years.

Obviously, in the process of crop growth, VIs often cannot fully

simulate the crop grain quality, and the formation of grain quality is

affected by many factors (Zhang et al., 2022). Environmental factors,

photosynthesis, canopy structure, and nutrient uptake directly or

indirectly affect crop growth and final grain quality (Asseng and

Milroy, 2006; Ning et al., 2012). Weather information, crop growth

state, and their interaction should be considered in the construction

of grain quality prediction models (Butts-Wilmsmeyer et al., 2019).

Crop models were considered as a way to combine the effect of

different factors. For example, the leaf area index and canopy

nitrogen accumulation were used to correct the DSSAT-CERES

crop model, achieving high-precision prediction of GPC (Li et al.,

2015). However, too many variables (meteorology, soil,

management, and other input data) and complex assimilation

algorithm potentially reduce predictive power and limit the large-

scale application of crop models (Jin et al., 2018). Therefore, it is a

new method to construct the prediction model of grain quality by

synthesizing the key indices with a relatively simple algorithm. Li

et al. (2020) developed an inter-annual expandable grain quality

prediction model using hierarchical linear modeling (HLM), an

inter-annual expandable prediction model considering the

interaction between remote sensing data and meteorological data

with high accuracy. HLM can incorporate hierarchical data,

including nested data structures, combining multiple levels and

multiple variables together (Wilson et al., 2011). In HLM, there are

usually two or three levels to interpret the results of different

independent variables. HLM can, therefore, not only solve

regional and inter-annual crop production changes but also

analyze the relationship between crop quality and remote sensing

information in different regions and growth stages (Xu et al., 2020).

However, the application of HLM on maize quality especially grain

starch and oil prediction still needs to be improved.

Grain quality composition is the comprehensive result of

various factors in crop growth stages (Dente et al., 2008; Wang

et al., 2018). The factors are first reflected in the changes in growth

trends with different growth periods (Li et al., 2014; Koca and

Erekul, 2016) and then transformed into effects on quality. In other

words, the actual growth of crops at different growth stages also

contains a large amount of grain quality information (Xie et al.,

2020). Therefore, based on field test data of summer maize at

different sowing dates (8 June, 18 June, 28 June, and 8 July) in

Gucheng Agricultural Meteorology National Observation and

Research Station during 2018–2020, this study constructed

monitoring models for maize grain quality (starch, protein, and

oil) by HLM coupled with critical hyperspectral remote sensing data

and meteorological information at different growth stages. Then,

combined with different growth periods, multi-phase monitoring

models were established to provide a reference for improving the

monitoring capacity of grain quality.
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2 Materials and methods

2.1 Field site description and
experimental design

The study was conducted at Gucheng Agricultural Meteorology

National Observation and Research Station (39°08′N, 115°40′E),
Dingxing County, Baoding City, Hebei Province, China (Figure 1).

The region is located in the central part of North China, with a

temperate monsoon climate. The annual mean temperature, annual

mean precipitation, and annual sunshine were 12.2°C, 494 mm, and

2,403.6 h, respectively. Maize plantation is in a rotation with a

previous crop of wheat in this region and surrounding area, sown in

June and harvested by September–early October each year. The soil

in the experimental site is characterized as sandy loam with total

nitrogen at 87.00 mg kg−1, total phosphorus at 25.67 mg kg−1, total

potassium at 118.55 mg kg−1, organic matter content at 13.67 g

kg−1, and pH at 8.1 within a depth of 50 cm in average.

The maize hybrid Lianyu 1 was sown on 8 June (S1), 18 June

(S2), 28 June (S3), and 8 July (S4) in 2018–2020. A randomized

complete block design with three replications was used to arrange

the treatments (Figure 2). The observation time of each growth

stage, i.e., jointing, tasseling, grain-filling, and maturation, under

different treatments, is shown in Table 1. Maize was planted at a

density of 52 plants per plot (65,000 plants hm−2), with a plot

dimension of 4 m × 5 m (an area of 20 m2). The guard row was set

around the perimeter of the experimental field with a width of 2 m.
Frontiers in Plant Science 03
Field management, including irrigation, fertilization, and pest and

weed control, was carried out according to local practices.
2.2 Canopy hyperspectral reflectance data

Canopy hyperspectral reflectance of each plot at the jointing,

tasseling, grain-filling, and maturation stages of maize was collected

using an ASD FieldSpec3 Spectrometer (Analytical Spectral

Devices, Inc., Boulder, CO, USA). The spectral wavelength range

of 350–2,500 nm was obtained by the sensor with sampling intervals

of 1.38 nm for 350–1,050 nm and 2.0 nm for 1,000–2,500 nm. The

spectrometer was located approximately 1.0 m above the canopy

and perpendicular to the ground with a view angle of 25° so that

only the plant canopy could be seen, minimizing the noise of the soil

background. In addition, all observations were made under clear sky

conditions between 11:30 and 14:00 for adequate light intensity.

The canopy reflectance for each plot was calculated using the

average of the five spectra, which was calibrated using a 0.4 m ×

0.4 m BaSO4 calibration panel before and after measurements. The

time of field canopy spectral measurements under different

treatments over the years was consistent with the observation

time of each growth period shown in Table 1.
2.3 Meteorological data

Meteorological data, including daily mean temperature (°C),

daily precipitation (mm), and daily solar radiation (MJ m−2) during

the summer maize growth season from 2018 to 2020, were obtained

from an on-site automated weather station in Gucheng. For each

phase, i.e., jointing, tasseling, grain-filling, and maturation, the

effective accumulated temperature (AT), total precipitation (Pre),

and total solar radiation (Rad) mean the sum of daily mean
FIGURE 1

Location of study area in Dingxing County, Baoding City, Hebei
Province, China.
FIGURE 2

The split plot design for four sowing dates (i.e., S1, S2, S3 and S4) of
maize in 2018–2020. R means repetition.
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temperature (≥10°C), daily precipitation, and daily solar radiation

from sowing to that growth period, respectively.
2.4 Grain quality analyses

Maize grain quality including starch, protein, and oil contents

(%) was measured after harvest. GSC of dry samples was analyzed

using the acid hydrolysis method in accordance with the Chinese

Standard GB/T 5009.9-2016 (2016). GPC and GOC were evaluated

by the macro Kjeldahl method and Soxhlet extractor method
Frontiers in Plant Science 04
according to the National Standard of China numbered GB/T

5009.5-2016 and GB/T 5009.6-2016, respectively.
2.5 Selection of vegetation indices

According to the previous research, 15 VIs were considered to

be potential indicators of grain quality (Table 2) to analyze the

correlation between VIs and grain quality. Then, the optimal VIs

were selected to construct the grain quality model.
TABLE 1 Observation time of different growth stages (i.e., jointing, tasseling, grain-filling, and maturation) under different treatments in 2018-2020.

Year Treatment
Date

Sowing Jointing Tasseling Grain-filling Maturation

2018

S1 8 Jun. 3 Jul. 28 Jul. 22 Aug. 6 Sep.

S2 18 Jun. 10 Jul. 4 Aug. 27 Aug. 12 Sep.

S3 28 Jun. 21 Jul. 13 Aug. 5 Sep. 20 Sep.

S4 8 Jul. 30 Jul. 22 Aug. 18 Sep. 10 Oct.

2019

S1 8 Jun. 4 Jul. 29 Jul. 21 Aug. 5 Sep.

S2 18 Jun. 13 Jul. 5 Aug. 28 Aug. 14 Sep.

S3 28 Jun. 20 Jul. 14 Aug. 5 Sep. 24 Sep.

S4 8 Jul. 28 Jul. 24 Aug. 17 Sep. 10 Oct.

2020

S1 8 Jun. 4 Jul. 1 Aug. 24 Aug. 4 Sep.

S2 18 Jun. 13 Jul. 8 Aug. 29 Aug. 14 Sep.

S3 28 Jun. 21 Jul. 15 Aug. 4 Sep. 26 Sep.

S4 8 Jul. 30 Jul. 26 Aug. 18 Sep. 8 Oct.
TABLE 2 Selected spectral indices for predicting grain quality in this study.

Vegetation indices Formulation Related to Reference

Maccioni (R780 − R710)/(R780 − R680) Leaf Chl Maccioni et al., 2001

Modified simple ratio 2 (MSR2) (R750/R705 − 1)/sqrt(R750/R705 + 1) Canopy Chl+LAI Wu et al., 2008

Normalized difference red edge index (NDRE) (R790 − R720)/(R790 + R720) Canopy N Fitzgerald et al., 2010

Normalized difference vegetation index (NDVI) (R800 − R670)/(R800 + R670) Canopy Chl+LAI Marino et al., 2014

Enhanced vegetation index (EVI) 2.5 * ((R800 − R670)/(R800 − 6 * R670) − 7.5 * R475 + 1) Canopy Chl Huete et al., 2002

MERIS terrestrial chlorophyll index (MTCI) (R750 − R710)/(R710 − R680) Canopy Chl Dash and Curran, 2007

Photochemical reflectance index (PRI) (R531 − R570)/(R531 + R570) Canopy Chl Gamon et al., 1992

Vogelmann red edge index 2 (VOG2) (R734 − R747)/(R715 + R726) Canopy Chl+water Zarco-Tejada et al., 2001

Normalized difference nitrogen index (NDNI) (log(1/R1510) − log(1/R1680))/(log(1/R1510) + log(1/R1680)) Canopy N Serrano et al., 2002

Modified chlorophyll absorption ratio index (MCARI) ((R750 − R705) − 0.2(R750 − R550)) * (R750/R705) Canopy Chl Wu et al., 2008

Optimized soil-adjusted vegetation index (OSAVI) 1.16(R800 − R670)/(R800 + R670 + 0.16) Canopy Chl+LAI Rondeaux et al., 1996

Normalized pigment chlorophyll index (NPCI) (R680 − R430)/(R680 + R430) Canopy Chl+N Peñuelas et al., 1994

Normalized difference water index (NDWI) (R860 − R1240)/(R860 + R1240) Canopy Water Gao, 1996

Structure insensitive pigment index (SIPI) (R800 − R445)/(R800 − R680) Canopy Chl+Car Peñuelas et al., 1995

Ratio vegetation index (RVI) R870/R660 Canopy Chl+LAI Zhu et al., 2008
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2.6 Grain quality prediction model

2.6.1 Missing data imputation
The k-nearest neighbor (kNN) method was applied to impute

the missing value for the sample at the tasseling stage under S2

treatment in 2018. To impute a missing value for a target sample,

find the k most similar samples according to the defined distance

measure (calculated using VI values that exist in the target sample

and candidate neighbor sample) (Kim et al., 2005).

2.6.2 Multiple linear regression
First, a multiple linear regression equation (Eq. 1) was used to

establish a grain quality prediction model based on the vegetation

index:

G=k+k1·VI1+k2·VI2+ϵ (1)

where G means measured grain quality, and VI1 and VI2 mean

the two vegetation indices with the strongest correlation with grain

quality under different phases. In addition, k, k1, and k2 represent

the constant terms and the parameter terms for the corresponding

variable of the linear model, and ϵ is the error term.

2.6.3 Gray relation analysis
Gray relation analysis (GRA) was used for indefinite relation

between characteristic variables (i.e., GSC, GPC, and GOC) and

independent variables (i.e., VIs, AT, Pre, and Rad). The main

procedure of GRA is first to normalize the values of all variables

to produce a comparable sequence, which is called gray relation

generation. From these sequences, the reference sequence

(characteristic variable) is defined. Then, the gray relation

coefficients between all comparable sequences and reference

sequences are calculated. Finally, based on these gray relation

coefficients, the gray relation level represented by the relevant

degree (RD) between the reference sequence and each comparable

sequence is calculated.

2.6.4 Hierarchical linear modeling
Furthermore, in order to consider the influence of inter-annual

environmental factors on grain quality, HLM is a least squares

regression analysis method that considers the nested structure of

data, which has begun to be applied to yield and the GPC prediction

in recent years (Li et al., 2020; Xu et al., 2020). The GSC and GOC

are also affected by nitrogen and carbon metabolism, which can be

reflected by the maize canopy spectrum (Yue et al., 2022; Li et al.,

2023). Thus, HLM was applied to estimate the starch and oil

contents in this study. HLM can stratify the dataset to

comprehensively analyze the relationship between the data within

the layer (the first-layer model) and the data outside the layer (the

second-layer model) in view of the independence between the data.

In this study, the first-layer model (L1) was a quality prediction

model from the canopy spectra:

L1: G=b0j+b1j·VI1+b2j·VI2+rij (2)
Frontiers in Plant Science 05
where b0j, b1j, and b2j represent the intercept and coefficients of

VI1 and VI2 under different phases in L1, respectively, and rij
represents the random error.

The second layer model (L2) is based on the normalized value of

the model coefficient in the L1 and the external meteorological data

(AT, Pre, and Rad), as follows:

L2: bnj=gn0+gn1·AT+gn2·Rad+gn3·Pre+mnj (3)

where bnj means the intercept and slope of L1; gn0 is the

intercept of L2; and gn1, gn2, and gn3 are the model coefficients of

AT, Rad, and Pre in L2, respectively; mnj is the random error.

2.6.5 Combination of prediction model under
different phases

In this research, the stepwise multiple regression method was

used for the combination of prediction models under different

phases to improve prediction power. In order to avoid the

possibility of multicollinearity among independent variables, we

first tested the variance inflation factor (VIF) of each variable in the

equation and then obtained the optimal regression equation by

stepwise multiple regression analysis. Bidirectional elimination is

applied to test the variables to be included or excluded at each step.

From all the independent variables available for selection, the

variables that have a significant impact on the dependent variable

are selected to establish the regression equation, while variables with

no significant effect on the dependent variable were not added to the

equation. The equation was expressed as follows:

G=b0+b1G1+b2G2+···+bnGn+ϵ (4)

where b0 is a constant; G1, G2, …, Gn mean the optimal

independent variables (predicted value under different phases) for

the model; b1, b2, …, bn are the regression coefficients

corresponding to the predicted value in different phases; ϵ is the

error term.
2.7 Statistical analysis

Pearson’s correlation coefficient (r) between vegetation indices

and grain quality (GSC, GPC, and GOC) were analyzed using IBM

SPSS Statistics 24.0 (IBM Corp., Armonk, NY, USA). In all

prediction models, 80% of the dataset was the modeling set, 20%

was the validation set, and the random state was set to 42 to ensure

the consistency of dataset partitioning at different phases. To test

the performance of different prediction models, the coefficient of

determination (R2) (Eq. 5), root mean square error (RMSE) (Eq. 6),

and mean absolute error (MAE) (Eq. 7) were used as measures of

accuracy.

R2=o
n
i=1(Yi−Y

0
i)

on
i=1(bYi−Yi)

(5)

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Yi−Y

0
i)
2

r
(6)
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MAE = o
n
i=1jYi − Y  0

i j
n

(7)

where n is the number of observations; Yi and Yi’ are the ith

measured and simulated data, respectively; Y ̂ is the mean value of

measured data.

All statistical indicators were calculated using python 3.9

(Python Software Foundation, Portland, OR, USA), and all figures

were drawn by Microsoft Office Excel (Microsoft Corporation,

USA) and the ggplot package of R language (RStudio Inc.,

Boston, MA, USA).
3 Results

3.1 Correlation between VIs and
grain quality

The correlation between VIs calculated by the calibration

dataset and grain quality under different phases is depicted in

Figure 3. For GSC, only normalized pigment chlorophyll index

(NPCI) was significantly correlated with GSC at the jointing stage.

However, 60% VIs were significantly correlated with GSC at the

tasseling and grain-filling stages. No significant correlation was

found between VIs and GSC at the maturation stage. For GPC, VIs

had no significant correlation with GPC at the jointing stage.

Approximately 67% VIs were significantly correlated with GPC at

the tasseling and grain-filling stages. In addition, 40% VIs showed a
Frontiers in Plant Science 06
significant correlation with GPC at the maturation stage. In

particular, VIs that showed a significant correlation with GSC and

GPC at the tasseling and grain-filling stages had an extreme

consistency. For GOC, VIs at the jointing stage had no significant

correlation with GOC except normalized difference water index

(NDWI). At the tasseling stage, 40% VIs were significantly

correlated with GOC. At the grain-filling stage, 73% VIs were

significantly correlated with GOC, while only 27% VIs were

significantly correlated with GOC at the maturation stage.

The relationship between grain quality and the two VIs with the

highest correlation at different growth stages can be seen in Table 3.

VIs had no significant correlation with GSC, GPC, and GOC at the

jointing stage (p< 0.01), except for NPCI with GSC (r = 0.37) and

NDWI with GOC (r = 0.33). All selected best two VIs showed a

highly significant correlation with GSC, GPC, and GOC at the

tasseling and grain-filling stages (p< 0.01), with MERIS terrestrial

chlorophyll index (MTCI) (r = 0.69), MTCI (r = 0.64), and NDWI

(r = 0.55) showing the best correlation with GSC, GPC, and GOC,

respectively, at the tasseling stage. However, Maccioni (r = 0.69),

MTCI (r = 0.74), and ratio vegetation index (RVI) (r = 0.58) had a

higher significant correlation (p< 0.01) with GSC, GPC, and GOC at

the grain-filling stage. However, NDWI and NDVI had no

significant correlation with GSC at the maturation stage, while

RVI and Vogelmann red edge index 2 (VOG2) (r = 0.44 and −0.43,

respectively) and optimized soil-adjusted vegetation index (OSAVI)

and normalized difference red edge index (NDRE) (r = 0.41 and

0.39, respectively) showed a significant correlation with GPC and

GOC, respectively.
A

B

C

FIGURE 3

Correlations between VIs and grain quality, i.e., (A) GSC, (B) GPC, and (C) GOC under different phases, i.e., (a) jointing stage, (b) tasseling stage,
(c) grain-filling stage, and (d) maturation stage. × indicates no significant correlation. The larger the circle, the stronger the correlation. VIs,
vegetation indices; GSC, grain starch content; GPC, grain protein content; GOC, grain oil content.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1177477
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1177477
3.2 Grain quality prediction model
using MLR

The VIs shown in Table 3 were used to construct the prediction

model under different phases. For the GSC, GPC, and GOC

prediction, the bad R2 was found in the jointing and maturation

stages. The multiple linear regression (MLR) model for the GSC

prediction had R2, RMSE, and MAE values of 0.49, 1.28%, and

0.84%, respectively, in the tasseling stage, and 0.53, 1.23%, and

0.91%, respectively, in the grain-filling stage (both using Maccioni

and MTCI); the best prediction occurred in the tasseling stage
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because of the overfitting based on the validation set in the grain-

filling stage. For the GPC prediction, the best accuracy was found in

the grain-filling stage with R2, RMSE, and MAE values of 0.49,

0.56%, and 0.42%, respectively. For the GOC prediction, the

accuracy of the MLR decreased further with an R2 of 0.36 in the

tasseling stage and 0.30 in the grain-filling stage (Table 4). For GSC

and GPC, low prediction power was associated with a smaller

fluctuation range of predicted value than the measured value,

while it reversed for the GOC prediction (Figure 4). MLR model

constructed by VIs cannot simulate the variability of factors other

than crop canopy traits, leading to poor prediction accuracy.
TABLE 3 Correlation coefficients between the two best VIs and grain quality (i.e., GSC, GPC, and GOC) under different phases.

Phases VI GSC VI GPC VI GOC

Jointing NPCI 0.37** NPCI 0.29 NDWI 0.33**

PRI −0.21 NDWI 0.18 NPCI 0.30

Tasseling MTCI 0.69** MTCI 0.64** NDWI 0.55**

Maccioni 0.63** VOG2 −0.63** VOG2 −0.43**

Grain-filling Maccioni 0.69** MTCI 0.74** RVI 0.58**

MTCI 0.67** Maccioni 0.74** MSR2 0.55**

Maturation NDWI 0.25 RVI 0.44** OSAVI 0.41**

NDVI 0.21 VOG2 −0.43** NDRE 0.39**
fronti
VIs, vegetation indices; GSC, grain starch content; GPC, grain protein content; GOC, grain oil content; NPCI, normalized pigment chlorophyll index; NDWI, normalized difference water index;
PRI, photochemical reflectance index; MTCI, MERIS terrestrial chlorophyll index; VOG2, Vogelmann red edge index 2; RVI, ratio vegetation index; MSR2, modified simple ratio 2; NDVI,
normalized difference vegetation index; OSAVI, optimized soil-adjusted vegetation index; NDRE, normalized difference red edge index.
**Indicates extremely significant correlation (p< 0.01).
TABLE 4 Formula and statistical data for predicting grain quality (i.e., GSC, GPC, and GOC) under different phases by MLR model.

Grain quality Phases Formula
Modeling set Validation set

R2 RMSE% MAE% R2 RMSE% MAE%

GSC Jointing 64.38 + 32.16 * PRI + 11.73 * NPCI 0.11 1.70 1.55 0.27 1.75 1.55

Tasseling 102.10 − 56.76 * Maccioni + 2.06 * MTCI 0.49 1.28 0.84 0.38 1.60 1.09

Grain-filling 50.70 + 10.97 * Maccioni + 1.33 * MTCI 0.53 1.23 0.91 0.11 1.92 1.61

Maturation 65.80 − 0.55 * NDVI + 9.54 * NDWI 0.06 1.74 1.41 0.06 1.97 1.53

GPC Jointing 7.16 + 3.05 * NPCI + 7.47 * NDWI 0.14 0.72 0.57 0.06 0.81 0.60

Tasseling 5.71 + 0.19 * MTCI − 2.98 * VOG2 0.47 0.57 0.47 0.24 0.73 0.52

Grain-filling −0.99 + 8.68 * Maccioni + 0.38 * MTCI 0.49 0.56 0.42 0.75 0.42 0.32

Maturation 7.21 − 0.88 * VOG2 + 0.11 * RVI 0.14 0.72 0.60 0.34 0.68 0.46

GOC Jointing 3.17 + NPCI + 3.40 * NDWI 0.15 0.28 0.24 0.24 0.42 0.38

Tasseling 2.63 − 0.16 * VOG2 + 5.75 * NDWI 0.36 0.24 0.20 0.20 0.44 0.39

Grain-filling 3.06 − 0.20 * MSR2 + 0.14 * RVI 0.30 0.25 0.22 0.38 0.38 0.32

Maturation 2.49 + 0.06 * NDRE + 1.85 * OSAVI 0.21 0.27 0.23 0.04 0.48 0.41
GSC, grain starch content; GPC, grain protein content; GOC, grain oil content; MLR, multiple linear regression; NPCI, normalized pigment chlorophyll index; NDWI, normalized difference
water index; PRI, photochemical reflectance index; MTCI, MERIS terrestrial chlorophyll index; VOG2, Vogelmann red edge index 2; RVI, ratio vegetation index; MSR2, modified simple ratio 2;
NDVI, normalized difference vegetation index; OSAVI, optimized soil-adjusted vegetation index; NDRE, normalized difference red edge index; RMSE, root mean square error; MAE, mean
absolute error.
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3.3 Relevant degree between VIs,
meteorological factors, and grain quality
using GRA

Different from correlation analysis, which was used to determine

the strength of linear relationships between factors, GRA can be used

to comprehensively describe the importance of different factors to the

target value. The results showed that meteorological factors, i.e., AT,

Rad, and Pre, had a strong relation to GSC, especially the RD between

accumulated precipitation, and GSC ranked first in all stages (RD =

0.71–0.77). The most noteworthy was the total precipitation during

the maize growth period (sowing–maturation), giving the strongest

relevant degree with GSC (RD = 0.75), followed by total accumulated

temperature (RD = 0.61) and total radiation (RD = 0.60).

Meteorological factors showed weak RD with GPC in all stages

except for total precipitation from sowing to maturation (RD =

0.72, rank second). Compared to meteorological factors, VIs had a

stronger relevant degree with GOC in all stages except the early

growth stage (sowing–jointing) (Table 5).
3.4 Grain quality prediction model
using HLM

As shown in Table 5, meteorological factors had a correlation with

grain quality, especially GSC. Therefore, meteorological factors should

be taken into account in the grain quality prediction model using

HLM. The two VIs that had the highest correlation with quality were
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also applied in the construction of the quality prediction model for

comparison withMLR. The parameters in Table 6, i.e., gn1, gn2, and gn3,
explain the contribution of AT, Rad, and Pre, respectively. For the GSC

prediction, the high accuracy of the model was realized in the middle

and late growth stages with R2, RMSE, and MAE values of 0.90, 0.10,

and 0.08, respectively (from sowing to tasseling); 0.85, 0.12, and 0.09,

respectively (from sowing to grain-filling); and 0.85, 0.12, and 0.10,

respectively (from sowing to maturation). For the GPC prediction, the

model in the later growth stage performed better, with R2, RMSE, and

MAE values of 0.84, 0.11, and 0.10, respectively (from sowing to grain-

filling), and 0.87, 0.10, and 0.08, respectively (from sowing to

maturation). The GSC and GPC models had certain similar rules,

but the GOC model was completely different with the best R2, RMSE,

andMAE values of 0.74, 0.13, and 0.10, respectively, at the early growth

stage from the sowing to the jointing stage. The GOC model in the

middle and late growth stages showed poor predictive ability (Table 7).

Compared with the MLR method, the HLM method showed

significant improvement in the prediction of GSC, GPC, and even

GOC under different phases (Figure 5). In addition, the HLM model

generally performed well over the respective years (2018–2020), with

R2 varying from 0.79 to 0.84 and RMSE from 0.13 to 0.15 at the grain-

filling stage for GSC estimation, and R2 varying from 0.70 to 0.82 and

RMSE from 0.14 to 0.17 at the grain-filling and maturation stages for

GPC estimation. For the evaluation of GOC, the highest R2 varied from

0.62 to 0.70 and the lowest RMSE from 0.16 to 0.19 at the jointing

stage. In general, the prediction effect of HLM in 2018 and 2020 was

slightly better than in 2019, with R2 improved by 0.03 and 0.05 (GSC),

0.05 and 0.09 (GPC), and 0.08 and 0.04 (GOC) (Figure 6).
DA B C

FIGURE 4

Relationships between measured and predicted grain quality, i.e., GSC, GPC, and GOC under different phases, i.e., (A) jointing stage, (B) tasseling
stage, (C) grain-filling stage, and (D) maturation stage, by MLR method. The dashed line represents the 1:1 line. GSC, grain starch content; GPC, grain
protein content; GOC, grain oil content; MLR, multiple linear regression.
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3.5 Combination of grain quality prediction
model under different growth stages

To further improve the prediction accuracy of grain quality, we

combined the predicted values using the HLM method under
Frontiers in Plant Science 09
different growth stages through multiple stepwise regression

equations to obtain the best models (Table 8). For the GSC

prediction, the best model was produced by the combination of

the predicted value under three stages, i.e., tasseling, grain-filling,

and maturation stages, with R2, RMSE, and MAE values of 0.96,
TABLE 6 Coefficient value of each variable in grain quality (i.e., GSC, GPC and GOC) prediction model by HLM method under different phases.

Phases Fixed effect
GSC GPC GOC

gn0 gn1 gn2 gn3 gn0 gn1 gn2 gn3 gn0 gn1 gn2 gn3

Jointing

For intercept, b0 −0.39 −3.82 4.05 1.60 0.32 0.71 −1.63 −0.15 −0.88 −4.12 5.41 2.97

For VI1 slope, b1 0.78 4.35 −4.86 −2.61 −0.43 0.69 0.62 0.44 2.35 2.41 −5.19 −3.43

For VI2 slope, b2 0.41 4.97 −5.20 −0.65 0.46 −0.09 0.23 −0.81 −0.28 5.39 −4.67 −1.52

Tasseling

For intercept, b0 −2.79 −9.67 15.76 −1.90 −0.57 −0.10 1.04 1.73 −1.92 2.52 −0.08 1.81

For VI1 slope, b1 3.73 41.19 −55.65 11.19 1.07 2.11 −3.07 −1.90 1.23 −5.51 2.84 0.79

For VI2 slope, b2 0.86 −37.97 46.11 −10.96 0.15 0.70 −0.86 −0.83 2.55 0.64 −2.53 −2.80

Grain-filling

For intercept, b0 −0.32 −0.07 0.14 2.46 −0.05 1.15 −1.14 1.04 −0.21 −0.78 1.22 1.20

For VI1 slope, b1 −0.12 −9.98 9.65 −2.19 −1.00 −22.64 25.76 3.50 −9.36 −10.09 22.15 12.26

For VI2 slope, b2 1.87 13.41 −13.77 −1.78 2.03 30.16 −34.49 −6.84 10.36 13.34 −25.94 −14.76

Maturation

For intercept, b0 −0.19 −0.38 0.61 2.14 −0.14 1.37 −1.78 2.24 0.56 1.17 −1.83 −0.28

For VI1 slope, b1 −0.46 0.88 0.09 −0.82 −0.52 −2.36 3.93 −0.50 0.02 5.13 −3.74 −2.44

For VI2 slope, b2 0.63 −0.13 −0.79 −1.18 0.46 3.00 −2.28 −3.53 0.39 −3.47 2.55 1.32
frontie
VI1 and VI2 are the VIs corresponding to each phase in Table 3; the absolute value of the correlation coefficient of VI1 is larger than that of VI2.
GSC, grain starch content; GPC, grain protein content; GOC, grain oil content; HLM, hierarchical linear modeling; VIs, vegetation indices.
TABLE 5 Relevant degree between VIs, meteorological factors (i.e., AT, Rad, and Pre), and grain quality (i.e., GSC, GPC, and GOC) using GRA.

Grain quality Jointing Tasseling Grain-filling Maturation

Object RD Rank Object RD Rank Object RD Rank Object RD Rank

GSC PRI 0.59 5 Maccioni 0.62 4 Maccioni 0.72 3 NDVI 0.56 5

NPCI 0.64 4 MTCI 0.71 2 MTCI 0.77 2 NDWI 0.59 4

AT 0.68 2 AT 0.65 3 AT 0.66 4 AT 0.61 2

Rad 0.65 3 Rad 0.59 5 Rad 0.62 5 Rad 0.60 3

Pre 0.71 1 Pre 0.77 1 Pre 0.77 1 Pre 0.75 1

GPC NPCI 0.67 1 MTCI 0.73 1 Maccioni 0.72 2 VOG2 0.55 5

NDWI 0.59 5 VOG2 0.60 4 MTCI 0.74 1 RVI 0.72 1

AT 0.66 2 AT 0.66 2 AT 0.69 3 AT 0.68 3

Rad 0.66 3 Rad 0.59 5 Rad 0.59 5 Rad 0.63 4

Pre 0.65 4 Pre 0.64 3 Pre 0.67 4 Pre 0.72 2

GOC NPCI 0.62 5 VOG2 0.66 4 MSR2 0.70 2 NDRE 0.66 1

NDWI 0.66 3 NDWI 0.72 1 RVI 0.71 1 OSAVI 0.65 2

AT 0.75 1 AT 0.69 2 AT 0.68 3 AT 0.59 5

Rad 0.66 2 Rad 0.65 5 Rad 0.62 4 Rad 0.62 3

Pre 0.63 4 Pre 0.66 3 Pre 0.61 5 Pre 0.61 4
VIs, vegetation indices; GSC, grain starch content; GPC, grain protein content; GOC, grain oil content; GRA, Gray relation analysis; RD, relevant degree; NPCI, normalized pigment chlorophyll
index; NDWI, normalized difference water index; PRI, photochemical reflectance index; MTCI, MERIS terrestrial chlorophyll index; VOG2, Vogelmann red edge index 2; RVI, ratio vegetation
index; MSR2, modified simple ratio 2; NDVI, normalized difference vegetation index; OSAVI, optimized soil-adjusted vegetation index; NDRE, normalized difference red edge index.
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0.06, and 0.05, respectively. For the GPC and GOC prediction, the

best model was the combination of two growth stages. The

difference is that the best GPC prediction model was the

combination of the grain-filling and maturation stages with R2,
Frontiers in Plant Science 10
RMSE, and MAE values of 0.90, 0.09, and 0.07, respectively, while

the best GOC prediction model was the combination of the jointing

and tasseling stages with R2, RMSE, and MAE values of 0.85, 0.10,

and 0.08, respectively.
DA B C

FIGURE 5

Relationships between measured and predicted grain quality, i.e., GSC, GPC, and GOC, under different phases, i.e., (A) jointing stage, (B) tasseling
stage, (C) grain-filling stage, and (D) maturation stage by HLM method. The dashed line represents the 1:1 line. GSC, grain starch content; GPC, grain
protein content; GOC, grain oil content; HLM, hierarchical linear modeling.
TABLE 7 Statistical data for predicting grain quality (i.e., GSC, GPC, and GOC) under different phases using HLM.

Grain quality Phases
Modeling set Validation set

R2 RMSE MAE R2 RMSE MAE

GSC

Jointing 0.63 0.19 0.15 0.50 0.25 0.22

Tasseling 0.90 0.10 0.08 0.61 0.22 0.15

Grain-filling 0.85 0.12 0.09 0.90 0.11 0.10

Maturation 0.85 0.12 0.10 0.69 0.19 0.16

GPC

Jointing 0.35 0.23 0.18 0.30 0.29 0.24

Tasseling 0.49 0.21 0.17 0.64 0.21 0.15

Grain-filling 0.84 0.11 0.10 0.84 0.14 0.11

Maturation 0.87 0.10 0.08 0.82 0.15 0.12

GOC

Jointing 0.74 0.13 0.10 0.79 0.14 0.12

Tasseling 0.65 0.16 0.12 0.42 0.23 0.18

Grain-filling 0.62 0.16 0.12 0.62 0.19 0.15

Maturation 0.50 0.19 0.16 0.53 0.21 0.19
frontier
GSC, grain starch content; GPC, grain protein content; GOC, grain oil content; HLM, hierarchical linear modeling; RMSE, root mean square error; MAE, mean absolute error.
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4 Discussion

4.1 Prediction model of GSC, GPC,
and GOC

In this study, the VIs that significantly correlated with GSC and

GPC were basically the same at the tasseling and grain-filling stages.

Maccioni and MTCI showed the strongest correlation with GPC

and GOC in all phases (Table 3). These results indicated that the

spectral bands monitoring GSC and GPC were similar, and in

addition, chlorophyll level had a great influence on GSC and GPC.

With the growth process, the correlation between VIs and grain

quality started to increase in the jointing stage, reached the plateau

in the tasseling and grain-filling stages, and declined in the

maturation stage. The high correlation between VIs and grain

quality might be related to the accurate vegetation index caused

by the fully extended leaves, high coverage, and mature canopy at

the tasseling and grain-filling stages. However, a weak correlation

was indicated at the jointing and maturation stages with low

vegetation coverage and chlorophyll content (Xie et al., 2020). In

addition, the correlation between VIs and GSC or GPC was

significantly stronger than that between VIs and GOC, which was

related to the fact that the VIs mainly reflected the information of

canopy chlorophyll and nitrogen contents and could be used to

predict GSC and GPC directly.

However, poor prediction accuracy is shown in the MLR model

with only VIs (Table 4), which is also stated by Xue et al. (2007) and

Chen (2020). VI, which represented the canopy state, is a key and

direct indicator for grain yield prediction (Kuri et al., 2014), while

an indirect relationship is known between VIs and grain quality.

Grain quality is affected by many factors, such as hybrid

characteristics, agronomic practices, and weather information

(Gooding, 2017). Although the genotype has a great influence on

the final grain quality composition, the temperature, water, and

other conditions during the whole crop growth stage, especially the

meteorological factors during the critical growth period, also play a

certain role in the formation of grain quality (Butts-Wilmsmeyer

et al., 2019). Therefore, the environmental conditions at different

growth stages were fully considered in this study, and remote

sensing information and meteorological data were combined to

construct GSC, GPC, and GOC monitoring models for maize using

the HLM method. Among all growth phases, the prediction effect
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improved obviously at maturity with R2 increasing from 0.03 to 0.85

for GSC, from 0.14 to 0.87 for GPC, and from 0.21 to 0.50 for GOC.

The best prediction accuracy during the whole growth period of

each quality parameter, i.e., GSC, GPC, or GOC, also increased

from 0.51, 0.49, and 0.36 to 0.90, 0.87, and 0.74, respectively

(Tables 4, 7). The main reason for the improvement was that

remote sensing and meteorological data were used as double-

nested structure data, the reciprocal influences between crop

growth and environmental information on grain quality were

considered, intra-annual and inter-annual errors could be

corrected (Figure 6), and the scalability of the model was

enhanced in this study. Although crop simulation models are key

tools for assessing the effects of environmental factors on crop

growth and development, most models still cannot simulate grain

quality directly except for protein content (Nuttall et al., 2017). The

HLM method used in this study provides an initial opportunity to

extend the predictive power of maize grain quality characteristics.
4.2 Importance of meteorological data in
predicting grain quality

Starch and protein accumulation in maize kernels have been

reported to be regulated by water and temperature in previous

studies (Singletary et al., 1994; Correndo et al., 2021; Guo et al.,

2022). The sucrose required for starch accumulation was regulated

by photosynthesis, which was affected by solar radiation,

temperature, precipitation, and other meteorological factors. The

status of nitrogen required for protein synthesis was thought to

change dynamically in soil, affected by temperature and moisture

(Archontoulis et al., 2014). Ali et al. (2010) found that grain oil

content was also affected by water stress. In summary, the influence

of weather data was considered when predicting and evaluating

grain quality in many studies. Butts-Wilmsmeyer et al. (2019)

evaluated the correlation between weather and grain quality at

different stages using principal component analysis and found that

temperature, precipitation, and maize grain quality were

significantly correlated. Li et al. (2020) predicted GPC successfully

using four weather parameters, i.e., average daily solar radiation,

daily maximum and minimum temperature, and total precipitation

1 month prior to anthesis. Jahangirlou et al. (2023) also estimated

grain starch, protein, and oil contents using crop models and
FIGURE 6

Boxplots comparing prediction performance of HLM under different years, i.e., 2018, 2019, and 2020, in different phases, i.e., jointing, tasseling,
grain-filling, and maturation, by using R2 and RMSE. HLM, hierarchical linear modeling; RMSE, root mean square error.
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logistic equations with detailed temperature and precipitation

elements during the maize growth season.

In this study, three main meteorological data, i.e., AT, Rad, and

Pre, were also used as the intra- and inter-annual variations to

evaluate the grain quality under different growth stages. A strong

relation was shown between meteorological factors and GSC,

especially the deepest RD expressed between Pre and GSC at each

growth stage, followed by AT (Table 5). Because of this, the

prediction accuracy of GSC was improved greatly by HLM

instead of MLR at various growth stages, especially at the

maturation stage (Table 7). The relationship between weather

data and GPC was weaker than the relationship between weather

data and GSC. In addition, the good RD between weather data and

GOC was only performed in the sowing–jointing stage. A similar

performance also occurred in the accuracy change of the prediction

model. In general, weather data, especially precipitation data,

should be used as the main input parameters in the GSC

prediction in the future, the comprehensive utilization of canopy

spectral information and meteorological data can be used for the

GSC and GPC prediction effectively. For the GOC prediction, more

information should be considered to further improve the

prediction accuracy.
4.3 Combination of prediction model
under different growth stages

For the prediction of GSC, GPC, and GOC, the highest

prediction accuracy showed in different growth stages. The best

prediction result of GSC appeared at the grain-filling stage, followed

by the tasseling and maturation stages. However, overfitting

appeared in the prediction with the validation set at the tasseling

and maturation stages (R2 = 0.61 and 0.69) (Table 7). The best

prediction result for GPC occurred at the grain-filling and

maturation stages, while that for GOC occurred at the jointing

stage. The rapid accumulation of starch and protein occurs from

post-anthesis to grain-filling, while when starch deposition ceases,

protein accumulation continues longer until near maturity (Vos,

1981), which may explain the difference in the optimal prediction

period for GPC and GSC and the similar prediction accuracy for

GPC at the grain-filling and maturation stages (R2 = 0.84 and 0.87)

(Table 7). However, the prediction results of GOC were completely

different from those of GSC and GPC, which may be related to the
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high impact of meteorological data during an early stage.

Unfortunately, most of the previous studies focused on the

prediction under a single growth stage, and the combined

prediction of multiple growth stages was scarce. We found that

the accuracy of the prediction model under the combination of

multiple growth stages, regardless of the modeling or validation set,

was much higher than that under the single stage, indicating that

the supplementary information of different growth stages was

helpful to the monitoring of grain quality (Tables 7; 8). In

particular, the best prediction model of GSC in this study was the

combination of predicted value under three phases, i.e., tasseling,

grain-filling, and maturation (Table 8). However, predicted values

at the tasseling and maturation periods account for a large

proportion through the model coefficients, which is consistent

with the result of Xie et al. (2020) on the monitoring of starch

content in rice; that is, heading and maturity are the most suitable

periods for predicting GSC.

Although we achieved good results in predicting grain quality in

this study, the model was only established based on the

phenological period of the single hybrid and the single

experimental plot. When it was applied to other hybrids or sites

in the future, hybrid and soil parameters that affect grain quality

should be added to the model for prediction accuracy. However, too

many parameters may limit the large-scale application of the model,

and thus, the selection of parameters is extremely important.
5 Conclusions

The MLR model us ing only remote sensing data

underestimated the interference of environmental factors when

assessing maize grain quality. The problem of environmental

deviation under different sowing dates and years was well-

corrected based on HLM using hyperspectral and meteorological

data. The accuracy of grain quality estimation was further

improved, i.e., GSC (R2 = 0.96, RMSE = 0.06, MAE = 0.05), GPC

(R2 = 0.90, RMSE = 0.09,MAE = 0.07), and GOC (R2 = 0.85, RMSE

= 0.10, MAE = 0.08), by combining the predicted values of HLM at

different growth stages. These results showed a great potential to

predict grain quality at both intra- and inter-annual scales in

summer maize through the HLM method and the combination of

multiple phases.
TABLE 8 Best prediction models based on different multiple growth period combinations with model evaluation and verification.

Model type Formula
Modeling set Validation set

R2 RMSE MAE R2 RMSE MAE

GSC −0.021 + 0.42 * G2 + 0.17 * G3 + 0.48 * G4 0.96 0.06 0.05 0.94 0.09 0.06

GPC −0.02 + 0.45 * G3 + 0.61 * G4 0.90 0.09 0.07 0.87 0.12 0.10

GOC −0.10 + 0.68 * G1 + 0.55 * G2 0.85 0.10 0.08 0.77 0.15 0.11
frontier
G1, G2, G3, and G4 mean predicted values under different phases, i.e., jointing, tasseling, grain-filling, and maturation, respectively.
RMSE, root mean square error; MAE, mean absolute error; GSC, grain starch content; GPC, grain protein content; GOC, grain oil content.
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