
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Gregorio Egea,
University of Seville, Spain

REVIEWED BY

Orly Enrique Apolo-Apolo,
Ghent University, Belgium
Alireza Sanaeifar,
University of Minnesota Twin Cities,
United States

*CORRESPONDENCE

Fansheng Men

mfs21721277@163.com

RECEIVED 02 March 2023

ACCEPTED 03 May 2023

PUBLISHED 06 June 2023

CITATION

Liu Y, Ren H, Zhang Z, Men F, Zhang P,
Wu D and Feng R (2023) Research on
multi-cluster green persimmon detection
method based on improved Faster RCNN.
Front. Plant Sci. 14:1177114.
doi: 10.3389/fpls.2023.1177114

COPYRIGHT

© 2023 Liu, Ren, Zhang, Men, Zhang, Wu
and Feng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 06 June 2023

DOI 10.3389/fpls.2023.1177114
Research on multi-cluster green
persimmon detection method
based on improved Faster RCNN

Yangyang Liu1, Huimin Ren1, Zhi Zhang1, Fansheng Men2*,
Pengyang Zhang1, Delin Wu1 and Ruizhuo Feng1

1School of Engineering, Anhui Agricultural University, Hefei, Anhui, China, 2School of Mechanical
Engineering, Yangzhou University, Yangzhou, China
To address the problem of accurate recognition and localization of multiple

clusters of green persimmons with similar color to the background under natural

environment, this study proposes a multi-cluster green persimmon identification

method based on improved Faster RCNN was proposed by using the self-built

green persimmon dataset. The feature extractor DetNet is used as the backbone

feature extraction network, and the model detection attention is focused on the

target object itself by adding the weighted ECA channel attention mechanism to

the three effective feature layers in the backbone, and the detection accuracy of

the algorithm is improved. By maximizing the pooling of the lower layer features

with the added attention mechanism, the high and low dimensions and

magnitudes are made the same. The processed feature layers are combined

with multi-scale features using a serial layer-hopping connection structure to

enhance the robustness of feature information, effectively copes with the

problem of target detection of objects with obscured near scenery in complex

environments and accelerates the detection speed through feature

complementarity between different feature layers. In this study, the K-means

clustering algorithm is used to group and anchor the bounding boxes so that

they converge to the actual bounding boxes, The average mean accuracy (mAP)

of the improved Faster RCNNmodel reaches 98.4%, which was 11.8% higher than

that of traditional Faster RCNN model, which also increases the accuracy of

object detection during regression prediction. and the average detection time of

a single image is improved by 0.54s. The algorithm is significantly improved in

terms of accuracy and speed, which provides a basis for green fruit growth state

monitoring and intelligent yield estimation in real scenarios.

KEYWORDS

multi-cluster green persimmon recognition, occlusion images, DetNet, attention
mechanism, multi-scale feature fusion
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1 Introduction

An orchard is a complex ecosystem that occupies an important

position in rural economic development. Digitalization, information

technology, and intelligent management technology of orchards can

collect fruit growth information in real time, quickly, and objectively,

which will serve as reference and a basis for the scale of orchard

production (Ingram andMaye, 2020; Maheswari et al., 2021). China is

one of the world’s major producing countries of persimmons (Zaman

et al., 2022), Persimmons grow in orchards with complex and

changeable ecological environments, and orchards are mostly grown

on small plots, mainly relying on manual labor. In different seasons of

orchard environment, work will be subject to certain restrictions, with

the characteristics of high labor intensity, low efficiency, high cost and

short cycle. It can be seen that mechanization has shown a high degree

of importance in the development of small plot planting, and the

demand for machine substitution is becoming more and more urgent.

Efficient identification and precise positioning of persimmons is the

key to achieving intelligent operation in orchards (Fu et al., 2020), and

the key to achieving intelligent operation in orchards is the accurate

identification and positioning of persimmons. However, because the

color of green persimmon epidermis is extremely close to the color of

environmental branches and leaves, the influence of light variation,

shooting angle, and branch shading in the unstructured environment

of the forest poses significant challenges to the detection of green

persimmon targets and restricts the development of intelligent

operation technology in orchards.

Artificial intelligence technology has advanced the development

of intelligent and informative agriculture (Kawamura et al., 2022).

Convolutional neural networks (CNN) have emerged as a popular

tool for fruit target detection with powerful self-learning ability to

extract rich abstract visual features and stronger robustness to light,

fruit overlap, and occlusion (Lin et al., 2018; Afonso et al., 2020).

The accurate and efficient identification of fruit targets with similar

background colors in complex environments plays an important

role in agricultural production links such as intelligent picking,

growth monitoring, and fruit detection (Jia et al., 2022b). Wei et al.

(2022) proposed a two-stage D2D detection framework to detect

fruits such as green persimmons in the orchard environment, and

the test showed that the model had the best detection effect, but the

model detection did not take into account the factor that the fruits

were occluded in the natural environment. Zhang et al. (2020a) used

a fast fruit detection model based on Faster-RCNN for the

shortcomings of conventional detection methods that make it

challenging to meet real-time requirements in the detection

process, which can achieve real-time fruit detection, but did not

consider the influence conditions of various factors in complex

environments. Peng et al. (2018) proposed an improved SSD deep

learning fruit detection model with replacement of the backbone

feature extraction network, which can address the current issue of

low fruit recognition rates in natural environments. However, the

model improves the target recognition accuracy but still lacks in

speed. The improved FCO network proposed by Long et al. (2021)

increases the accuracy of apple target detection from multiple
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angles. However, the model assigns targets to be detected at

different scales to different network layers for prediction, which

increases the computational effort to some extent. Fu et al. (2018)

proposed a deep learning model based on LeNet CNN for multi-

cluster kiwifruit image recognition to achieve fast and accurate

recognition of multi-cluster kiwifruit fruits under field conditions.

Although LeNet improves the accuracy and speed of kiwifruit

recognition, it does not address the issues of false or missed

recognitions due to branch and leaf occlusion or overlapping. Yue

et al. (2019) studied apple detection by adding a boundary-weighted

loss function to an improved Mask RCNN network, which led to

more accurate boundary detection results. However, the network

was tested under natural conditions without considering the small

target problem. A method for recognizing apples based on R-FCN

was presented by Wang and He (2019) to address the issue that it is

challenging to identify pre-thinning apples under natural

conditions due to various factors. Although the recognition of

pre-thinning apple targets, which is challenging to achieve by

conventional approaches, can also be widely used in the

recognition of other small targets with similar background colors,

this technique does not look into the various target scales present in

the same image. Nevertheless, this approach does not examine the

influence of different target scales within a single image. Jia et al.

(2022a) used the two-stage Mask rcnn segmentation algorithm to

accurately segment green fruits such as persimmons in the natural

environment, although the algorithm has high detection accuracy

for green obscured fruits, but does not comprehensively consider

the unclear recognition of fruit boundaries caused by lighting in the

natural environment.

Although the above research can identify fruits, there are still

some drawbacks including a high computational cost, a poor

recognition accuracy, a single environmental factor, and a lack of

research on multiple clusters of green fruits in complex

backgrounds. At present, convolutional neural networks have

more mature applications not only in handwritten character

recognition (Soujanya et al., 2022; Singh and Chaturvedi, 2023)

and vehicle detection (Chen and Li, 2022; Gomaa et al., 2022),

but also in the recognition of fruits such as apples (Hu et al.,

2021; Liu et al., 2021), pears (Li et al., 2022) and oranges (Ren

and Zhu, 2021), but there is no relevant literature on the use of

neural networks for green persimmons recognition, it seriously

restricts the development of intelligent persimmon orchard

operation robots. In this study, a multi-cluster green

persimmon recognition algorithm based on improved Faster

RCNN was designed by improving the backbone feature

extraction network. The algorithm’s connection structure is

combined with multi-scale features to achieve efficient

recognition and accurate localization of multi-cluster green

persimmons in complex background environments. The

improved algorithm not only keeps the model’s parameters

from being drastically increased, but it also enhances feature

propagation and improves the speed while ensuring the

accuracy, which provides the basis for the development of

smart orchard recognition technology.
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2 Multi-cluster green persimmon
recognition network design for
complex natural environments

2.1 Faster RCNN network structure

In this study, the Faster RCNN model for multi-cluster green

persimmon detection is developed based on the PyTorch

framework. Faster RCNN is a typical representative of two-stage

detection models (Ren et al., 2017). It is a feature detection network

composed of two neural networks combining the region generating

network RPN and Fast RCNN network models.

The RPN is a lightweight region generation module that

produces a better “Proposal” of the proposed frame. It uses a

sliding window to slide over the feature map generated by the

pre-trained network model, producing a one-dimensional vector for

each sliding position, which is then convolved with a 3 × 3

convolution kernel to further extract the frame features. The

multi-task binary classification loss function of RPN is

represented as follows:

L( pif g, tif g)= 1
Ncls

o
i
Lcls(pi,p*i )+l

1
N reg

o
i
p*i Lreg(ti,t

*
i ) (1)

where the classification loss function is:

Lcls=−½p*i log(pi)+(1−p*i )log(1−pi)� (2)

with pi being the probability that the i-th anchor is predicted to

be the target; pi is 1 for positive samples and 0 for negative samples.

The bounding box regression loss function is:

Lreg(ti,t*i )=o
i
smoothLi (ti−t

*
i ) (3)

smoothLi (x)=
0:5x2if xj j < 1

xj j − 0:5   otherwise  

(
(4)

where ti is the regression parameter of the bounding box of the

i-th anchor and t*i is the regression parameter of the real box

corresponding to the i-th anchor.
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The Fast RCNN algorithm uses the selective search (ss)

algorithm to generate 1k-2k candidate regions in an image, and

the entire image is then input into the CNN to obtain the

corresponding feature maps. The ss algorithm projects the

candidate regions generated on the original image onto the

feature map to obtain the corresponding feature matrices, and

each feature matrix is finally scaled to a uniform size by ROI

Pooling layer, followed by spreading the feature map through a

series of fully connected layers to predict the class to which the

target belongs and the bounding box regression parameters. The

loss function of Fast RCNN can be expressed as:

L(p,u,tu,v)=Lcls(p,u)+l½u≥1�Lloc(tu,v) (5)

where p is the SoftMax probability distribution predicted by the

classifier, u the real class label of the target, tu represents the

regression parameters of the corresponding class u predicted by

the bounding box regressor, and v represents the bounding box

regression parameters of the real target.

In this study, the joint training method of RPN Loss and Fast

RCNN Loss is used to train the network by backpropagating the

losses of these two parts. The architecture of the Faster RCNN

network is shown in Figure 1, and the workflow can be divided into

three steps: (1) the features of the input image are extracted through

the pre-training network; (2) the extracted features are passed

through the RPN model to produce a certain number of

candidate frames; (3) the predicted classification and regression

results are input to ROI Pooling with both candidate frames and

image features to classify the candidate regions, determine their

categories, and fine-tune their positions.
2.2 Improved feature extraction
network structure based on
DetNet backbone network

Target detection requires not only identifying the class of objects,

but also spatially locating their bounding box. Most conventional

backbone networks use classical convolutional neural networkmodels,

such as ResNet (Zhang et al., 2020b), AlexNet (Li and He, 2018) and
FIGURE 1

Architecture of Faster RCNN model.
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VGGl6 (Ren et al., 2022), as well as other classification models, but

their feature map’s spatial resolution is too small, which is not

conducive to the localization of large and small targets. DetNet-59

(Subramanian et al., 2022), which has strong target detection

performance, is used in this study as the backbone network for

feature extraction, and the null convolution and residual structure

are used to prevent the objects and small targets in the complex

background of the images from disappearing while ensuring that the

obtained feature maps have clear boundaries. The DetNet-59 model

keeps the original ResNet-50 stages 1 to 4 unchanged while stages 5

and 6 are newly introduced. As a result, the high spatial resolution of

the feature map is maintained, and a large perceptual field is obtained.

while also avoiding the multiple up sampling of FPN to achieve a

better detection effect.

In their natural environment, green persimmons often experience

fruit overlap issues as well as branch and leaf occlusion, which reduces

the model detection accuracy. In this study, the channel attention

module (ECA) is introduced in the DetNet network structure to

enhance the extracted feature representation capability and high

resolution of the feature map, as shown in Figure 2. ECA (Wang

et al., 2020) is an extremely lightweight channel attention module that

does not require dimensionality reduction to achieve local cross-

channel interaction and avoids the effect of dimensionality reduction

on the channel attention learning. The featuremap is compressed and a

1×1×C feature map is obtained. Dynamic convolution is used to learn

different channel features for the compressed feature map, and a one-

dimensional convolution kernel size adaptive selection method is used

to select the number of convolution kernel channel neighbors k in

order to determine the coverage of local cross-channel interactions.

The channel-attentive feature map 1×1×C is then combined with the

original input feature map H×W×C by channel-by-channel

multiplication for channel attention, and the feature map with

channel attention is output. This attention mechanism significantly

reduces the model’s complexity while performance is maintained. To

avoid cross-validation, the value of k needs to be optimized. This value

can be adaptively determined as a function of the total number of

channels C:

k=j(∁)=
log2∁+1

2

����
����
odd

(6)
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where k is the number of neighbors per channel, C is the total

number of channels, and |c|odd represents the nearest odd number.

The feature utilization of the three convolutional blocks of

shallow (DetNet-2), middle (DetNet-4) and deep (DetNet-6)

layers is enhanced by the ECA mechanism to focus on the

relevant information corresponding to the specific dimension

extracted in the channel during the three attention calculations.

The attention distribution is first computed over all input

information. To select the color, texture, and semantic feature

information corresponding to each of the three attention

mechanisms from several different feature dimensions, one type

of relevant feature information is introduced for each, and the

correlation between the input image feature dimensions and the

relatively introduced feature information is calculated by the

scoring function:

a r=sof tmax(s(hr ,q)) (7)

where a is the attention distribution, h is the feature dimension

of the input image, q represents the specific feature information

parameters, and:

s(h,q)=vTtanh(wx+uq) (8)

where s is the scoring function, w,u, and v– are learnable feature

network parameters, and r represents channel location parameters.

The weighted average of the input information is then

computed based on the attention distribution. The soft attention

mechanism is used to obtain the results after the query, and the

weighted average of the feature dimension information across

multiple channels in the image is obtained for each channel of

the feature map to determine the Attention value:

att(h,q)=o
C

r=1
a rhr (9)

where C is the total number of channels and r is the channel

position parameter.

After three weightings, the channel attention mechanism is used

to enhance the target attention faster and directly, which improves

the dense target detection as well as the anti-background
BA

FIGURE 2

Structure of DetNet-2 imposed attention mechanism. (A) DetNet-2 model. (B) ECA model.
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interference ability. To improve the recognition accuracy of

multiple clusters of green persimmons in natural environments,

high weights are assigned to increase the attention to detail

information such as texture and edges of green persimmons, as

well as to overlapping and occluded targets that are more difficult

to recognize. whereas, low weights are assigned to suppress

useless information.
2.3 DetNet-based multi-scale feature
fusion network

The backbone in Faster-RCNN is used to extract the target

features through layer-by-layer abstraction, and the RPN performs

feature extraction on the last layer of convolutional response

obtained by the underlying CNN. Convolutional neural networks

have higher resolution in the process of feature extraction with

shallow layer features and more accurate target locations. In this

study, the shallow layer tends to extract persimmon color features,

and with the increase in convolutional layers, further features such

as persimmon edge shape and texture are extracted. The deep layer

features have stronger semantic information after multiple

convolution operations and can more effectively convey the image

information. This study extracts more abstract features in the green

persimmon image in the deep layer and ignores the more detailed

information in the image. The results of feature visualization in

DetNet with different convolutional layers are shown in Figure 3.

The amount of feature information that can be gleaned from an

image is constrained when the target is set against a complex

background that is comparable to it and is affected by various

lighting conditions. Feature extraction from only one layer cannot

adequately detect and localize the target object. Therefore, this

study uses a serial layer-hopping connection structure to combine

features from several abstraction levels, and then trains a predictor

on the combined features to achieve DetNet-based multi-scale

feature fusion. To use multiscale features generated by multiple

scale network layers, the dimensionality (feature map size and

number of channels) and the magnitude must be considered. In

this study, the shallow DetNet-2 layer’s features are maximally

pooled to make them consistent with the scale of the middle and

deep layer feature maps. The maximum pooling formula for its

output feature map is:
Frontiers in Plant Science 05
Hout=
Hin+2�padding½0�−dilation½0��(kernel_size½0�−1)−1

stride½0� +1

(10)

Wout=
Win+2�padding½1�−dilation½1��(kernel_size½1�−1)−1

stride½1� +1

(11)

where, kernel_size is the max pooling window size, stride is the

step size for moving the max pooling window, padding is the

number of layers of zeros appended to the input, and dilation is a

parameter that controls the step of elements in the window.

Maximum pooling can obtain local information and better

preserve the features on the texture while reducing the feature

map size. The size of the feature map output from DetNet-2 is

transformed to 14 × 14 with 256 channels by maximum pooling.

The three feature vectors with 256 channels of the feature map are

then fused early to form the candidate box region features to detect

green persimmon in complex environments. The improved Faster

RCNN multi-cluster green persimmon recognition algorithm is

shown in Figure 4, which increases the sensitivity of the model to

green persimmon features by enhancing the attention mechanism,

and increases the resolution of feature mapping by fusing multiple

layers of deep, medium, and shallow image features to achieve the

effect of complementary advantages, thus improving the

detection accuracy.
2.4 Improvement of region suggestion
network based on K-means clustering

The anchor frame scheme in Faster RCNN is established for the

PASCALVOC 2012 dataset, and the aspect ratio of anchor frames

includes three ratios of 1:2, 1:1 and 2:1 and three sizes, so each

object has 9 fixed ratios of anchor frames, and the default anchor

frame ratios cannot be accurately identified due to the different

aspect ratios of different datasets. Therefore, this work uses the K-

means clustering algorithm to determine the anchor frame

generation scheme, and groups the sizes of the real frames in the

training samples to determine the most appropriate a priori frame

sizes to improve the overlap rate between the predicted bounding

boxes and the actual targets, thereby improving the algorithm’s

detection performance and hastening its convergence.
B C DA

FIGURE 3

Feature visualizations of the original image (A) and three different depth convolution layers (B–D) in DetNet.
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Anchor box generation method: First, nine samples are

randomly selected as the initial cluster centers, and the Euclidean

distance is computed between each sample and the center of each

cluster. Each sample is then assigned to the cluster center closest to

it and the cluster centers are updated. The Euclidean distance is

calculated as follows:

d(Xi,Ck)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi0−C

k
0)

2+(xi1−C
k
1)

2+…+(xin−Ck
n)

2
q

(12)

where, Xi is the number of samples in the dataset and Ck is the

set of initial cluster centers.

The mean value of all samples in each cluster is then calculated

as the new cluster center until the cluster center no longer changes

or the cluster center changes very little to satisfy a given termination

condition. The anchor frames suitable for the dataset are

regenerated by clustering, and the proportions and size of the

nine anchor frames are obtained by training. The generated

clustering results are shown in Figure 5.
3 Materials and methods

3.1 Image collection

Persimmon images were collected at the National Persimmon

Germplasm Resource Nursery in Hefei, Anhui Province, China,

from July 10 to August 31, 2022. The experimental sample database

consists of 9300 images collected under natural light, with different

light intensities at multiple angles and distances for various

scenarios, including single fruit, multiple fruit, branch leaf

shading, and multiple clusters of fruit overlapping, with an image

resolution of 4608 × 3456. The shooting distance is within the range

of 10cm~50cm, the number of persimmon fruits included in a

single picture is about 2~12, and the number of persimmon fruits

included in a single picture is about 12~40 when the shooting

distance is greater than 50cm.

The quality of the dataset determines the quality of model

training and the accuracy of predictions. In the early process of

identification and detection of green persimmons, the factor of fruit

occlusion seriously affects the accuracy of model recognition, and

the data set is divided into three levels according to the severity of

persimmon fruit occlusion, which improves the complexity of the

dataset and the generalization ability of the model, so as to facilitate

the detailed and accurate test results, which is more conducive to

the analysis and solution of subsequent problems. As shown in
Frontiers in Plant Science 06
Figure 6, and the statistical results are shown in Table 1. There are

3069 images with heavy obscuration, and the target in the image is

obscured to 60%~80%; 3255 images with moderate obscuration,

and the target is obscured to 30%~60%; 2976 images with light

obscuration, and the target is obscured to less than 30%.
3.2 Experimental environment
configuration

The specific operating environment parameters of this study are

shown in Table 2. The comprehensive sample data were divided

into training and testing sets according to the ratio of 9:1, the

sample labels were produced using PASCAL VOC dataset format,

and the targets with more than 80% occlusion in the images were

ignored in the labeling process. The results of clustering by k-means

were [21,19], [33,28], [44,40], [55,50], [67,62], [78,74], [94,89],

[111,108], and [143,36]. The number of epochs was set to 500,

the learning rate Lr was set to 0.01, the optimizer was the stochastic

gradient descent (SGD), the momentum was set to 0.9, and the

intersection over union (IoU) was set to 0.5. TensorBoard was used

to record the data during the training process, the training loss and

learning rate changes were logged for each iteration and the weights

were saved.
FIGURE 5

Graph of clustering results.
FIGURE 4

Schematic diagram of improved Faster RCNN-based multi-cluster green persimmon recognition algorithm structure.
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3.3 Identification of network performance
evaluation metrics

In this study, evaluation metrics commonly used for target

detection models, average precision (AP), and mean average

precision (mAP) are used to evaluate the model’s performance.

The larger the value, the better the performance of the modelis.

Precision (P) is the ratio of the number of correct objects

detected to the number of correct objects in the sample, which

measures the accuracy of the model detection. Recall (R) is the ratio

of the number of correct objects detected to the number of objects in

the sample, which measures the percentage of positive samples

obtained by the model in the prediction process. Precision and

recall can be respectively expressed as:

R=
TP

TP+FN
�100% (13)

P=
TP

TP+FP
�100% (14)

where TP is the number of correctly identified positive samples,

FP is the number of incorrectly identified positive samples, and FN

is the number of missed positive samples.

AP refers to the area of the P-R curve plotted by P and R. The area

under the curve is the average of all accuracies in different recall values,

which measures the accuracy of the model in the defined categories:

AP=o
i−1

j=0
(Rk−Rk+1)�Pk (15)

where i is the number of thresholds j represents the categories.

mAP refers to the mean value of AP for each category, which

measures the accuracy of the trained model on all categories:
Frontiers in Plant Science 07
mAP=
1
no

n

j=1
API (16)

Where n represents the total number of categories and j

represents the class.
3.4 Experimental purpose and method

To test the accuracy and efficiency of the multi-cluster green

persimmon recognition and detection in complex natural

environments based on the improved Faster RCNN developed in

this study, backbone network performance optimization

experiments and improved Faster RCNN performance detection

experiments were conducted.
3.4.1 Backbone network performance
optimization experiments

The feature extraction network model is the core part of Faster

RCNN, and the good or bad features extracted by the convolutional

neural network affect the quality of subsequent training. This paper

conducts performance comparison tests between the improved

ECA-DetNet network and three classification networks, namely

ResNet, AlexNet, and VGGl6, to evaluate the effectiveness of the

proposed backbone network improvement.

The same image dataset was used for target recognition and

detection experiments. In this study, persimmon fruit recognition

is a binary object detection model, so persimmon fruit samples are

set as positive samples and the rest of the objects are negative

samples. To evaluate the overall effectiveness of the examined

classifier, a P-R plot is used to highlight the tradeoff between

accuracy and recall.
TABLE 1 Number of persimmons and images with different shading degrees.

Obstruction degree Number of images/frame Target obscured degree/%

Heavy obscuration 3069 60~80

Moderate obscuration 3255 30~60

Light obscuration 2976 0~30

Total 9300 ≤80
B C DA

FIGURE 6

Examples of persimmon images with different occlusion degree (A–D).
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3.4.2 Improved Faster RCNN performance
testing experiment

To evaluate the effectiveness of the improved Faster RCNN

method as proposed in this study, its performance is contrasted

with the three networks of Faster RCNN, SSD, and yolov3-spp for

the identification of green multi-cluster persimmons under different

shading degrees, lighting conditions, and shooting intervals.

The experiments replace the feature extraction network of Faster

RCNN with ECA-added DetNet and perform multi-scale feature

fusion as the final candidate frame region features, while using k-

means clustering to determine the anchor frame size. The test set is a

randomly selected corresponding image from the entire test set

samples, and the test is divided into different occlusion degrees,

different illumination, and different shooting intervals as variables.

Target detection with different occlusion degrees: under the

condition of controlling the lighting and shooting interval, three

groups of heavy, medium, and light occlusion were set up and

respectively detected by the three algorithms. Each group was

repeated three times, the precision rate, recall rate, and detection

time were recorded, and the average of the three trials was recorded as

the valid value. The outcomes of the four algorithms are compared to

verify if the algorithm improvement proposed in this study can

accurately identify the targets under different occlusion situations.

Target detection test under different light conditions: in the

complex natural environment of the actual collection, the accuracy

of fruit recognition might be affected by issues like exposure on

sunny days or low light on cloudy days. The test was set up in three

groups: sunny day smooth light, sunny day backlight, and cloudy

day backlight. Each group was divided into three types of photos

with heavy, medium, and light shading, and the four groups of

twelve types of photos were detected by four algorithms. Each group

was repeated three times, the average precision (AP) and the mean

average precision (mAP) were recorded, and the average of the

three times was taken as the valid value. The results of the three

algorithms are compared to verify whether the improved algorithm

proposed in this study can accurately identify the targets under

different lighting conditions.

Target detection test with different shooting intervals: the

accuracy of the green persimmon detection model is tested by

randomly alternating recognition at different shooting distances,

such as near, medium, and far distances. The test is divided into

three groups: near, medium, and far distances, with the shooting

interval of 10cm~20cm set as near distance, 30cm~50cm as

medium distance, and more than 50cm as far distance. Each

group was divided into three types of photos: heavy, moderate,

and light obscuration. Comparing the results of the four detection
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algorithms, it has been tested that the improvement of the algorithm

used in this study can improve the detection performance of small

distant targets.
4 Experimental results and analysis

4.1 Experimental results of backbone
network model performance optimization

The P-R plots and detection times of the test set image

recognition using four different backbone networks are shown

in Figure 7.

As can be seen from Figure 7, all four algorithms show a

decreasing trend in accuracy rate as the recall rate increases.

However, the AlexNet classification network exhibits the largest

decline, with the accuracy rate close to a linear decline at a recall

rate of 80% and an accuracy rate below 85% when the recall rate is

100%. In contrast, the ECA-DetNet algorithm shows a gentle decline,

with a more pronounced drop in accuracy only at 80% recall, and the

accuracy rate of the network remains above 95% when the recall rate

is 100%. The overall P-R plots of the ECA-DetNet algorithm are all

higher than those of the ResNet, VGGl6, and AlexNet classification

networks, and the change trend is flat, indicating that this study has

significantly improved the algorithm’s performance robustness. ECA-

DetNet is substantially more accurate than the other three for

multiple target fruit recognition, with an accuracy rate of over 95%.

The detection time of AlexNet algorithm was 2.06s, which took the

longest time, while the detection time of ECA-DetNet algorithm was

the shortest with only 0.66s, which was 213%, 142.99%, and 46.32%

faster than ResNet, VGGl6, and AlexNet algorithms, respectively.

Therefore, ECA-DetNet exhibits significantly better performance

than the other three classification networks in terms of detection

time, indicating that the algorithm’s detection speed has been

considerably improved in this study. To sum up, the effectiveness

of the algorithm optimization proposed in this study is demonstrated

by the remarkable multifaceted performance of the ECA-DetNet.
4.2 Experimental results of improved Faster
RCNN performance detection

4.2.1 Detection results of targets with different
occlusion degrees

Model training and testing were performed under the same

conditions using AP with different occlusion degrees, mAP of
TABLE 2 Operating environment parameters.

Hardware Configuration Environment Version

CPU Intel Core i7-12700 Python 3.7.13

GPU RTX 3060 PyTorch 1.7.1+cu110

RAM 64 G CUDA 11.0

Hard disk 520 G CUDNN 8.0.5
fr
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combined samples and single image detection time as evaluation

metrics. As shown in Tables 3, 4, when the fruits are heavily

occluded, the conventional algorithm will miss-detect, and the

position of the anchor frame will be shifted substantially. The size

of the anchor frame is not adapted to the actual fruit when the fruit

is in the independent state in the case of light occlusion. The

improved algorithm, on the other hand, is more accurate for fruit

recognition and localization. The mAP of the conventional Faster

RCNN is 86.6%, whereas for the improved Faster RCNN, it is

98.4%, and the algorithm detection is improved by 11.8% in

accuracy, which is significant. The single image detection time of

the conventional Faster RCNN is 1.26s, and the single image

detection time of improved Faster RCNN is 0.72s, which is a 75%

improvement in detection speed. The experiment proves that the

improvement of Faster RCNN in this study is obvious and can

effectively optimize the training model.

4.2.2 Detection results of targets with different
lighting conditions

As can be seen in Table 5, the degree of occlusion increases from

left to right, but the improved algorithm compared with the other

two can overcome the influence of various lighting to a certain

extent. Besides, the superiority of the improved Faster RCNN

algorithm recognition accuracy is not obvious, but the small

target and backlight target recognition and positioning are more

accurate, the advantage is significant.
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As can be seen from Table 5, the difference in detection

accuracy of the three target detection algorithms under uniform

light conditions is not large, and all can detect the target fruit

accurately. However, as the light intensity becomes weaker, the

improved Faster RCNN algorithm exhibits outstanding advantages

in recognition accuracy. Besides, it is more accurate in recognizing

and locating small and backlight targets, which is significantly better

than the accuracy of recognition and locating of SSD and YOLOv3-

spp algorithms; Compared with the current mainstream algorithm

YOLOv7, the detection effect of the two algorithms is comparable

under different lighting conditions, and the improved Faster RCNN

algorithm can achieve more accurate recognition in some cases of

complex light conditions and serious fruit occlusion.

The test set samples of sunny and cloudy sky with smooth light

and backlight conditions were mixed to increase the robustness of

the model, and evaluated with two evaluation indices, AP and mAP,

and the results are shown in Figure 8. Under different lighting

conditions, the overall detection effect level of the improved Faster

RCNN algorithm and the YOLOv7 algorithm is not much different;

In the case of backlighting without considering the degree of

occlusion, the SSD and YOLOv3-spp algorithms show an overall

decreasing trend of AP and mAP values compared to the improved

algorithm in this paper. The improved algorithm can achieve the

highest accuracy value of 98.4% for fruit recognition under this

condition, which is an improvement of 5.5%~13% year-on-year.

Under the extreme conditions with the highest degree of backlight
A B

FIGURE 7

Comparison of P-R plots (A) and Detection time (B) of different backbone network models.
TABLE 3 Actual detection results of the two algorithms.

Heavy obscuration Moderate obscuration Light obscuration

Conventional Faster RCNN

Improved Faster RCNN
The yellow circular boxes from Table 3 are the missed fruit markers, and the blue circular boxes are the false fruit markers.
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shading, the AP values of the other two algorithms show a

significantly decreasing trend and fluctuate greatly, while the

improved algorithm has a decreasing but gentle change within the

normal range.

4.2.3 Three different shooting interval target
detection results

According to the testing of the dataset with different occlusion

levels at 3 shooting distances, the detection pairs derived from the

three algorithms are shown in Table 6 and Figure 9. Table 6

demonstrates that the improved Faster RCNN algorithm has a

low leakage rate for fruits through the detection result pictures, and

it can accurately identify and locate small target objects that are in

complex environment in the distant view, which has substantially

improved the detection effect compared to the other

three algorithms.

As can be seen in Figure 9, in the detection test results of

different shooting spacing, the AP values of different occlusion

degrees of this paper’s algorithm at different shooting distances have

a small variation, while the other three algorithms have relatively up
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and down variation floating in the same situation. The mAP value

of the improved Faster RCNN algorithm can still reach 95.9% in the

case of long-distance shooting target objects in heavy occlusion,

maintaining a high accuracy, and the comparison tests with other

algorithms have improved by 12.7~24.5 percentage points

respectively, which is a significant improvement compared to the

other two algorithms.
4.3 Discussion

It is difficult to detect the target object by the color and outline of

the target alone when the target is illuminated by different lights.

Based on this issue in different light detection tests, the three target

detection algorithms were compared under paralight conditions, and

it can be seen in Figure 8 that while the trend of their target detection

results are all on the rise, the AP% value of the improved algorithm

under different occlusion conditions changes less, and remains above

96% on average. It can be seen that by adding the weighted channel

attention mechanism, the weight of surface feature information and
TABLE 5 Example graphs of some actual detection results of the four algorithms.

Sunny smooth light Sunny back light Cloudy back light

Improved Faster RCNN algorithm

YOLOv7 algorithm

SSD algorithm

YOLOv3-spp algorithm
TABLE 4 Comparison of Faster RCNN and improved Faster RCNN algorithms.

Algorithm

AP/%

mAP/% Single picture detection time/sHeavy
obscuration Moderate obscuration Light obscuration

Faster RCNN 83.6 87.8 88.3 86.6 1.26

Improved Faster RCNN 97.1 98.6 99.5 98.4 0.72
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high-level semantic information is enhanced, and useless information

is ignored. It allows for improvement in the mAP value of the

enhanced algorithm under extreme environmental conditions by

5.0 and 11.2 percentage points, respectively, as compared to the

other 2 common target detection algorithms. The improved

algorithm has a stronger advantage in recognition and detection

under backlight conditions, and the detection is significantly better

than the other two algorithms.

After the improved algorithm combines intuitive and abstract

features, the multi-scale feature fusion can detect the target object
Frontiers in Plant Science 11
more accurately. Faced with target objects at different shooting

distances, the target object to be detected is large for close range

shooting and small for long range shooting. Therefore, we must also

take into account the accuracy of small target identification in

addition to the issue of the target being obscured. The improved

algorithm in Figure 9 improves the overall aspect of AP and mAP

values by about 20% compared to the YOLOv3-spp algorithm under

this condition of severe occlusion at long distances. By adding

attention weights and further multi-scale fusion of the extracted

features, this improved feature extraction increases the accuracy of
TABLE 6 Example graphs of some of the actual detection results of the four algorithms.

Close proximity Intermediate distance Long Distance

Improved
Faster RCNN algorithm

YOLOv7
algorithm

SSD
algorithm

YOLOv3-spp algorithm
FIGURE 8

Comparison of four algorithms for detection under different lighting conditions.
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fruit recognition to a large extent compared to the simple feature

extraction of YOLOv3-spp. Therefore, the improved algorithm

effectively solves these two problems, and Figure 8, Figure 9

illustrate that the improved algorithm can be stably applied to

green persimmon recognition detection in different scenarios.

Meanwhile, the improved weighted ECA-DetNet is clearly

applicable to small target detection, and the multi-scale feature

fusion can effectively detect the occluded targets. The schematic

diagram of the detection results before and after the improved

algorithm in Table 3 shows that in the experiments with different

degrees of occlusion, the improved Faster RCNN algorithm has a low

miss detection rate and error detection rate; the anchor frame

position size is adapted to the target object in the picture. In the

complex orchard environment, the improved algorithm in this paper

has a similar detection effect on green multi-tufted persimmons with

the current mainstream algorithm YOLOv7.

Early fusion is used in the Faster RCNN algorithm to enhance the

utilization of information from different feature layers, i.e., multi-layer

features are fused first, and the predictor is trained on the fused

features afterwards. This approach can effectively cope with the

problems faced by target detection of obscured objects in complex

environments with near views. After improving the algorithm, the

computational effort brought on by different dimensions is solved in

advance in the multi-scale feature fusion so that the fused feature

layers have the same number of channels and are directly connected

afterwards to improve the detection accuracy by the complementarity

of features in different layers. The anchor frame size is re-determined

using k-means clustering method to make it closer to the actual edge

of the target. The accuracy of target detection is likewise increased in

regression prediction, and the enhanced algorithm in this study

improves detection accuracy while also ensuring detection speed. It

is expected to be applied to persimmon fruit growth information

monitoring in the future, and also provides technical support for

subsequent automated harvesting.
5 Conclusion

In this paper, we design a green persimmon recognition

model with good robustness and accuracy against background
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interference, fruit occlusion, and other factors by improving the

Faster RCNN algorithm, which resolves issues like difficulty in

recognizing near scenery occlusion in complex environment.

By replacing the DetNet backbone feature extraction network,

adding ECA attention mechanism, and adjusting and optimizing

the model’s structure and parameters, the feature layers of

different depths are combined with multi-scale features to

improve the performance of algorithm retrieval robustness,

speed, and accuracy.

Through backbone network performance optimization

experiments, the ECA-DetNet algorithm refined in this study has

been significantly improved in terms of speed, accuracy, and

robustness, which proves the effectiveness of this study on

algorithm optimization. The improved Faster RCNN performance

detection test is compared with the conventional Faster RCNN,

SSD, and yolov3-spp target algorithms from multiple perspectives

of different occlusion degree, different illumination, and different

shooting intervals. The experimental findings demonstrate that the

improved Faster RCNN has significantly better detection speed and

accuracy compared to other algorithms for heavily occluded targets,

targets with backlight conditions on cloudy days, and small targets

at long distances. The effectiveness of the algorithm optimization in

this study is demonstrated, and the mAP value of the improved

Faster RCNN algorithm has improved to 11.8 percentage points

compared to the Faster R-CNN. The near-view, complex

environment interference resistant multi-cluster green persimmon

detection and identification algorithm in this study can rapidly

identify immature green persimmons in natural environments and

enable growth state monitoring, which provides effective technical

support for the development of smart orchards. The method

proposed in this study can be applied to the detection of green

fruits in unstructured orchard environment, it can be applied to the

detection of green fruits in unstructured orchard environment, not

only limited to the identification research of persimmons, but also

applied to the information monitoring of different green growth

periods of fruits, and at the same time provides theoretical and

technical support for the subsequent visual system of automatic

inspection and picking mechanization of orchard operations, and

provides effective technical support for the intelligent and digital

development of smart orchards.
Data availability statement

The datasets presented in this article are not readily available

because privately owned. Requests to access the datasets should be

directed to m17634935951@163.com.
Author contributions

LY: conceptualization, methodology, supervision, funding

acquisition, and project administration. RH: methodology,

software, validation, investigation, and writing - original draft.

ZZ: investigation, formal analysis, and writing - review & editing.

MF: supervision, visualization, and project administration. ZP: data
FIGURE 9

Comparison of the detection of the four algorithms at different
shooting distances.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1177114
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1177114
curation. WL: validation. FR: resources. All authors contributed to

the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 13
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Afonso, M., Fonteijn, H., Fiorentin, F. S., Lensink, D., Mooij, M., Faber, N., et al.
(2020). Tomato fruit detection and counting in greenhouses using deep learning. Front.
Plant Sci. 11, 571299–571299. doi: 10.3389/fpls.2020.571299

Chen, Y., and Li, Z. (2022). An effective approach of vehicle detection using deep
learning. Comput. Intell. Neurosci. 2022, 2019257–2019257. doi: 10.1155/2022/2019257

Fu, L., Duan, J., Zou, X., Lin, J., and Yang, Z. (2020). Fast and accurate detection of
banana fruits in complex background orchards. IEEE Access 8, 196835–196846. doi:
10.1109/ACCESS.2020.3029215

Fu, L., Feng, Y., Elkamil, T., Liu, Z., Li, R., and Cui, Y. (2018). Convolutional neural
network based image recognition method for multi-cluster kiwifruit in the field.
J. Agric. Eng. 34 (2), 205–211. doi: 10.11975/j.issn.1002-6819.2018.02.028

Gomaa, A., Minematsu, T., Abdelwahab, M. M., Abo Zahhad, M., and Taniguchi, R.-i.
(2022). Faster CNN-based vehicle detection and counting strategy for fixed camera scenes.
Multimedia Tools Appl. 81 (18), 25443–25471. doi: 10.1007/s11042-022-12370-9

Hu, G., Zhang, E., Zhou, J., Zhao, J., Gao, Z., Sugirbay, A., et al. (2021). Infield apple
detection and grading based on multi-feature fusion. Horticulturae 7 (9), 276–276. doi:
10.3390/horticulturae7090276

Ingram, J., and Maye, D. (2020). What are the implications of digitalisation for
agricultural knowledge? Front. Sustain. Food Syst. 4, 66. doi: 10.3389/fsufs.2020.00066

Jia, W., Liu, J., Lu, Y., Liu, Q., Zhang, T., and Dong, X. (2022a). Polar-net: green fruit
example segmentation in complex orchard environment. Front. Plant Sci. 13, 5176. doi:
10.3389/fpls.2022.1054007

Jia, W., Wei, J., Zhang, Q., Pan, N., Niu, Y., Yin, X., et al. (2022b). Accurate
segmentation of green fruit based on optimized mask RCNN application in complex
orchard. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.955256

Kawamura, T., Katsuragi, T., Kobayashi, A., Inatomi, M., Oshiro, M., and Eguchi, H.
(2022). Development of an information research platform for data-driven agriculture.
Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 13 (1), 1–19. doi: 10.4018/IJAEIS.302908

Li, B., and He, Y. (2018). An improved ResNet based on the adjustable shortcut
connections. IEEE Access 6, 18967–18974. doi: 10.1109/ACCESS.2018.2814605

Li, Y., Rao, Y., Jin, X., Jiang, Z., Wang, Y., Wang, T., et al. (2022). YOLOv5s-FP: a
novel method for in-field pear detection using a transformer encoder and multi-scale
collaboration perception. Sensors 23 (1), 30–30. doi: 10.3390/s23010030

Lin, Z., Mu, S., Shi, A., Pang, C., and Sun, X. (2018). A novel method of maize leaf
disease image identification based on a multichannel convolutional neural network.
Trans. ASABE 61 (5), 1461–1474. doi: 10.13031/trans.12440

Liu, Y., Yang, G., Huang, Y., and Yin, Y. (2021). SE-mask r-CNN: an improved mask
r-CNN for apple detection and segmentation. J. Intelligent Fuzzy Syst. 41 (6), 6715–
6725. doi: 10.3233/JIFS-210597

Long, Y., Li, N., Gao, Y., He, M., and Song, H. (2021). Apple detection in natural
environment based on improved FCOS network. J. Agric. Eng. 37 (12), 307–313.
doi: 10.11975/j.issn.1002-6819.2021.12.035

Maheswari, P., Raja, P., Apolo-Apolo, O. E., and Pérez-Ruiz, M. (2021). Intelligent
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