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Optimizing sowing patterns
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grain yield and NUE by
enhancing N uptake
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Increasing nitrogen (N) input is essential to satisfy the rising global wheat

demand, but this increases nitrous oxide (N2O) emissions, thereby

exacerbating global climate change. Higher yields accompanied by reduced

N2O emissions are essential to synergistically reduce greenhouse warming and

ensure global food security. In this study, we conducted a trial using two sowing

patterns (conventional drilling sowing [CD] and wide belt sowing [WB], with

seedling belt widths of 2–3 and 8–10 cm, respectively) with four N rates (0, 168,

240, and 312 kg ha-1, hereafter N0, N168, N240, and N312, respectively) during

the 2019–2020 and 2020–2021 growing seasons. We investigated the impacts

of growing season, sowing pattern, and N rate on N2O emissions, N2O emissions

factors (EFs), global warming potential (GWP), yield-scaled N2O emissions, grain

yield, N use efficiency (NUE), plant N uptake and soil inorganic N concentrations

at jointing, anthesis, and maturity. The results showed that sowing pattern and N

rate interactions influenced the N2O emissions markedly. Compared to CD, WB

significantly reduced cumulative N2O emissions, N2O EFs, GWP, and yield-scaled

N2O emissions for N168, N240, and N312, with the largest reduction seen at

N312. Furthermore, WB markedly improved plant N uptake and reduced soil

inorganic N compared to CD at each N rate. Correlation analyses indicated that

WB mitigated the N2O emissions at various N rates mainly through efficient N

uptake and reduced soil inorganic N. The highest grain yield occurred under a

combination of WB and N312, under which the yield-scaled N2O emissions were

equal to the local management (sowing with CD at N240). In conclusion, WB

sowing could synergistically decrease N2O emissions and obtain high grain yields

and NUEs, especially at higher N rates.

KEYWORDS

N rate, wide belt sowing, N2O emissions, grain yield, plant N uptake, soil inorganic N
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1 Introduction

With an expanding world population, it is estimated that major

cereal crops must increase by approximately 50% to meet the

expected food demand by 2050 (vanDijk et al., 2021). However,

limited land area for agriculture means that the only way to increase

grain yield is to achieve a higher yield per unit of land area (Godfray

et al., 2011). The nutrients compositions and quality of soil,

especially nitrogen (N) nutrition, has a significant impact on

crops productivity, thereby grain yield (Duan et al., 2019). It is

foreseeable that more synthetic N fertilizers will be needed to meet

the increasing grain yield demands of an increased global

population (Kong et al., 2021).

Global warming caused by greenhouse gases is currently a

research hotspot (Kim et al., 2013; Seth and Misra, 2014). It may

exacerbate the occurrence of abiotic stresses, such as salt, drought,

and so on (Zhu, 2016; Shultana et al., 2022). Application of

exogenous matters, like inorganic N, may alleviate these abiotic

stresses (Krapp, 2015; Agnihotri and Seth, 2016).

N2O, one of the most important greenhouse gases, is produced

in soils, and approximately 60% of global N2O emissions originate

from agriculture, mainly due to N fertilizer application to soils

(Millar et al., 2018). N2O causes global warming, destroys the ozone

layer, and increases ultraviolet radiation on the ground (IPCC,

2021). When seeking for the high yield or alleviating these abiotic

stress in crop production, the application of N fertilizer may

increase N2O emissions, because the soil NH4
+ and NO3

−

concentrations increase (Millar et al., 2018; Takeda et al., 2021),

both of which are the substrates of nitrification and denitrification

processes in soil and closely related to N2O emissions (Subbarao

et al., 2017; Zhang et al., 2019).

Therefore, increasing wheat yield while mitigating the

cumulative N2O emissions caused by N fertilizer application is

essential to ensure food security and slow global warming (Ying

et al., 2019). The application of urease and nitrification inhibitors

(Recio et al., 2019; Wang et al., 2021), control-released fertilization

(Ji et al., 2012), and partial substitution of chemical N with manure

(Kong et al., 2021; Zhang et al., 2021) could synergistically increase

wheat yield and reduce N2O emissions. However, these measures

will increase production costs.

Compared to conventional drilling sowing (CD), wide belt

sowing (WB) is an optimized sowing pattern that increases the

belt of wheat seedlings from 2–3 to 8–10 cm by altering the width of

the furrow opener moldboard without increasing other costs. This

improves spatial uniformity and reduces intraspecific competition

within seedling belts (Liu et al., 2020; Lv et al., 2020), and results in

enhanced water, N, radiation use efficiency, and grain yield of

winter wheat (Li et al., 2015; Liu et al., 2020; Wang et al., 2022;

Zheng et al., 2023). In particular, the enhanced ability to absorb N

offers the possibility of reducing nitrous oxide emissions. However,

there are insufficient data on how WB affects the N2O emissions of

winter wheat.

Therefore, we hypothesized that sowing winter wheat as WB

instead of CD with N fertilizer input would result in improved grain

yield alongside reduced N2O emissions. This would be due to the

reduced concentrations of inorganic N in the soil through enhanced
Frontiers in Plant Science 02
N uptake. We evaluated the interaction between sowing pattern and

the application of different N rates on grain yield and N2O

emissions. To this end, we used two sowing patterns (CD and

WB) at N rates of 0, 168, 240, and 312 kg ha-1 under field

conditions. We also investigated the N uptake and soil inorganic

N concentrations at jointing, anthesis, and maturity stages to

elucidate the processes involved in decreasing N2O emissions

using the optimized sowing pattern.
2 Materials and methods

2.1 Study site and growth conditions

During the 2019–2020 and 2020–2021 winter wheat growing

seasons, field experiments were conducted in Dongwu Village (35°

57’N, 117°03’E), Dawenkou, Daiyue District, Tai’an, Shandong

Province, China. Summer maize was the previous crop grown at

the study site, and all remaining straw was plowed into the field. The

soil was characterized as a sandy loam (typic Cambisols; FAO,

2003) with a pH of 7.2. Before sowing wheat in 2019–2020, the total

N, alkali-hydrolyzable N, available P2O5, available K2O, and organic

matter in the top 20 cm of the soil were 1.11 g kg-1, 111.00 mg kg-1,

34.69 mg kg-1, 98.47 mg kg-1, and 16.70 g kg-1, respectively. Climatic

data, including rainfall and temperature, are shown in Figure S1.
2.2 Experimental design

Seeds of two winter wheat cultivars, Tainong18 (T18) and

Taimai198 (T198), were sown on 15 October 2019 and 17

October 2020 and harvested on 8 June 2020 and 10 June 2021,

respectively. We used two sowing patterns (Figure S2; CD and WB)

and four N rates (0, 168, 240, and 312 kg ha-1; hereafter, N0, N168,

N240, and N312, respectively). The CD sowing pattern at N240 is

widely used in local agricultural production. Treatments of each

cultivar were arranged in a split-plot design with the N rate as the

main plot and sowing pattern as the subplot (n = 4). The length and

width of each subplot were 22.0 m and 3.0 m (12 rows spaced 25 cm

apart), respectively. The basal/topdressing of N fertilizer (applied as

urea, 46% N) in a 4:6 ratio, and the topdressing N was applied at

jointing (Table S1). The crops were irrigated after sowing, at

jointing and anthesis in both growing seasons, at a rate of 60 mm

each time.
2.3 Measurement methods

2.3.1 Grain yield, inorganic N concentrations in
the soil, and plant N uptake

Grain yield was measured at maturity by manually cutting all

spikes in 3.0 m2 rows in each plot as described by Li et al. (2015) and

adjusted to 13% moisture content. The inorganic N concentrations

in the soil and plant N uptake were measured according to Shi et al.

(2012). We collected soil samples randomly from five locations in

each plot before sowing, and at the jointing, anthesis, and maturity
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stages to estimate the inorganic N. Fifty single plants or stems were

sampled at all three stages to determine the aboveground N

accumulation (AGN). The plant N uptake during growth was

calculated according to the AGN of the latter growth stage minus

that of the previous growth stage. NUE, N uptake efficiency (UPE),

and N utilization efficiency (UTE) were calculated according to

Moll et al. (1982). The formulas for calculating these indexes are

provided in the Supplementary Material.

2.3.2 N2O emissions flux and calculation of N2O
emissions-related indicators

We used the closed chamber-gas chromatography method to

measure the N2O emissions flux, according to Lyu et al. (2019). In this

study, the chambers included a chamber base of 54 cm length × 22 cm

wide and 26 cm high with a 3 cm width water channel and a cover

box of 56 cm × 24 cm × 90 cm. Gas was sampled daily for 5 days after

base fertilization, and sampling frequency was reduced to once every

7 days for approximately 1 month after irrigation (after sowing) or

rainfall > 20 mm and then three times a month until the next

fertilization event. Gas samples were also measured daily following

topdressing for 5 days and every 2 days after that for five times until

irrigation at the anthesis stage. Gas samples were also measured after

irrigation or rainfall > 20 mm every 7 days until maturity.

The N2O flux formula was calculated according to the adapted

equation by Duan et al. (2019). The cumulative N2O emissions,

fertilizer-induced N2O emissions factor (EF), and the yield-scaled

N2O were computed referring to the equation in Huang et al.

(2017). The N2O global warming potential (GWP) was calculated as

the cumulative N2O emissions multiplied by 273, according to

IPCC (2021). The formulas for calculating these indexes are

provided in the Supplementary Material.
2.4 Statistical analysis

Analyses of variance and multiple comparisons were

determined according to the least significant difference at 0.05

and a probability level with DPS 7.05 (Zhejiang University,

Hangzhou, China). We used Microsoft Excel 2013 (Microsoft,

Redmond, WA, USA) to create the tables and SigmaPlot 14.0

(Systat Software, San Jose, CA, USA) to generate the figures.
3 Results

3.1 Grain yield and NUE

The winter wheat grain yield was significantly affected by

growing season, cultivars, N rates, sowing patterns, and the

following interactions: growing season × N rate, cultivar× N rate,

N rate × sowing pattern, and growing season × cultivar × N rate

(Table S2). The grain yield increased significantly with an increased

N rate from N0 to N312 (Table 1). WB significantly increased the

grain yield at N168, N240, and N312 compared to CD, despite the

increase showing a decreasing trend with the increased N rate. In

2019–2020, WB increased grain yields by 10.43%, 8.22%, and

5.44%, and by 10.31%, 7.67%, and 6.63% at N168, N240, and
Frontiers in Plant Science 03
N312 for cultivars T18 and T198, respectively. In 2020–2021, the

grain yields in WB increased by 9.18%, 8.24%, and 7.22%, and by

8.44%, 6.85%, and 5.74% for T18 and T198, respectively. WB at

N312 showed the highest yield of all the treatments. Compared to

local management (sowing with CD at N240), WB at N312

increased the grain yields of T18 and T198 by 8.03% and 13.53%

in 2019–2020 and 15.16% and 13.06% in 2020–2021, respectively.

The NUE of winter wheat was significantly influenced by

growing season, cultivar, N rates, sowing patterns, and the

interactions of growing season × cultivar, growing season × N

rate, cultivar× N rate, N rate × sowing pattern, growing season ×

cultivar× N rate, and growing season × N rate × sowing pattern

(Table S2). It significantly decreased with N rates increased from

N168 to N312 (Table 1). WB significantly improved it at N168,

N240, and N312 compared to CD, despite the extent of the increase

showing a decreasing trend with the increased N rate. In 2019–

2020, WB increased the NUE by 10.43%, 8.22%, and 5.44%, and by

10.31%, 7.67%, and 6.63% at N168, N240, and N312 for cultivars

T18 and T198, respectively. In 2020–2021, the NUE in WB

increased by 9.18%, 8.24%, and 7.22%, and by 8.44%, 6.85%, and

5.74% for T18 and T198, respectively.

Under each sowing pattern, the UPE and UTE decreased

gradually with the increased N rate. Compared to CD, WB

markedly increased the UPE at N168, N240, and N312. The UPE

was increased by an average of 11.42%, 9.83%, and 7.71%, and by

10.88%, 8.52%, and 7.87%, at N168, N240, and N312 for the T18

and T198 cultivars, respectively, across two growing seasons.

However, the UTE for either cultivar was not significantly

different between CD and WB at each N rate.
3.2 N2O emissions

3.2.1 N2O emissions dynamics
The dynamic changes in the N2O fluxes are presented in Figure 1.

The N2O dynamics were considerably affected by the sowing patterns

and N rates over the two growing seasons. N2O gradually increased

with the increased N rate when sown using the same sowing pattern.

Then it usually spiked after the input of basal fertilizer and

topdressing fertilizer and after rainfall (> 20 mm) or irrigation

(arrows numbered 1 to 5). The N2O emissions were higher in CD

than in WB, and CD at N312 had the highest N2O flux.

N2O flux peaked after topdressing and was lower inWB at each N

rate compared to CD. In 2019–2020, the highest fluxes were 12.98,

18.20, 26.00, and 29.04 mg m-2 h-1 and 12.75, 18.75, 25.77, and 30.56

mg m-2 h-1 for N0, N168, N240, and N312 of the T18 and T198

cultivars, respectively, when sown in CD. However, when sown

in WB, they were 11.20, 17.53, 24.30, and 26.77 mg m-2 h-1 and

11.82, 17.30, 25.13, and 27.94 mg m-2 h-1 for cultivars T18 and T198,

respectively. In 2020–2021, the highest fluxes were 6.32, 17.90, 27.67,

and 31.03 mg m-2 h-1 and 6.51, 19.14, 26.61, and 31.19 mg m-2 h-1 for

N0, N168, N240, and N312 of cultivars T18 and T198, respectively,

when sown in CD. However, they were 6.20, 16.36, 26.67, and 28.65 mg
m-2 h-1 and 6.54, 17.65, 25.64, and 28.51 mg m-2 h-1, respectively, for

cultivars T18 and T198 when sown in WB. The flux gradually

decreased following the peak pulse.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1176293
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1176293
3.2.2 Cumulative N2O emissions
The cumulative N2O and GWP of N2O emissions were

significantly influenced by the growing season, cultivar, N rate,

and sowing pattern. Only the growing season × N rate and N rate ×

sowing pattern interactions significantly affected this measure
Frontiers in Plant Science 04
(Table S2). The cumulative N2O emissions were 0.21–0.91 kg N

ha-1 with an average of 0.60 kg N ha-1 for cultivar T18 and 0.19–0.87

kg N ha-1 with an average of 0.57 kg N ha-1 for cultivar T198, across

two growing seasons (Figure 2). The GWP was 57.33–248.43 kg

CO2-eq ha-1 with an average of 163.80 kg CO2-eq ha-1 for cultivar
TABLE 1 Effects of sowing pattern and N rate on grain yield, N use efficiency (NUE), N uptake efficiency (UPE), and N utilization efficiency (UTE) of
winter wheat.

Growing season Cultivar N rate
(kg ha-1)

Sowing
pattern

Grain yield NUE UPE UTE

(kg ha-1) (kg kg-1) (%) (kg kg-1)

2019–2020

Tainong18

0
Conventional drilling 7254.94e 41.50b 88.86b 46.61a

Wide belt 7754.59d 44.60a 91.88a 48.59a

168
Conventional drilling 8412.29c 24.56d 72.05d 33.73b

Wide belt 9289.77a 27.13c 80.59c 33.72b

240
Conventional drilling 8656.55bc 20.92f 66.45f 31.49c

Wide belt 9368.07a 22.60e 73.05d 30.95c

312
Conventional drilling 8868.76b 18.25h 64.68g 28.36d

Wide belt 9351.27a 19.25g 69.16e 28.32d

Taimai198

0
Conventional drilling 7279.05f 41.80b 75.03b 55.94a

Wide belt 7952.01e 45.66a 80.78a 57.17a

168
Conventional drilling 8636.00d 25.24d 66.88d 37.84b

Wide belt 9526.40c 27.84c 74.88b 37.10b

240
Conventional drilling 9318.82c 22.50f 64.43e 34.78c

Wide belt 10033.43b 24.23e 70.53c 34.36c

312
Conventional drilling 9921.35b 20.41h 63.05e 32.23d

Wide belt 10579.47a 21.76g 68.42d 31.96d

2020–2021

Tainong18

0
Conventional drilling 4562.38f 31.74c 77.96e 40.13a

Wide belt 4808.72e 33.45b 84.28d 39.67a

168
Conventional drilling 9049.36d 31.70c 91.40b 34.68b

Wide belt 9880.08c 34.60a 101.53a 34.11b

240
Conventional drilling 9784.59c 26.42e 79.71e 33.14c

Wide belt 10591.14b 28.59d 87.46c 32.70c

312
Conventional drilling 10512.10b 22.64g 72.96f 31.04d

Wide belt 11270.99a 24.27f 79.15e 30.71d

Taimai198

0
Conventional drilling 3956.82f 27.53f 75.40d 36.56ab

Wide belt 4257.15e 29.61d 82.32c 36.18b

168
Conventional drilling 9662.91d 33.84b 90.86b 37.27a

Wide belt 10478.41c 36.70a 99.90a 36.74ab

240
Conventional drilling 10648.62c 28.75e 84.12c 34.18c

Wide belt 11378.58b 30.72c 90.80b 33.84c

312
Conventional drilling 11386.15b 24.52h 77.44d 31.67d

Wide belt 12039.84a 25.93g 82.89c 31.29d
fro
Different letters within a column for the same season and cultivar indicate significant differences (P < 0.05).
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T18 and 51.87–237.51 kg CO2-eq ha-1 with an average of 155.61 kg

CO2-eq ha-1 for cultivar T198, across two growing seasons

(Figure S3).

Under each sowing pattern, the cumulative N2O emissions

increased exponentially as the N rate increased from N0 to N312.

WB significantly reduced the values at N168, N240, and N312

compared to CD and had a lower exponential equation slope

(Figure 2), indicating that WB could slow the increase in N2O

emissions resulting from the increased N rate. Therefore, the

reduction in cumulative N2O emissions in WB significantly

improved as the N rates increased and peaked at an N312. In

2019–2020, WB decreased the values by 6.29%, 8.31%, and 11.90%,

and by 5.00%, 7.58%, and 9.61% for cultivars T18 and T198 at N168,

N240, andN312, respectively. In 2020–2021,WB decreased the values

by 4.69%, 7.07%, and 7.99%, and by 4.48%, 6.23%, and 7.64% for

cultivars T18 and T198 at N168, N240, and N312, respectively. CD at

N312 showed the highest cumulative N2O emissions. The GWP

response of N2O emissions to sowing pattern and N rate showed the

same trend as the cumulative N2O emissions (Figure S3).

As shown in Figure 3 and Table S3, the cumulative N2O

emissions during the stages from sowing to jointing, jointing to

anthesis, and anthesis to maturity were 0.10–0.36, 0.13–0.38, and

0.05–0.17 kg N ha-1 with averages of 0.21, 0.27, and 0.11 kg N ha-1

for cultivar T18. For cultivar T198, these were 0.09–0.33, 0.13–0.37,

and 0.05–0.16 kg N ha-1 with averages of 0.21, 0.26, and 0.11 kg N

ha-1, respectively, across two growing seasons. The biggest

proportion of cumulative N2O emissions was that from jointing
Frontiers in Plant Science 05
to anthesis (39.22–47.44% with an average of 44.60%), followed by

sowing to jointing (30.35–40.62% with an average of 36.32%) and

anthesis to maturity (15.67–22.95% with an average of 19.08%).

The cumulative N2O emissions in WB during these three stages

were all lower than in CD at N168, N240, and N312. Like the total

cumulative N2O emissions, the amount and proportion of the

reduced cumulative N2O emissions during the three stages also

improved with increasing N rates and had the highest reduction at

N312. The largest difference in N2O emissions for the two sowing

patterns occurred from jointing to anthesis (0.011–0.043 kg N ha-1

with 0.025 kg N ha-1 on average), followed by sowing to jointing

(0.007–0.041 kg N ha-1 with 0.021 kg N ha-1 on average), and

anthesis to maturity (0.005–0.020 kg N ha-1 with 0.011 kg N ha-1 on

average) across two growing seasons, for both cultivars and with

N168, N240, and N312.
3.3 N2O emissions factors

The N2O EFs were significantly influenced by the main effects of

growing seasons, cultivar, N rate, and sowing pattern. Only the

interactions of growing season × N rate and N rate × sowing pattern

significantly affected the N2O EFs (Table S2). The N2O EFs were

0.09–0.22% with an average of 0.17% for cultivar T18 and 0.09–

0.22% with an average of 0.16% for cultivar T198 across two

growing seasons (Figure 4). They were much higher in 2020–2021

(0.20%) than in 2019–2020 (0.13%), mainly due to the lower
FIGURE 1

Effects of sowing pattern and N rate on the nitrous oxide (N2O) emissions fluxes of winter wheat. The rainfall events all exceeded 20 mm.
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FIGURE 2

Effects of sowing patterns and N rates on cumulative nitrous oxide (N2O) emissions of winter wheat.
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FIGURE 3

Effects of sowing patterns and N rates on cumulative nitrous oxide (N2O) emissions during different growth stages of winter wheat. N0, N168, N240,
and N312 indicate N rates of 0, 168, 240, and 312 kg ha-1. Different letters within the same growth stage for the same season and cultivar indicate
significant differences at P < 0.05.
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cumulative N2O emissions at N0 in the second growing season as a

result of continuous not applying N fertilizer. Meanwhile, there was

a parabolic change as the N rate increased from N168 to N312

under each sowing pattern.

The N2O EFs peaked at 293.20–319.00 kg ha-1 with an average

of 305.63 kg ha-1 in CD, which was higher than that in WB (275.92–

295.49 kg ha-1 with 283.55 kg ha-1 on average). WB significantly

decreased the N2O EFs at N168, N240, and N312 compared to CD

and showed a lower slope in the parabolic equation (Figure 4).

Hence it reduced the increase in EFs resulting from the increased N

rate. The extent of this reduction was significantly improved as the

N rates increased and was highest at N312. In 2019–2020, WB

decreased the EFs by 6.47%, 10.49%, and 16.09%, and by 13.66%,

14.16%, and 15.68% for cultivars T18 and T198 at N168, N240 and

N312, respectively. In 2020–2021, WB decreased the values by

4.36%, 7.85%, and 8.86%, and by 4.19%, 6.76%, and 8.47% for

cultivars T18 and T198 at N168, N240, and N312, respectively. CD

at N312 had the highest N2O EFs. WB at N312 decreased the EFs of

T18 and T198 by 9.40% and 8.53% in 2019–2020 and by 6.32% and

6.21% in 2020–2021, respectively, compared to the local

management (sowing using CD at N240).
3.4 Yield-scaled N2O emissions

The yield-scaled N2O emissions were significantly influenced by

the effects of the growing season, cultivar, N rate and sowing

pattern, and the two-way interactions except for growing season

× sowing pattern (Table S2). Across two growing seasons, the values
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were 42.77–101.78 mg kg-1 with 67.09 mg kg-1 on average for

cultivar T18 and 43.41–85.69 mg kg-1 with 60.56 mg kg-1 on average

for cultivar T198, respectively (Figure 5).

The yield-scaled N2O emissions increased exponentially as the N

rate increased from N0 to N312 under the same sowing pattern. WB

significantly reduced the values at each N rate compared to CD. The

lower slope of the exponential equation indicated thatWB could slow

the increment of these emissions resulting from the increased N rate

(Figure 5). Therefore, the reduction of yield-scaled N2O emissions in

WB significantly improved as the N rates increased and were highest

at N312. In 2019–2020, WB decreased this measure by 12.26%,

15.15%, 15.28%, and 16.44% and by 9.25%, 13.88%, 14.16%, and

15.23% for cultivars T18 and T198 at N0, N168, N240, and N312,

respectively. In 2020–2021, the values decreased by 10.06%, 12.70%,

14.15%, and 14.19% and by 11.63%, 11.91%, 12.25%, and 12.66% for

cultivars T18 and T198 at N0, N168, N240, and N312 kg ha-1,

respectively. Furthermore, the reductions with seedling belt

optimization were greater than those of cumulative N2O emissions.

CD at N312 kg ha-1 obtained the highest yield-scaled N2O emissions.

The emissions of WB at N312 were equal to the local management

system (sowing with CD at N 240).
3.5 N uptake and soil inorganic
N concentrations

3.5.1 N uptake during different growth stages
The N uptake during the three growth stages increased with

increasing N rates and peaked at N312 (Figure 6). The uptake
FIGURE 4

Effects of sowing patterns and N rates on the nitrous oxide emission factor of winter wheat.
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during the three growth stages was higher in WB than in CD. At

N168, N240, and N312, the differences in uptake for the two sowing

patterns were 9.53, 8.74, and 5.99 kg ha-1 for T18 and 9.36, 7.06, and

6.22 kg ha-1 for T198 during sowing to jointing, 8.39, 7.90, and

7.93 kg ha-1 for T18 and 7.41, 6.99, and 6.97 kg ha-1 for T198 during

jointing to anthesis, and 11.13, 11.39, and 11.33 kg ha-1 for T18 and

9.83, 10.94, and 12.52 kg ha-1 for T198 during anthesis to maturity,

respectively, across two growing seasons.

3.5.2 Soil inorganic N concentrations at
different stages

The inorganic N concentrations in the soil at the three stages

increased with increasing N rates and peaked at N312 (Figure 7).

The concentrations at the three growth stages were lower in WB

than in CD. At N168, N240, and N312, the differences were 13.18,

10.84, and 8.80 kg ha-1 for T18 and 15.31, 9.65, and 7.03 kg ha-1 for

T198 at jointing, 19.63, 15.48, and 12.13 kg ha-1 for T18 and 22.81,

12.56, and 10.50 kg ha-1 for T198 at anthesis, and 18.07, 14.02, and

10.52 kg ha-1 for T18 and 21.00, 10.82, and 7.06 kg ha-1 for T198 at

maturity, respectively, across two growing seasons.
3.6 Correlation analyses

We conducted correlation analyses between the cumulative

N2O emissions and plant N uptake and soil inorganic N

concentrations at N168, N240, and N312, respectively (Table 2).

The N2O emissions were significantly negatively related to plant N

uptake during the growth stages of sowing to jointing, jointing to
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anthesis, and anthesis to maturity. However, they were significantly

positively related to the soil inorganic N concentrations at jointing,

anthesis, and maturity for N168, N240, and N312.
4 Discussion

4.1 Influences of WB on grain yield and N
uptake and utilization at different N rates

High wheat yields and NUE are based on plant N uptake (Duan

et al., 2019). The arrangement of the wheat plants in the field may

significantly affect growth and N uptake (Lu et al., 2020). WB sowing

increased the belt of wheat seedlings and reduced the intraspecific

competition of plants within the belts (Liu et al., 2020). This

benefitted the growth of tillers and roots and resulted in an efficient

N absorption capacity during the whole wheat growing season (Lv

et al., 2020). In the present study, WBmarkedly improved grain yield

and NUE at N168, N240, and N312, due to the improved plant N

uptake, in line with Wang et al. (2022) and Zheng et al. (2023). This

may be related to the improved activity of N assimilation enzymes in

WB sowing, because higher activities of N assimilation enzymes, such

as nitrate reductase, nitrite reductase, glutamine synthetase,

glutamate synthase, are beneficial for crop N assimilation and

absorption (Chandna et al., 2012; Agnihotri and Seth, 2016; Gupta

and Seth, 2019). Furthermore, the combination of WB at N312

obtained the highest yield (most >11,000 kg ha-1), demonstrating that

WB can be used to gain high grain yield at various N rates, especially

at higher N rates.
FIGURE 5

Effects of sowing pattern and N rate on yield-scaled nitrous oxide (N2O) emissions of winter wheat.
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4.2 Influences of WB on N2O emissions at
different N rates

N2O emissions exhibited seasonal variation, and some studies

have found that the cumulative N2O emissions at each winter wheat

growing stage gradually decreased and were concentrated during

the sowing to the greening stage (Liu et al., 2015). Nevertheless, Ji

et al. (2012) demonstrated that they were higher from the greening

to maturity stage than from the sowing to greening stage. This

discrepancy may be due to the differences in specific basal/

topdressing fertilizer ratios, temperature, rainfall, irrigation, or

other factors. In our study, these emissions were concentrated at

jointing to anthesis, followed by sowing to jointing, and anthesis to

maturity. Furthermore, the reduced cumulative N2O emissions in

the three growth stages followed a similar pattern in WB compared

to CD. This was probably due to the 60% N topdressing (60% of

total N fertilizer), irrigation at the jointing stage (60 mm), and

suitable temperature (average 12.6°C) during the jointing to

anthesis growth stage. These conditions favor soil nitrification

and denitrification (Pan et al., 2022) and produce more

N2O emissions.

N fertilization contributes to N2O emissions (Rahman et al.,

2021). Despite a linear relationship between the cumulative N2O

emissions and N rates (Kim et al., 2013), there is overwhelming

evidence in the literature indicating that cumulative N2O emissions

increase exponentially as the N rate increases, including evidence

for grain crops around the world (Shcherbak et al., 2014), tropical

sugarcane in Australia (Takeda et al., 2021), and spring wheat in
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New Mexico (Millar et al., 2018). Therefore, mitigation of N2O

emissions at higher N input may be more difficult because some

simple measures, such as supplementing with phosphate fertilizer

(Shen and Zhu, 2022) and changing from conventional to no tillage

(Campanha et al., 2019), mitigated N2O emissions at relatively low

N input, but not at higher N rates. An exponential relationship was

also found in the present study. Although the sowing pattern did

not influence the exponential relationship between an increase in

N2O emissions and increased N rates, WB initially decreased the

N2O emissions for N168, N240, and N312 compared to CD and

slowed the increase in cumulative N2O emissions resulting from the

increased N rate. As a result, WB had greater N2O emissions at

N312 compared to CD, indicating that WB could be used to reduce

N2O emissions at various N rates, especially higher ones. A similar

relationship was also observed between the GWP of N2O emissions

and interactions of N rate and sowing pattern.

N2O EFs are used to estimate the direct N2O emissions in field

crops, reflecting the differences in management patterns (Yue et al.,

2019). The EFs in the present study were 0.09–0.22% when N rates

increased from N168 to N312, like the reference values in Yan et al.

(2015). Rahman et al. (2021) found that N2O EFs were linearly

correlated with increasing N rates; however, other studies have

demonstrated an exponential (Grace et al., 2016) or hyperbolic

relationship (Kim et al., 2013) between EFs and N rates.

Nevertheless, we observed a parabolic response, and the N rate at

which N2O EFs theoretically peaked in WB (275.92–295.49 kg ha-1

with 283.55 kg ha-1 on average) was lower than that in CD (293.20–

319.00 kg ha-1 with 305.63 kg ha-1 on average). This was probably due
FIGURE 6

Effects of sowing pattern and N rate on plant N uptake during different winter wheat growth stages. N0, N168, N240, and N312 are N rates of 0, 168,
240, and 312 kg ha-1. Different letters within the same growth stage for the same season and cultivar indicate significant differences (P < 0.05).
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to the reduced cumulative N2O emissions in WB as the N

rates increased.
4.3 N uptake, soil N concentrations, and
their relationship with N2O emissions

Efficient N uptake and decreased concentrations of inorganic N

in the soil may reduce N2O emissions (Xu et al., 2022). A review of

12 leading cultivars used in China’s major winter wheat cropping

regions since the 1940s found that new wheat cultivars have a

higher capacity to increase N uptake and reduce N2O emissions

than older wheat cultivars (Ying et al., 2019). Chen et al. (2021) also

demonstrated that new wheat cultivars reduce N2O emissions

mainly through their higher productivity and N uptake and lower

soil inorganic N availability. Similarly, the application of control-

released fertilization also mitigates N2O emissions by maintaining

the substrate content of inorganic N at a lower level in the soil than

conventional fertilizers (Zhang et al., 2019).

At N168, N240, and N312, changing the sowing pattern from CD

to WB markedly increased plant N uptake during the growth stages

of sowing to jointing, jointing to anthesis, and anthesis to maturity

and reduced the soil N concentrations at jointing, anthesis, and

maturity. This was mainly due to WB-associated efficient N uptake

capacity throughout the wheat growing season (Lv et al., 2020).

Meanwhile, the cumulative N2O emissions during the different stages

were significantly negatively related to the N uptake and positively
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related to the inorganic N concentrations in the soil, indicating that

WB mitigated N2O emissions mainly through efficient N uptake and

reduced soil inorganic N concentrations.
4.4 Influences of WB on yield-scaled N2O
emissions at different N rates

N is an essential nutrient for crop production. Higher N

fertilizer rates can often result in higher grain yields, resulting in

a corresponding increase in N2O emissions (Millar et al., 2018).

Unilaterally focusing on reducing the N2O emissions by reducing N

rates may be counterproductive and lead to low grain yields (Duan

et al., 2019). While meeting agricultural production needs, practices

that minimize N2O emissions must be identified (Kim et al., 2022).

Yield-scaled N2O emissions could be used as a benchmark to meet

the critical global challenge of reducing N2O emissions while

ensuring food security (Kong et al., 2021).

Field studies have reported an exponential increase between

yield-scaled N2O emissions and increased N rates (Ma et al., 2010;

Ji et al., 2012). We observed a similar relationship regardless of the

sowing pattern, mainly due to the exponentially increased N2O

emissions (R2 = 0.89, P < 0.01). Therefore, it is necessary to exploit

efficient measures to reduce the yield-scaled N2O emissions when a

specific N fertilizer is applied to achieve a high yield. New crop

genotypes can increase plant N uptake (Chen et al., 2021), and other

methods, such as new controlled-release fertilizers (Ji et al., 2012),
FIGURE 7

Effects of sowing pattern and N rate on soil inorganic N concentrations during different growth stages of winter wheat. N0, N168, N240, and N312
are N rates of 0, 168, 240, and 312 kg ha-1. Different letters within the same growth stage for the same season and cultivar indicate significant
differences (P < 0.05).
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partial substitution of chemical N with manure (Kong et al., 2021),

and the addition of urease and nitrification inhibitors (Wang et al.,

2021) can reduce the concentrations of inorganic N in the soil. All

these measures would effectively decrease yield-scaled N2O emissions

and improve yields. Meanwhile, in the present study, WB

significantly reduced the yield-scaled N2O emissions at N168,

N240, and N312 compared to CD due to the increased grain yield

and reduced N2O emissions caused by the efficient N uptake and

reduced soil N concentrations. Furthermore, we observed an

increased reduction in yield-scaled N2O emissions in WB at high

N rates, indicating that WB could play an important role in reducing

such emissions when more synthetic N fertilizers are applied to in an

effort to obtain high yields in the future. Besides, the yield-scaled N2O

emissions were not significantly different between WB at N312 and

the local management system (sowing using CD at N240); however,

the grain yield was much higher. In conclusion, WB sowing can

decrease N2O emissions and synergistically obtain high grain yields

and NUEs, especially at higher N rates.

Although the application of higher N rates can improve the

yield of winter wheat, it also reduces NUE and increases N2O

emissions, regardless of sowing pattern. Moreover, higher N

fertilizer application may decrease profits and increase carbon

emissions considering the manufacture and transport of

agricultural products. Therefore, more attention should be paid to

the joint goals of increasing grain yield and reducing N rate.

Combining WB sowing with the use of new controlled-release

fertilizers or partial substitution of chemical N with manure may

be efficient pathways to synergistically improve grain yield and

reduce N input in the future.
5 Conclusions

WB sowing significantly increased the N uptake of winter wheat

and reduced soil inorganic N concentrations, thereby markedly
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decreasing the cumulative N2O emissions, N2O EFs, GWP of N2O,

and grain yield-scaled N2O emissions, and increased grain yield and

NUE at N168, N240, and N312 compared to CD. Furthermore,

these N2O emissions indices showed a larger reduction at higher N

rates. Therefore, optimizing the seeding belt of wheat seedlings with

high N rate input is an efficient way to mitigate greenhouse gases

and improve yields and NUE. Our study shows the feasibility of

attaining both high yield and low N2O emissions. However, more

attention should be paid to the issues of increasing grain yield and

reducing N rate in the future.
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