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Diverse molecular processes regulate the interactions between insect herbivores

and their host plants. When plants are exposed to insects, elicitors induce plant

defenses, and complex physiological and biochemical processes are triggered,

such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways,

Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase

(MAPK) activation, and other responses. For better adaptation, insects secrete a

large number of effectors to interfere with plant defenses on multiple levels. In

plants, resistance (R) proteins have evolved to recognize effectors and trigger

stronger defense responses. However, only a few effectors recognized by R

proteins have been identified until now. Multi-omics approaches for high-

throughput elicitor/effector identification and functional characterization have

been developed. In this review, we mainly highlight the recent advances in the

identification of the elicitors and effectors secreted by insects and their target

proteins in plants and discuss their underlying molecular mechanisms, which will

provide new inspiration for controlling these insect pests.
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Introduction

Plants are constantly being attacked by various insects. Nearly half a million insect

species live on plants (Wu and Baldwin, 2010). The vast majority of herbivorous insects

feed on plants from a single taxonomic family or a few closely related plant species

specifically, while only 10% of them establish intimacy with multiple plant species

(Schoonhoven et al., 2005). In addition to the direct damage caused by feeding, insects

can also injure plants indirectly by transmitting viral, bacterial, and fungal pathogens. The

main strategy for crop protection against insects over the past several decades was the

application of chemical insecticides. However, due to the emergence of insect resistance to

pesticides and the negative effect on the environment, the use of such compounds has
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declined in recent years (Du et al., 2020). Scientists have begun to

unravel the molecular mechanisms underpinning the interactions

between plants and insects in order to find better ways to control

these pests.

Over the years, evidence has been accumulated during the long-

term interaction and evolution of plants and insects, and both host

plants and insect herbivores have obtained diverse sophisticated

mechanisms to adapt to each other. In general, the perception of

insect attack is the first step of plant defenses. Insect elicitors are the

biologically active molecules from insects’ saliva or gut regurgitant;

they are recognized by plants and subsequently induce plant

defenses (Chen and Mao, 2020; Snoeck et al., 2022). These

elicitors are also called herbivore-associated molecular patterns

(HAMPs) (Snoeck et al., 2022). The elicitor-induced defenses

include depolarization of the plasma trans-membrane potential,

activation of JA and SA pathways, ROS burst, callose deposition,

Ca2+ influx, MAPK activation, etc. (Erb and Reymond, 2019; Ye

et al., 2019; Li et al., 2019a). For successful infestation, insect

herbivores secret salivary molecules into plant cells to weaken

their defense responses; these active molecules are called effectors

(Mutti et al., 2008; Bos et al., 2010; Hogenhout and Bos, 2011;

Naessens et al., 2015; Rodriguez et al., 2017). Effectors that suppress

the plant’s responses can be recognized by their corresponding

resistance proteins, inducing a second layer of defense, the effector-

triggered immunity (ETI) (Jones and Dangl, 2006; Takken and

Tameling, 2009). Notably, the second layer of defense response is

much more fierce than the first layer. In summary, the active

molecules from insect secretion have a significant impact on plant

immunity. The molecules that can trigger plant defense responses

are defined as elicitors, while those that weaken plant defenses are

called effectors (Chen and Mao, 2020). In this review, we mainly

discuss the recent advances in research on elicitors and effectors

secreted by insects and their roles in the interactions between

insects and their host plants. Dissecting the plant host factors and

pathways targeted by these active insect molecules will facilitate the

characterization of the molecular mechanisms of plant-

insect interactions.
Herbivore feeding behaviors

To obtain nutrients from the hosts, insects employ diverse

feeding strategies upon landing. Based on the different

mouthparts and feeding habits, herbivorous insects can be

divided into two groups: chewing and piercing-sucking insects

(Schoonhoven et al., 1998; Walling, 2000). The insect species that

cause damage with mouthparts evolved for chewing, snipping, or

tearing belong to chewing insects, like leaf-eating beetles,

caterpillars, or cotton bollworms. Chewing insects have a chewing

type of mouth, which consists of the labrum, mandibles, first

maxillae, second maxillae, hypopharynx, and epipharynx. The

rectangular flap-like labrum is in the middle. The mandibles are

paired and bear toothed edges at their inner surfaces; they masticate

food using two sets of muscles transversely. The first maxillae and

second maxillae are paired. The first maxillae are responsible for

holding food and the second maxillae are responsible for pushing
Frontiers in Plant Science 02
masticated food into the mouth. The hypopharynx has a single

median tongue-like process, and the opening of the salivary duct lies

under the hypopharynx. The epipharynx with taste buds is a single

small membranous piece at the base of the labrum (Kahl, 1982;

Felton et al., 1999; Stotz et al., 1999). Oral secretion (OS, consisting

of regurgitant and saliva) of chewing insects contains active

molecules that have a big impact on plant defense responses that

are distinguishable from general mechanical damage (Hogenhout

and Bos, 2011; Chen and Mao, 2020).

Piercing-sucking herbivorous insects, such as aphids, whiteflies,

and planthoppers feed on plants through specially adapted

mouthparts known as stylets, which they use to puncture the plant

surface to access the phloem sap. The mouthparts of piercing-

sucking insects are composed of the labrum, the labium, and the

stylet. Among them, the stylet is used for piercing and sucking

phloem sap from plants (Sogawa, 1982; Backus, 1988). The feeding

strategies of piercing-sucking insects are mainly divided into three

major phases, labial exploration, stylet penetration, and phloem-sap

sucking (Spiller, 1990; Hao et al., 2008; Cheng et al., 2013b; Will

et al., 2013). During their initial encounter with their host plants,

insects walk rapidly and dab repeatedly on the plant’s surface to find

a suitable feeding site, which is essential for the survival of the insects

(Sogawa, 1982; Backus, 1988; Walling, 2008). Rice leaf sheath surface

is featured in units and subunit structures, including the silico-

phellem block, stomate block, large tubercle block, and vein, which

are often covered with tubercle papicles, little papicles, glochids, and

tenuous hairs. Recent research has shown that the brown

planthopper (Nilaparvata lugens Stål, BPH), the most destructive

pest of rice, preferentially selects the smooth long-cell block to probe

their stylets into the leaf sheaths (Shi et al., 2021). Using an Atomic

Force Microscope (AFM), Shi et al. (2021) found that the surface

hardness of the long-cell block wasmuch lower than that of the other

cells. Sensilla basiconica, arranged symmetrically in two separate

areas at the distal segment of the labium, was speculated to have a

mechano-receptive function (Sogawa, 1982; Backus, 1988). Thus, we

suppose that the labium may guide the stylets to find the suitable

feeding site by sensing the mechanical heterogeneity of different

structures on the plant surface.

Piercing-sucking insects penetrate plants with their stylet and

move the stylet toward the phloem (Will et al., 2013). Along the

stylet track, different types of cells are regularly penetrated (Will

et al., 2013). Sucrose and pH are suggested to be indicators of

phloem penetration (Hewer et al., 2010; Hewer et al., 2011). During

the penetration process, piercing-sucking insects secrete both

gelling and watery saliva from their salivary glands into the plant

cells, and the protein compositions of the two types of saliva were

shown to have some overlap (Walling, 2008; Huang et al., 2016).

The secreted gelling saliva quickly solidifies and forms a continuous

salivary sheath along its stylets for providing mechanical stability

and protection (Wang et al., 2008). Some secretary proteins have

been proven to be the key factors for forming the salivary sheath

(Will and Vilcinskas, 2015; Huang et al., 2016; Huang et al., 2017;

Shangguan et al., 2018; Huang et al., 2023). Watery saliva contains

many active molecules that are involved in the induction or

suppression of defenses against insect attack, i.e., the elicitors and

effectors (Kaloshian and Walling, 2016; Chen and Mao, 2020).
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Multi-omics approach to identifying
elicitors and effectors

Saliva is a complex mixture of biomolecules with potential roles

in encounters with plant immune responses (Miles, 1999; Will et al.,

2013). Functional approaches such as proteomics and

transcriptomics have facilitated the high-throughput identification

of elicitors/effectors in regurgitant or saliva from various insect

species (Harmel et al., 2008; Bos et al., 2010; Cooper et al., 2011;

Nicholson et al., 2012; Ji et al., 2013; Nicholson and Puterka, 2014;

Huang et al., 2016; Liu X. et al., 2016; Huang et al., 2018; Rao et al.,

2019; Huang et al., 2023). The majority of the reported elicitors or

effectors discussed below were identified using multi-omics

approaches. Here, we take the salivary proteome and

transcriptome of N. lugens as examples. Through comparative

transcriptome analysis of the salivary glands of TN1 and Mudgo

populations, 352 genes were predicted to encode secretory proteins

(Ji et al., 2013). Among them, endo-b-1,4-glucanase (NlEG1) and

NlSEF1 play important roles in rice-BPH interactions (Ji et al., 2017;

Ye et al., 2017). Huang et al. (2016) performed proteomic analyses

combined with genomic and transcriptomic analysis and identified

202 secreted salivary proteins in N. lugens. RNA interference

revealed that salivap-3 is required for forming the salivary sheath,

while annexin-like5 and carbonic anhydrase are indispensable for

BPH survival (Huang et al., 2016). Recently, 1140 protein-coding

genes were predicted in the secretome of N. lugens by Rao et al.

(2019). Sequence analysis and homology searches revealed the

presence of both conserved and rapidly evolving salivary proteins.

Furthermore, six N. lugens secreted elicitors (Nl12, Nl16, Nl28,

Nl32, Nl40, and Nl43) were identified by a series of predictions and

functional analysis, as discussed below (Rao et al., 2019). The high-

throughput identification of these secreted salivary proteins

provides the possibility of understanding some aspects of plant-

insect molecular interaction mechanisms and identifying potential

targets for pest management.

Insect-associated elicitors

In general, plants can recognize elicitors and produce a complex

series of defenses. The first reported elicitor b-glucosidase was

isolated from the regurgitant of the white butterfly (Pieri

brassicae). Leaves treated with b-glucosidase enhanced the

emission of volatiles that are highly attractive to the parasitic

wasp (Mattiacci et al., 1995). The glucose oxidase (GOX) present

in the saliva extracted from Noctuid caterpillars (Helicoverpa zea)

and European corn borer (Ostrinia nubilalis) upregulates the

expression of genes related to the JA biosynthesis pathway and

the late responding defense, such as proteinase inhibitor 2 (Pin2) in

tomato (Tian et al., 2012; Louis et al., 2013). External spraying of

phospholipase C (PLC), a salivary protein from fall armyworm

(Spodoptera frugiperda), activates defense responses in maize and

Bermuda grass and reduces caterpillar weight gain (Acevedo

et al., 2018).

Except for the elicitors isolated from chewing insects, some

elicitors were identified in piercing-sucking insects. Mp10 and
Frontiers in Plant Science 03
Mp42 were two elicitors that were identified using a functional

genomics approach in aphids. Aphid fecundity decreased when

feeding on plants over-expressing Mp10 and Mp42. In addition,

Mp10 specifically induced chlorosis in N. benthamiana leaves in a

SUPPRESSOR OF G2 ALLELE OF skp1 (SGT1)-dependent manner

(Bos et al., 2010; Rodriguez et al., 2014). Cysteine protease

Cathepsin B3 (CathB3) was also recognized as a potential elicitor

protein, which suppresses aphid feeding by triggering ROS through

interacting with an ENHANCED DISEASE RESISTANCE 1-like

(EDR1-like) protein (Guo et al., 2020). The mucin-like salivary

protein (NlMLP) is a dual-functional protein both for insects and

plants. In BPH, NlMLP is required for the formation of salivary

sheath. In plants, NlMLP induces cell death, the expression of

defense-related genes, and callose deposition (Shangguan et al.,

2018). When BPH feed or oviposit, the small N-terminal subunit of

vitellogenins (VgN) induces strong defenses, such as ROS burst and

other responses in rice (Zeng et al., 2023). The ectopic expression of

six secreted salivary proteins from BPH (Nl12, Nl16, Nl28, Nl32,

Nl40, and Nl43) could induce cell death, chlorosis, or a dwarf

phenotype, respectively in N. benthamiana leaves (Rao et al., 2019).

Some salivary proteins from other piercing-sucking insects were

also identified as the elicitors, like Tet1, Tet2, disulfide isomerase

(TetPDI) from spider mite (Tetranychus evansi) (Iida et al., 2019;

Cui et al., 2023), and RP309 from Fabricius (Riptortus pedestris)

(Dong et al., 2022). It is noteworthy that although elicitor-induced

plant defenses impair the performance of insects on plants, RNA

interference (RNAi) experiments have revealed that elicitors are still

essential for the survival of insects (Shangguan et al., 2018; Guo

et al., 2020; Cui et al., 2023; Zeng et al., 2023).

In addition to the elicitors coming from insects themselves,

some elicitors are generated from the microbes they carry. Buchnera

aphidicola is the endosymbiont of potato aphids (Macrosiphum

euphorbiae). Over-expression of Buchnera GroEL in Arabidopsis

plants induces ROS burst and PTI, which is associated with the

BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR

KINASE 1 (BAK1), thus reducing the fecundity of the aphid

(Chaudhary et al., 2014). A porin-like protein (PLP) from

bacteria in oral secretions of Spodoptera littoralis larvae induces

Ca2+ flux in vitro and upregulates the calmodulin-like CML42 (Guo

et al., 2013).

Some elicitors are relatively conserved in their ability to induce

responses across a range of plant species. Both Nl32 in planthopper

and MP10 in aphids are chemosensory proteins (CSPs), small

water-soluble proteins with an OS-D domain that are conserved

among different insects (Pelosi et al., 2005; Bos et al., 2010; Rao

et al., 2019). Eleven CSPs (NlCSP-1 to -11) were previously

identified in BPH, and six out of the eleven CSPs induced similar

effects on N. benthamiana to those caused by Nl32 and Mp10 (Bos

et al., 2010; Zhou et al., 2015; Rao et al., 2019). Nl12 and TetPDI,

deriving from planthopper and spider mite, respectively, are the two

members of the conserved disulfide isomerase family in eukaryotic

organisms (Rao et al., 2019; Cui et al., 2023). Moreover, PDIs from

phylogenetically distinct herbivorous and non-herbivorous

arthropods could induce plant immunity in an SGT1/HSP90-

dependent way (Cui et al., 2023). GOX was also conserved

among caterpillar species (Tian et al., 2012; Louis et al., 2013).
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In Figure 1 and Table 1, we summarize the reported insect-

associated elicitors from different species and their respective roles.
Effectors involved in plant-insect
interactions

To adapt to their host plants, insects secrete a repertoire of

effectors to disturb host plant defense responses (Figure 1 and

Table 2). GOX from caterpillar H. zea was the first reported insect

effector. The nicotine accumulation was suppressed significantly by

GOX in tobacco (Musser et al., 2002; Musser et al., 2005).

Interestingly, the same GOX was characterized as an elicitor in

the ‘Insect-associated elicitors’ section because it induces plant

responses in tomato (Tian et al., 2012; Louis et al., 2013). These

results indicate that the same protein can act as the effector or as the

elicitor when encountering different host plants. The cotton

bollworm (Helicoverpa armigera) is a destructive lepidopteran

insect widely existing in agriculture. Chen et al. (2019) identified

an effector, a venom-like protein termed HARP1, from the OS of H.

armigera. HARP1 stabilizes JAZ degradation and blocks wound-

induced JA signaling transduction by forming a protein complex

with JAZ. The weight of H. armigera larvae was increased
Frontiers in Plant Science 04
significantly on transgenic plants with high-level HARP1 (Chen

et al., 2019). HAS1 is another effector of H. armigera. Plants over-

expressing HAS1 exhibit more susceptibility to insect herbivores

accompanied by the suppressed JA pathway due to the interactions

between HAS1 and JASMONATE-ZIM-domain repressors MYC3/

MYC4 (Chen et al., 2023). These results indicate that interfering

with the JA pathway is a common strategy of effectors in

chewing insects.

Like those in chewing insects, effectors in piercing-sucking

insects also disturb plant hormone-related defense pathways. Bt56

from the whitefly (Bemisia tabaci) increases susceptibility to insects

by enhancing the accumulation of SA but not JA. Interaction assays

have shown that Bt56 interacts directly with a KNOTTED 1-like

homeobox transcription factor NTH202 (Xu et al., 2019). The

survival rate and fecundity were significantly lower in insects

injected with dsBt56 than in those injected with dsGFP (Xu et al.,

2019). BtArmet, another effector of the B. tabaci, increased whitefly

performance on tobacco plants by suppressing SA accumulation

and binding to the cystatin NtCYS6, a protease inhibitor that

prevents insects from continuous ingestion and digestion (Du

et al., 2022). BtFer1 is a B. tabaci salivary protein with Fe2+

binding ability. The results showed that BtFer1 suppressed the

JA-mediated signaling pathway, ROS burst, callose deposition, and

accumulation of proteinase inhibitors (Su et al., 2019). The small

brown planthopper (Laodelphax striatellus, SBPH) effector LsSP1

not only binds to sheath protein LsMLP to avoid LsMLP protein

being recognized by plants but also interacts with rice papain-like

cysteine proteases to inhibit SA biosynthesis and SA-related

defenses (Huang et al., 2023).

Moreover, some effectors were reported to target other defense-

related pathways in plants. The L. striatellus secretes effector protein

DNase II to inhibit defense responses by erasing extracellular DNA

and reducing hydrogen peroxide (Huang et al., 2019). Interestingly,

unlike the VgN, as a reliable elicitor, the C-terminal peptide of

vitellogenin (VgC) acts as a novel effector in L. striatellus, which

attenuates H2O2-mediated plant defense by interacting directly with

the host transcription factor OsWRKY71 for promoting insect

performance (Ji et al., 2021; Zeng et al., 2023). Salivary protein 7

(NlSP7), a salivary protein secreted from the brown planthopper,

functions as an effector via mediating tricin metabolism in rice

plants (Gong et al., 2022). TFT7, 14-3-3 isoform 7, has been proven

to be required for aphid resistance in tomato. Macrosiphum

euphorbiae saliva-secreted protein Me10 targets the TFT7 as an

effective infestation strategy (Chaudhary et al., 2019). Interaction

assays have shown that the effector Mp1 fromM. persicae associates

with the host Vacuolar Protein Sorting Associated Protein52

(VPS52), which has a negative impact on insect infestation

(Rodriguez et al., 2017). Effector Bsp9 from B. tabaci interacts

with WRKY33 to interfere with the association between WRKY33

and a central regulator in the MAPK cascade, thus inhibiting plant

immunity (Wang et al., 2019). The SSGP-71 (Secreted Salivary

Gland Proteins-71) family, which has 426 members, has the greatest

representation in the salivary proteome of the Hessian fly. Most

SSGP-71 genes encode proteins with a signal peptide and an F box

domain, which interacts with an Skp1-like protein (Zhao et al.,

2015). The host plant cell wall was the first barrier of defense against
FIGURE 1

Schematic model of insect-secreted elicitors and effectors regulating
plant defenses. When insects feed on plants, elicitors induce a
complex series of plant defenses, such as ROS burst; upregulation of
JA, SA and some volatile; and other unknown responses. However,
insects secrete effectors to suppress these defense responses. Some
effectors weaken JA pathways, including HARP1, HAS1, 2b, C2, bC1,
SAP11, SSGP-71, and BtFer1. Some effectors interfere with SA
pathways, such as BtArmet, Bt56, GOX, and LsSP1. The same effector
protein can participate in diverse defense pathways. For example, as
well as the reduction of the Ca2+ influx, ApHRC and NlSEF1 also
suppress ROS burst. The B. tabaci effector BtFer1 not only reduces the
accumulation of ROS and JA but also weakens protease inhibitor
activity, thus increasing the content of protease to help whitefly feed
better. Similar to BtFer1, effector BtArmet interacts with protease
inhibitor NtCY56 to block the inhibition of whitefly protease. Mp1 and
Me10 target plant proteins VPS52 and TFT7, respectively, which are
required for insect resistance. The DNase II targets the extracellular
DNA that is released by damaged cells. NlEG1 and HaExPB2 enable
the insect’s stylet to reach the phloem by degrading celluloses in host
plant cell walls.
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herbivores (Calderón-Cortés et al., 2012). Both nematode

(Heterodera avenae) expansin-like protein (HaEXPB2) and brown

planthopper NlEG1 target the cell wall for promoting insect

performance (Liu J. et al., 2016; Ji et al., 2017). Some effectors can

suppress elicitor/pathogen-associated molecular pattern (PAMP)-

triggered immunity. A macrophage migration inhibitory factor
Frontiers in Plant Science 05
(MIF) is secreted from aphid saliva to promote insect feeding.

Further study revealed that over-expressing MIF inhibits defense

responses caused by the elicitor cryptogein, a 10-kDa protein from

the plant pathogen Phytophthora cryptogea (Naessens et al., 2015).

Transient overexpression of the salivary effector SG2204 from

greenbug (Schizaphis graminum) and Sm9723 from grain aphid
TABLE 1 Insect-associated elicitors.

Name Origin Protein
characterization

Function Reference

b-glu Pieri brassicae b-glucosidase Release attractive volatiles to parasitic wasps (Cotesia glomerata) Mattiacci et al.,
1995

Caeliferins Schistocerca
americana

Disulfooxy fatty
acids

Induce volatile emissions in corn Alborn et al.,
2007

GOX Helicoverpa zea;
European corn
borer

Glucose oxidase Elicit JA pathway and late responding defenses in tomato Tian et al., 2012;
Louis et al., 2013

PLC Spodoptera
frugiperda

Phospholipase C Reduce caterpillar weight gain; Induce defense responses in maize and Bermuda grass Acevedo et al.,
2018

Mp10 Myzus persicae Chemosensory
protein

Reduce aphid fecundity in tobacco Bos et al., 2010

CathB3 Myzus persicae Cysteine protease Reduce aphid performance; Induce ROS burst in an EDR1-dependent manner in
tobacco

Guo et al., 2020

NlMLP Nilaparvata lugens Mucin-like protein Salivary sheath formation; Induce plant defense response in rice and tobacco Shangguan et al.,
2018

Nl12 Nilaparvata lugens Disulfide isomerase Induce cell death, expression of defense-related genes, and callose deposition in
tobacco

Rao et al., 2019

Nl16 Nilaparvata lugens Apolipophorin-III
protein

Induce cell death, expression of defense-related genes, and callose deposition in
tobacco

Rao et al., 2019

Nl28 Nilaparvata lugens Cysteine-rich protein Induce cell death, expression of defense-related genes, and callose deposition in
Nicotiana benthamiana

Rao et al., 2019

Nl32 Nilaparvata lugens Chemosensory
protein

Induce a dwarf phenotype, expression of defense-related genes, and callose deposition
in tobacco

Rao et al., 2019

Nl40 Nilaparvata lugens N.lugens-specific
salivary protein

Induce chlorosis, expression of defense-related genes, and callose deposition in tobacco Rao et al., 2019

Nl43 Nilaparvata lugens Uncharacterized
protein

Induce cell death, expression of defense-related genes, and callose deposition in
tobacco

Rao et al., 2019

VgN Nilaparvata lugens N-terminal subunit
of vitellogenin

Trigger strong defense responses in rice Zeng et al., 2023

Te1 Tetranychus evansi Tetranins Induce JA, SA, and ABA biosynthesis in tobacco Iida et al., 2019

Te2 Tetranychus evansi Tetranins Induce JA, SA, and ABA biosynthesis in tobacco Iida et al., 2019

TePDI Tetranychus evansi Disulfide isomerase Reduce aphid performance; Induce ROS burst, callose deposition, expression of
defense-related genes, and cell death in an SGT1/HSP90-dependent manner in tobacco

Cui et al., 2023

RP309 Riptortus pedestris R. pedestris-specific
salivary protein

Induce cell death, ROS burst, and the expression of PTI marker genes in tobacco Dong et al., 2022

PLP Bacteria in
Spodoptera
littoralis

Porin-like protein Induce defense-related early events in Arabidopsis Guo et al., 2013

GroEL Buchnera
aphidicola in
Macrosiphum
euphorbiae

Chaperonin Reduce aphid fecundity; Induce ROS burst and expression of PTI marker genes in
Arabidopsis

Chaudhary et al.,
2014
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TABLE 2 Identified insect-associated effector proteins.

Name Origin Protein
characterization

Function Reference

GOX Helicoverpa zea Glucose oxidase Inhibit the production of nicotine in tobacco Musser et al., 2002

HARP1 Helicoverpa armigera Venom R-like protein Enhance cotton bollworm feeding performance; Block JA pathway
by interacting with JAZ in Arabidopsis

Chen et al., 2019

HAS1 Helicoverpa armigera Venom R-like protein Enhance cotton bollworm feeding performance; Block JA pathway
by interacting with MYC3/MYC4 in Arabidopsis

Chen et al., 2023

C002 Myzus persicae Salivary glands-abundant
secretory protein

Promote aphid colonization in tobacco Pitino and
Hogenhout, 2013

Mp55 Myzus persicae Salivary glands-abundant
secretory protein

Increase aphid reproduction; Reduce accumulation of 4-
methoxyindol-3-ylmethylglucosinolate, callose, and hydrogen
peroxide in tobacco

Elzinga et al., 2014

Mp1 Myzus persicae Salivary glands-abundant
secretory protein

Increase aphid reproduction; Target trafficking protein VPS52 in
tobacco

Rodriguez et al., 2017

MIF Acyrthosiphon
Pisum; Myzus persicae

Macrophage migration
inhibitory factor

Enable aphid survival, fecundity, and feeding; Suppress Cry-
triggered defenses in tobacco

Naessens et al., 2015

Me10 Macrosiphum euphorbiae Salivary glands-abundant
secretory protein

Enhance aphid fecundity; Suppress defenses and interact with
tomato TFT7 in tomato

Atamian et al., 2013;
Chaudhary et al.,
2019

Me23 Macrosiphum euphorbiae Glutathione peroxidase Suppress plant defenses in tobacco Atamian et al., 2013

ACE1 and
ACE2

Acyrthosiphon pisum Angiotensin-converting
enzymes

Enable aphid feeding and survival in tobacco Wang et al., 2015b

Armet Acyrthosiphon pisum Arginine-rich, mutated in
early stage of tumors

Enable aphid feeding; Elicit SA pathway in tobacco Wang et al., 2015a;
Cui et al., 2019

ApHRC Acyrthosiphon pisum Histidine-rich Ca2+-
binding like protein

Promote aphid colonization; Repress Ca2+ elevation and ROS
accumulation

Wang et al., 2020

Sg2204 Schizaphis graminum Salivary glands-abundant
secretory protein

Enable aphid feeding; Suppress JA, SA pathways, and cell death
caused by BAX/INF1 in tobacco

Zhang et al., 2022a

Sm9723 Sitobion miscanthi Salivary glands-abundant
secretory protein

Enable aphid feeding; Suppress JA, SA pathways, and BAX/INF1-
induced cell death in tobacco

Zhang et al., 2022b

NlEG1 Nilaparvata lugens Endo-b-1,4-Glucanase Enable BPH feeding; Degrade celluloses in rice Ji et al., 2017

NlSEF1 Nilaparvata lugens EF-hand calcium-binding
protein

Suppress the production of Ca2+ and H2O2 in rice Ye et al., 2017

NlugOBP11 Nilaparvata lugens Odorant-binding protein Enable BPH feeding; Suppress SA pathway in rice Liu et al., 2021

CaM Nilaparvata lugens;
Laodelphax striatellus

Calmodulin binding
protein

Enable BPH fecundity; Suppress H2O2 accumulation, and callose
deposition in rice

Fu et al., 2022

NlSP7 Nilaparvata lugens Salivary glands-abundant
secretory protein

Enable BPH feeding; Mediate tricin metabolism in rice Gong et al., 2022

DNase II Laodelphax striatellus DNase II Enable SBPH feeding performance; Reduce H2O2 and callose
accumulation in rice

Huang et al., 2019

VgC Laodelphax striatellus C-terminal peptide of
vitellogenin

Suppress H2O2 accumulation by targeting OsWRKY71 in rice Ji et al., 2021

LsSP1 Laodelphax striatellus Salivary glands-specific
protein

Enable SBPH feeding performance; Reduce SA responses by
interacting with PLCPs in rice

Huang et al., 2023

LAC1 Bemisia tabaci Laccase Enable whitefly survival; Upregulated by JA signaling in tomato Yang et al., 2017

BtFer1 Bemisia tabaci Ferritin Enable whitefly survival; Suppress JA pathway in tomato Su et al., 2019

Bsp9 Bemisia tabaci Salivary glands-abundant
secretory protein

Promote whitefly performance; Suppress plant defenses by
interacting with WRKY33 tobacco

Wang et al., 2019

Bt56 Bemisia tabaci Low molecular weight
salivary protein

Promote whitefly performance; Elicit SA pathway by targeting
tobacco NTH202

Xu et al., 2019

(Continued)
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(Sitobion miscanthi) could suppress BAX and PAMP INF1-induced

cell death (Zhang et al., 2022a; Zhang et al., 2022b). Furthermore,

spider mite effectors Te28 and Te84 could also suppress cell death

caused by the elicitor TePDI (Cui et al., 2023). However, as yet, the

targets or receptors of many effectors in plants have not

been identified.

Like elicitors, some effectors also come from insect-borne

microbes. Notable examples are the SAP11 and SAP54 from

Aster Yellows phytoplasma strain Witches’ Broom (AY-WB).

They alter plant development and defense responses by the

destabilization of CINCINNATA (CIN)-related TEOSINT

BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR

(TCP) and MADS domain transcription factors (MTFs) to

enhance insect vector reproduction (MacLean et al., 2011; Sugio

et al., 2011; MacLean et al., 2014). Other microbe-derived effectors,

such as C2 from tomato yellow leaf curl China virus and 2b from

cucumber mosaic virus (CMV), promote insect vector infestation

by blocking the JA pathway in the plant (Wu et al., 2017; Li et al.,

2019b). Together, these examples illustrate that microbe-derived
Frontiers in Plant Science 07
effectors contribute to facilitating the fitness of their insect vectors

as an effective strategy for completing their infection cycles.
R gene-mediated plant resistance to
insect herbivores

To fight the secreted effectors, host plants have developed

resistance proteins. A set of genes in tomato, melon, and rice

conferring resistance against insects has been identified and

cloned. Two aphid resistance genes, the Mi-1.2 gene characterized

in the tomato (Solanum lycopersicum) and the Vat gene

characterized in the melon (Cucumis melo) confer resistance to

the potato aphid (M. euphorbiae) and the cotton aphid (A.gossypii),

respectively (Rossi et al., 1998; Vos et al., 1998; Dogimont et al.,

2014). Besides the potato aphid, the Mi-1.2 gene is also resistant to

two whitefly biotypes, a psyllid, and three nematode species,

suggesting that the Mi-1.2 gene confers a broad-spectrum

resistance (Vos et al., 1998). With the availability of genome
TABLE 2 Continued

Name Origin Protein
characterization

Function Reference

BtArmet Bemisia tabaci Arginine-rich, mutated in
early stage of tumors

Enhance whitefly performance; Target tobacco NtCYS6 Du et al., 2022

Tu28 Tetranychus urticae Protein with Armadillo-
type fold domain

Promote spider mite performance; Suppress SA-pathway in tobacco Villarroel et al., 2016

Tu84/Te84 Tetranychus urticae;
Tetranychus evansi

Salivary glands-abundant
secretory protein

Promote spider mite performance; Suppress SA pathway in tobacco Villarroel et al., 2016

NcSP84 Nephotettix
cincticeps

EF-hand calcium-binding
protein

Bind Ca2+ ions and facilitate stylet puncturing in rice Hattori et al., 2012

NcSP75 Nephotettix
cincticeps

Salivary glands-specific
protein

Enable leafhopper survival and feeding performance in rice Matsumoto and
Hattori, 2018

vH13 Mayetiola
destructor

M. destructor-specific
salivary protein

Elicit effector-triggered immunity in resistant wheat containing H13 Aggarwal et al., 2014

SSGP-71 Mayetiola
destructor

E3-ubiquitin-ligase mimic Target Skp in wheat Zhao et al., 2015

vH6 Mayetiola
destructor

E3-ubiquitin-ligase mimic
with an F box and 13
LRRs

Elicit effector-triggered immunity in resistant wheat containing H6 Zhao et al., 2015

vH9 Mayetiola
destructor

E3-ubiquitin-ligase mimic
without F box

Elicit effector-triggered immunity in resistant wheat containing H9 Zhao et al., 2015

SAP11 Aster Yellows phytoplasma
in Macrosteles
quadrilineatus

A 9-kDa protein Promote leafhopper performance; Bind and destabilize TCP to
suppress JA synthesis in Arabidopsis

Sugio et al., 2011

SAP54 Aster Yellows phytoplasma
in Macrosteles

A 10.7-kDa protein Promote leafhopper colonization; Degrade MTFs by interacting
with RAD23 in Arabidopsis

MacLean et al., 2011;
MacLean et al., 2014

2b Cucumber mosaic virus in
Myzus persicae

Virus protein Interact with JAZ1 to suppress JA signaling in tobacco Wu et al., 2017

bC1 Tomato yellow leaf curl
China virus in
Bemisia tabaci

Virus protein Promote whitefly performance; Repress terpenoid synthesis by
binding to MYC2

Luan et al., 2013; Li
et al., 2014

C2 Tomato yellow leaf curl
virus in Bemisia tabaci

Virus protein Promote whitefly survival and reproduction; Suppress plant
defenses by interacting with plant ubiquitin

Li et al., 2019b
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sequence data and molecular markers in rice, research on BPH-

resistance genes has made a spurt of progress. BPH-rice interaction

has become an excellent model system for the study of plant-insect

interactions and co-evolution (Jing et al., 2017). To date, a total of

17 genes conferring resistance to BPH (Bph1, Bph2, Bph3, Bph6,

Bph7, Bph9, Bph10, Bph14, Bph15, Bph18, Bph21, Bph26, bph29,

Bph30, Bph32, Bph37, Bph40) have been cloned and characterized in

rice plants (Du et al., 2020; Muduli et al., 2021; Shi et al., 2021; Zhou

et al., 2021), which has shed a light on the molecular basis of plant-

insect interactions.

Bph14, which encodes a typical NLR protein, was the first

isolated BPH-resistance gene (Du et al., 2009). Further research

has revealed that BPH14 protein stabilizes WRKY46 and WRKY72

to increase the expression of the receptor-like cytoplasmic kinase

gene RLCK281 in rice (Hu et al., 2017). Bph9, a BPH-resistance gene

mapped on the long arm of rice chromosome 12 (12L), which is

allelic with another seven BPH-resistance genes (Bph1, Bph2, Bph7,

Bph10, Bph18, Bph21, and Bph26), encodes an unusual NLR

protein that confers resistance to BPH by enhancing SA and JA

signaling pathways (Zhao et al., 2016). BPH6, an uncharacterized

protein that localizes to the exocyst, interacts with the exocyst

subunits OsEXO70E1 and OsEXO70H3, increases exocytosis,

and participates in cell wall maintenance and reinforcement (Guo

et al., 2018; Wu et al., 2022). Recently, a novel dominant BPH-

resistance gene, Bph30, was isolated from the short arm of rice

chromosome 4 (4S) (Wang et al., 2018; Shi et al., 2021). Bph30

is strongly expressed in sclerenchyma cells and encodes a

protein belonging to a novel gene family with two leucine-rich

domains (LRDs). A functional study showed that BPH30

enhances cellulose and hemicellulose synthesis, making the cell

walls stiffer and sclerenchyma thicker to prevent stylets from

penetrating the leaf sheath tissue, thereby conferring broad

resistance to BPH and WBPH in rice (Shi et al., 2021). Bph15

encodes a lectin receptor-like kinase (LecRK), which functions in

both innate immunity and seed germination in plants (Cheng et al.,

2013a). Bph3 consists of a cluster of three genes encoding the

plasma membrane-localized LecRKs (OsLecRK1, OsLecRK2, and

OsLecRK3), which have a cumulative effect on resistance (Liu et al.,

2015). These results indicate the diversity in resistance genes

and mechanisms.

Based on our knowledge, except for two lectin receptor-like

receptors and a few R proteins with unusual structures, such as

BPH6 and BPH30, most isolated BPH-resistance proteins belong to

nucleotide-binding and leucine-rich repeat (NLR) proteins,

suggesting commonality between the perception of phloem-

feeding insects and pathogens by plants. Bph3 and Bph15

encode the LecRKs, which resemble pattern recognition receptors

(PRRs). PRRs are activated in response to microbe/pathogen/

herbivore-associated molecular patterns or apoplastic effectors

(Kaloshian and Walling, 2016; Ngou et al., 2022). The first layer

of resistance to BPH may be BPH3 or BPH15, which is activated by

the recognition of elicitors or apoplastic effectors. The second layer

of resistance to BPH may be BPH6, BPH14, and BPH9 and their

alleles, which can specifically recognize their cognate effectors and

trigger defense responses (Jing et al., 2017; Du et al., 2020; Zheng

et al., 2021).
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Effectors recognized in R protein-
mediated resistance

Despite the recent insights into the complex repertoire of R

proteins, only a few effectors recognized by R proteins have been

identified until now. This may be owing to the genetic intractability

of the insects. At least 40 brown planthopper-resistant genes have

been discovered, but just four corresponding BPH effector loci

(Qhp7, Qgr5, Qgr14, and vBph1) were mapped (Jing et al., 2014;

Kobayashi et al., 2014). The effectors recognized by R proteins had

only been isolated fromHessian fly (Mayetiola destructor) until now

(Stuart, 2015). The first Hessian fly virulence gene, virulence to

Hessian fly 13 (vH13), was isolated using a map-based cloning

strategy (Rider et al., 2002; Aggarwal et al., 2009; Aggarwal et al.,

2014). Functional assays have shown that vH13 transcripts are only

detected in H13-avirulent larvae and are lost in H13-virulent larvae.

RNAi results revealed that the knockdown of vH13 helped some

H13-avirulent larvae to escape the resistance triggered by H13 in

wheat. Furthermore, vH13 encodes a small modular protein with no

sequence similarities to other proteins in the database (Aggarwal

et al., 2014).

Two additional Hessian fly effectors, vH6 and vH9, were

identified by the completion of the Hessian fly genome

sequencing and gene expression analyses. vH6 and vH9 can

overcome the resistance mediated by wheat R protein H6 and H9,

respectively (Zhao et al., 2015). Both vH6 and vH9 encode SSGP-71-

like proteins. In H6-virulent Hessian flies, an SSGP-71 gene

(Mdes009086-RA) is lost, suggesting Mdes009086-RA is the

cognate effector of H6. In H9-virulent Hessian flies, two

candidate SSGP-71 proteins without F-box domains were

perfectly associated with H9 virulence, especially candidate 2

(Mdes015365-RA). These results indicate that the SSGP-71 family

may play an essential role in the evolution of Hessian fly biotypes

(Zhao et al., 2015). However, no cognate Hessian fly R protein has

been cloned successfully, and the recognition mechanism of these

Hessian fly effectors by the cognate R protein remains to

be explored.
Perspectives and challenges

In recent years, rapid technological progress in the discovery

and interrogation of plant and insect genomes, transcriptomes, and

proteomes has been made. These developments have provided

opportunities for the exploration of molecules delivered by

herbivores that activate or suppress plant immunity (Hogenhout

and Bos, 2011; Kaloshian and Walling, 2016). Cas9-CRISPR and

RNAi technologies can effectively silence host plant/insect genes

and, therefore, can help us to reveal the important signal molecules

and the key pathways in plant-insect interactions (Ma et al., 2015;

Liu et al., 2020; Hough et al., 2022). These discoveries give us an

advanced understanding of the plant-insect relationship. In

particular, the RNAi tool has made important contributions to

the study of the function of insect elicitors and effectors in insect

performance and plant immunity. There are several strategies for
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the delivery of double-stranded RNA (dsRNA), including external

spraying, artificial feeding/micro-injection of synthesized dsRNA,

and construction of transgenic plant lines with high levels of

endogenous dsRNA (Shangguan et al., 2018; Huang et al., 2020;

Zhang et al., 2022a). Over the years, RNAi has been considered an

effective strategy for the control of insect pests (Liu et al., 2020;

Hough et al., 2022). In addition, great progress has been made in the

research of insect resistance proteins, especially the resistance

mechanism of BPH-resistant genes (Jing et al., 2017; Du et al.,

2020; Zheng et al., 2021).

Despite these advances, major gaps in our understanding of

interactions between insect herbivores and host plants remain to be

filled. Although a large number of elicitors and effectors have been

identified, only a few have revealed corresponding host targets. The

plant defense pathways interfered with by the majority of elicitors

and effectors are obscure. Additionally, little is known about the

relationship between cognate insect effector and cognate R protein.

On the one hand, no cognate effector of the cloned R genes has been

discovered; on the other hand, while three R protein-recognized

effectors in Hessian flies were identified, no corresponding Hessian

fly R genes have been cloned. Combining map-based cloning and

multi-omics approaches may contribute to overcoming these

challenges. We believe that these questions will be the priority of

research on plant-insect interactions in the next decade, and the

answers to these questions will provide more insight into how to

control these pests.
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