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TSPTFBS 2.0: trans-species
prediction of transcription factor
binding sites and identification of
their core motifs in plants

Huiling Cheng †, Lifen Liu †, Yuying Zhou, Kaixuan Deng,
Yuanxin Ge and Xuehai Hu*

College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural
University, Wuhan, Hubei, China
Introduction: An emerging approach using promoter tiling deletion via genome

editing is beginning to become popular in plants. Identifying the precise positions

of core motifs within plant gene promoter is of great demand but they are still

largely unknown. We previously developed TSPTFBS of 265 Arabidopsis

transcription factor binding sites (TFBSs) prediction models, which now cannot

meet the above demand of identifying the core motif.

Methods: Here, we additionally introduced 104 maize and 20 rice TFBS datasets

and utilized DenseNet for model construction on a large-scale dataset of a total

of 389 plant TFs. More importantly, we combined three biological interpretability

methods including DeepLIFT, in-silico tiling deletion, and in-silico mutagenesis

to identify the potential core motifs of any given genomic region.

Results: For the results, DenseNet not only has achieved greater predictability than

baselinemethods such as LS-GKM andMEME for above 389 TFs from Arabidopsis,

maize and rice, but also has greater performance on trans-species prediction of a

total of 15 TFs from other six plant species. A motif analysis based on TF-MoDISco

and global importance analysis (GIA) further provide the biological implication of

the core motif identified by three interpretability methods. Finally, we developed a

pipeline of TSPTFBS 2.0, which integrates 389 DenseNet-based models of TF

binding and the above three interpretability methods.

Discussion: TSPTFBS 2.0 was implemented as a user-friendly web-server (http://

www.hzau-hulab.com/TSPTFBS/), which can support important references for

editing targets of any given plant promoters and it has great potentials to provide

reliable editing target of genetic screen experiments in plants.

KEYWORDS

transcription factor binding sites, DenseNet, core motif, biological interpretability,
trans-species prediction
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Introduction

Transcription factors (TFs) can activate or suppress

transcription of genes by binding to the specific DNA sequences

that are known as transcription factor binding sites (TFBSs),

thereby playing an important role in gene expression. With the

popularization of genome editing technology such as CRISPR-Cas9,

it is now possible to genetically manipulate a TFBS to study how a

TFBS regulates gene expression and then indirectly affects

quantitative traits in plants (Wallace et al., 2018). Recently, a

breakthrough reported that deleting the core motif (a 5-10 bp

conserved DNA fragment that largely contributes the binding

event) within a TFBS of An-1 through promoter tiling deletion of

the rice IPA1 gene can improve rice yield (Song et al., 2022). Thus,

the identification of TFBSs, especially their core motifs, is of great

demand in plant community and has become a fundamental step

for plant breeding 4.0 (Wallace et al., 2018).

With the rapid development of next-generation sequencing

(NGS) techniques, a number of experimental methods, both in

vivo and in vitro, have been developed for TFBS discovery. The in

vitro methods mainly contain protein binding-microarrays (PBM)

(Berger and Bulyk, 2009), systematic evolution of ligands by

exponential enrichment followed by sequencing (SELEX-seq)

(Jolma et al., 2010), and DNA affinity purification followed by

sequencing (DAP-seq) (O’Malley et al., 2016). The in vivo methods

primarily include chromatin immunoprecipitation sequencing

(ChIP-seq) (Johnson et al., 2007), chromatin endogenous cleavage

sequencing (ChEC-seq) (Zentner et al., 2015). In the last decade,

these high-throughput technologies, particularly ChIP-seq, have

produced a large amount of TF-DNA binding data from some big

projects, such as Encyclopedia of DNA Elements (ENCODE)

(Moore et al., 2020) and Roadmap Epigenomics (Kundaje et al.,

2015). They have enabled new insights into gene expression

regulation in human and mouse. Although these experimental

methods are successful, the application of them is limited by the

long experiment time and high cost. Thus, developing

computational methods to predict TFBSs and their core motifs

has become an urgent issue.

Based on existing abundant experimental data, a series of data-

driven computational methods have been proposed for predicting

TFBSs varying from simple pattern matching methods to more

complex models. As TFBSs are degenerate sequence motifs

(Stormo, 2000), early researchers generally adopted position

weight matrices (PWMs) to represent TFBSs and established two

main TF databases: JASPAR (Fornes et al., 2020) and TRANSFAC

(Matys et al., 2006). Based on databases, pattern matching methods

attempted to predict TFBSs by just scanning candidate sequences of

interests, with a model derived from experimentally determined

binding sites for TFs (Wasserman and Sandelin, 2004; Grant et al.,

2011). However, these scanning-based methods have two main

disadvantages: (a) they only consider the DNA sequence features,

but do not consider the information of respond variables like TF

binding and gene expression. This leads to a high false positive rate

because many matched DNA fragments are chromatin inaccessible

without regulation function; (b) they cannot learn position

dependencies between individual motifs.
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In addition to these PWMs-based methods, many machine

learning-based methods also have been developed to predict TFBSs.

For a famous example, LS-GKM (Lee, 2016) leveraged support

vector machine (SVM) to identify putative TBFSs of TFs and

discover novel core motifs. For another example, Tsai et al.

(2015) employed random forest to determine the sequence

features, histone modification features and DNA structure

features as significant features in TFBS prediction. Recently, deep

learning methods have shown impressive performance in many

fields, such as natural language processing and computer vision,

inspiring researchers to apply deep learning-based approaches to

predict putative TFBSs and motifs (He et al., 2021). For example,

DeepBind (Alipanahi et al., 2015), one of the earliest and well-

validated methods, leveraged convolutional neural networks

(CNNs) to predict the sequence specificity of TF-DNA binding

data. DeepSEA (Zhou and Troyanskaya, 2015), another deep

learning-based algorithm, also employed CNNs and multi-task

learning to identify TF-DNA binding motifs and functional effects

of noncoding variants from large-scale chromatin profiling data.

DanQ (Quang and Xie, 2016), an improved model of DeepSEA,

combined CNN with bi-directional long short-term memory (Bi-

LSTM) to predict motifs and quantify the functional SNPs from

sequences. These three deep learning methods achieve outstanding

performance and are now considered the state-of-the-art methods.

In plant community, relevant studies have lagged behind (Lai

et al., 2019). For the data resource, the first large scale TFBS dataset

of 529 Arabidopsis TFs was produced by DAP-seq in 2016

(O’Malley et al., 2016). Another remarkable progress is the 104

maize TFBS datasets produced by ChIP-seq in 2020 (Tu et al.,

2020). Although reported TFBS datasets from other plant species

are scattered, an important advance of ChIP-Hub offers a new

centralized resource of TFBS datasets covering more than 40 plant

species (Fu et al., 2022). These works all provide rice data resource

for data-driven studies to meet the demands of plant community.

However, existing TFBS datasets are still the tip of the iceberg when

compared with the whole TFs across all plant species. Therefore,

how to make use of existing TFBS data from model plant species to

solve TFBS prediction tasks of other plant species is the trans-

species prediction bottleneck of the current plant research.

For the modeling advances, our group previously developed a

docker image called TSPTFBS, which contains 265 Arabidopsis

TFBS prediction models based on DeepCNN (Liu et al., 2021). It

provided a new insight for the computational methods of TFBS

prediction in plants and demonstrated that the established models

are feasible for trans-species TFBS prediction in other plants. A

recent progress of PlantBind developed an attention-based multi-

label deep learning framework to simultaneously predict the

potential binding sites of 315 Arabidopsis TFs (Yan et al., 2022),

and another tool of ‘TDThub’ (Grau and Franco-Zorrilla, 2022),

who was based on FIMO (Grant et al., 2011), is a webserver for

quick and intuitive studies of plant gene promoters. However, deep

learning-based prediction model can only predict long DNA

fragments with several hundred base pairs (bp) and cannot

identify the precise genomic location of its core motifs (5-20 bp)

with base resolution. In short, on one hand, scanning-based

computational methods like FIMO (Grant et al., 2011) has an
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obvious defect of high false positive rate; on the other hand, deep

learning-based computational methods like TSPTFBS (Liu et al.,

2021) have a shortcoming of low resolution of motif identification.

This is the identification bottleneck of functional motifs of the

current plant research.

Aim at these two bottlenecks, our current work will make the

following attempts. (i) We additionally introduced 104 maize and

20 rice TFBS datasets and utilized DenseNet for model construction

on a large-scale dataset of a total of 389 plant TFs. We hope transfer

predictability will be improved based on more powerful models

trained on more TFBS datasets. (ii) Based on the trained models, we

will combine three interpretability methods including DeepLIFT

(Shrikumar et al., 2017), in-silico tiling deletion (de Almeida et al.,

2022), and in-silico mutagenesis (Alipanahi et al., 2015) to identify

the potential core motifs which importantly contribute TF binding

event. Our work will have important applications not only on the

molecular mechanism analysis of plant gene expression regulation,

but also on the practice for plant breeding 4.0─breeding by genome

editing (Wallace et al., 2018; Gao, 2021).
Material and methods

Data sources and preprocessing

Here, we first downloaded large-scale datasets including ChIP-

seq datasets for 104 Zea mays TFs (Tu et al., 2020) (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137972) and 20

Oryza sativa TFs (Fu et al., 2022) (https://biobigdata.nju.edu.cn/

ChIPHub/), DAP-seq datasets for 265 Arabidopsis TFs (O’Malley

et al., 2016) (http://neomorph.salk.edu/PlantCistromeDB).

For the positive samples of a given TF, we extended the peak

region to both the left and the right by 250 bp from the summit

position or the middle position. For the negative samples of each

TF, we randomly selected the sequences with the same sequence

length and numbers as the positive sample after excluding the

positive sample information and histone modification information

in the intergenic regions of Zea mays, Arabidopsis and Oryza sativa

genomes respectively. The distribution of positive sample number

of 389 TFBS datasets is shown in Figure S1. We provided all the

positive samples of each of 104 Zea mays TFs, 265 Arabidopsis TFs

and 20 Oryza sativa TFs as bed files format on GitHub at: https://

github.com/liulifenyf/TSPTFBS-2.0/tree/main/Data.

For each TF from three species, we pooled positive samples and

negative samples together, and used uniform random sampling to

divide the whole datasets into two parts: 80% for training and 20%

for independent testing.
The overall architecture of DenseNet

We then adopted a powerful architecture of DenseNet to build

TFBS prediction models for each dataset. As the best paper award in

CVPR-2017, DenseNet draws on the idea of ResNet to closely

connect each layer with all the previous layers (Huang et al., 2016).

It benefits from feature reuse to enhance feature propagation, thus
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alleviating the vanishing-gradient problem with depth deepening.

The architecture of the DenseNet model employed in our study is

composed of two convolution layers with the same number of

convolution filters (filters = 64, kernel size = 3), an average pooling

layer (stride = 2), four DenseBlocks and three TransitionLayers

(Figure 1A). Each DenseBlock has Li DenseLayers (Li = 6, 12, 24,

16), which is composed of two convolution layers and all of these

DenseLayers connect (with matching feature-map sizes) directly

with each other. The TransitionLayer is mainly used to connect two

DenseBlocks, including a convolution layer (kernel size = 1) and an

average pooling layer (stride = 2). Finally, we flatten the output of

the last DenseBlock and connect it to a fully connected layer to

generate an output value. The maximum number of epochs to train

was set to 80 and the learning rate was set to 0.001. We employed

TensorFlow 2.0 to train models, and one can find the code at

https://github.com/liulifenyf/TSPTFBS-2.0.
Comparison of DenseNet models with
other baseline methods

We compared the presented DenseNet models with other

existing baseline methods, namely LS-GKM, DeepCNN, MEME-

M1-MAX. For each method, we optimized the parameters and

report the best results to perform a fair comparison. For LS-GKM,

we first downloaded lsgkm from GitHub - Dongwon-Lee/lsgkm and

then employed the function of ‘gkmtrain’ and the function of

‘gkmpredict’ with the default parameters. For DeepCNN, we

designed the model including a convolution layer, a rectified

linear unit (ReLU) layer, a max pooling layer and three fully-

connected layers, and used sigmoid function for the output layer

(Liu et al., 2021). The maximum number of epochs to train was set

to 100 and the learning rate was set to 0.001. For MEME-M1-MAX,

we used the training set of positive samples as the input of MEME-

ChIP to extract the first five significant PWMs (with –meme-

nmotifs 5) named M1, M2, M3, M4, and M5, and then employed

six ways to score the test set of positive samples: M1-SUM (scan M1

and take sum of position scores), M1-MAX (scan M1 and take max

of position scores), SUM-SUM (scan each M1.M5, sum over

positions, then sum of five scores), MAX-SUM (scan M1.M5,

max over positions, then sum of five scores), SUM-MAX (scan

M1.M5, sum over positions, then max of five scores), and MAX-

MAX (scan M1.M5, max over positions, then max of five scores)

(Alipanahi et al., 2015). The results showed that when using the

M1-MAX, the AUC for the most TF is higher than the other five

ways. We finally selected M1-MAX as the final model and named it

‘MEME-M1-MAX’.
Trans-species predictions

For a given TF from other species, we computed the protein

sequence similarity between this TF and all the TFs of TSPTFBS and

TSPTFBS 2.0 respectively via Blastp, and then utilized the

prediction model of the most homologous TF (via alignment

score and E-value< 1E-10) to perform trans-species prediction.
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Evaluation metrics

In this paper, the performance of all models were evaluated by

ROC-AUC on the testing set to allow for fair comparisons with

other existing baseline prediction methods. The performance

measure is defined as follows:

ROC-AUC: The metric indicates the area under the receiver

operating characteristic curve. It contrasts False Positive Rate (FPR)

against True Positive Rate (TPR). A ROC-AUC value around 0.5

suggests a random classifier. The calculation method of TPR and

FPR is defined as follows:

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

For the evaluation indexes of trans-species prediction, we used

PPV (positive predictive value), NPV (negative predictive value)

and recall as follows:
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PPV =
TP

TP + FP
(3)

NPV =
TN

TN + FN
(4)

recall =
TP

TP + FN
(5)

TP (true positive) represents correctly predicted ‘positive’, TN

(true negative) represents correctly predicted ‘negative’, FP (false

positive) represents ‘negative’ incorrectly predicted as ‘positive’ and

FN (false negative) represents ‘positive’ incorrectly predicted

as ‘negative’.
DeepLIFT

We employed a powerful interpretability tool called ‘DeepLIFT’,

a new approach to assign importance score to the inputs for a given

output. Specifically, DeepLIFT first compared the prediction values
B C

A

FIGURE 1

The architecture of deep learning model of DenseNet and the prediction performance. (A)The model architecture of DenseNet. (B) The ROCs and
AUC distributions of DenseNet, LS-GKM, DeepCNN and MEME-M1-MAX on TFBS predictions for 389 TFs from three species. (C) The detailed AUC
distributions of DenseNet, LS-GKM, DeepCNN and MEME-M1-MAX on three model plant species. *** represents a significant difference.
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of the given sequences and their reference sequences (The reference

sequence refers to dinucleotide shuffle based on the input sequence)

and then assigned a DeepLIFT contribution score to each base of a

given sequence according to decompose the difference by a

backpropagation-like algorithm (Grau and Franco-Zorrilla, 2022).

One can find the DeepLIFT code at https://github.com/liulifenyf/

TSPTFBS-2.0/blob/main/interpretability.py.
In-silico tiling-deletion

We further employed in-silico tiling-deletion (de Almeida et al.,

2022) which simulates the experimental process of gene editing with

high coverage of the whole sequence to identify those regions that

have great influences with binding intensity after their deletions.

Specifically, it was performed by scrambling the nucleotides within

10 bp windows with 1 bp steps. We employed ‘N’ to replace the

scrambled nucleotides and computed the predicted value of the

whole sequence edited with ‘N’. One can find the In-silico tiling-

deletion code at https://github.com/liulifenyf/TSPTFBS-2.0/blob/

main/interpretability.py.
In-silico mutagenesis

We used in-silico mutagenesis, in which every mutation to a

sequence is tested, a powerful approach for dissecting the exact

nucleotides driving a binding activity to compute the predicted

binding intensity (the binding probability predicted with model)

of all possible mutations to a sequence (Alipanahi et al., 2015;

Kelley et al., 2016). We drew a heatmap that display the change in

predicted binding intensity from mutation at each position to each

alternative nucleotide. One can find the in-silico mutagenesis code

at https://github.com/liulifenyf/TSPTFBS-2.0/blob/main/

interpretability.py.
TF-MoDISco

A number of motif discovery methods for neural network have

been produced in recent years, such as DeepBind (Alipanahi et al.,

2015), Basset (Kelley et al., 2016). These methods only analyze

individual filters and do not explain the fact that neural network

learn distributed representations where multiple neurons cooperate

to describe a single pattern, leading found patterns redundant. A new

motif analysis tool of TF-MoDISco can generate high-quality, non-

redundant motifs which takes DeepLIFT contribution scores as the

input and then recognizes segments with substantial contributions

that higher than background distribution of scores as ‘seqlets’

(Shrikumar et al., 2018). One can then align the identified seqlets

into known TF motifs in large-scale databases such as JARSPAR.

The parameters used in this study are:

target_seqlet_fdr=0.15;

sliding_window_size=15;

flank_size=5;

final_min_cluster_size=60.
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And the code used to perform TF_MoDISco can be found at

h t t p s : / / g i t h u b . c om / l i u l i f e n y f / T S PTFB S - 2 . 0 / b l o b /

main/modisco_test.py.
Global importance analysis

Unlike the previously proposed model interpretability approaches

for deep learning, such as attribution methods, global importance

analysis (GIA) quantifies the population-level effect size that identified

potential core motifs have on model predictions (Koo et al., 2021).

GIA provides a natural follow up to current interpretability methods

to quantitatively test hypotheses of identified potential core motifs

(and their interactions with other patterns). In our study, we employed

the GIA to quantify the effect size of motif identified by TF-MoDISco.

More specifically, for each core motif identified by TF-MoDISco, we

embedded the DNA sequence fragment with the top affinity according

to the annotated PWM, into the different positions of the 70th bp, the

170th bp, the 270th bp, the 370th bp and 470th bp within 1000 negative

samples and predicted their binding probability with the trained

model. The original predicted value was subtracted from the average

probability across the different positions to obtain the local

importance. The resultant local importance was averaged across all

1000 negative samples to derive the final global importance of each

motif. Furthermore, we embedded all possible single nucleotide

mutants of the top affinity sequence of seqlet1 (GCACGTGC) in

1000 negative samples to calculate their global importance and drew a

heatmap of their differences of global importance with a sequence logo

that has heights scaled according to the L2-norm at each position.
Distribution pattern of six enriched TF
motifs of bHLH145

To demonstrate distribution pattern of six enriched TF motifs,

we calculated the motif occurrence frequency of six TF motifs

within bHLH145 via a R package of ‘motifmatchr’ with the

following parameters: p.cutoff=1e-05 (Schep, 2021). More

specifically, for each motif, we first counted the total instance

number as the occurrence number of this motif and then mapped

the position of all instances of the selected motif within the positive

samples of bHLH145 via the function of ‘matchMotifs’ in the R

package of ‘motifmatchr’. As a result, we gave the matrix of

occurrence number of each positive in Table S3.
Results

DenseNet has achieved greater
predictability than other baseline methods

We previously have verified that the prediction performance of

TSPTFBS is superior to other methods on 265 Arabidopsis TFBS

datasets. We now naturally ask whether TSPTFBS 2.0, which both

integrated additional 124 TFBS datasets (104 Zea mays and 20

Oryza sativa, a total of 389 datasets) and employed a new model
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architecture of DenseNet (Huang et al., 2016) (Figure 1A), will

perform better prediction. Expectedly, DenseNet substantially

outperformed the previous approaches by achieving a median

AUC of 0.9997 on the test set of a total of 389 datasets, while LS-

GKM (Lee, 2016), DeepCNN (Liu et al., 2021) and MEME-M1-

MAX obtained a median AUC of 0.943 (t.test, P-value=2.583E-78),

0.963 (t.test, P-value=5.016E-41) and 0.739 (t.test P-value=3.248E-

203) respectively (Figures 1B, C; Table S1). More precisely, the

median AUC value of DenseNet in Zea mays, Arabidopsis and

Oryza sativa were 0.979, 0.9999 and 0.996 respectively. LS-GKM

achieved a slightly better predictability in Zea mays (median AUC

0.991), but in Arabidopsis and Oryza sativa it was significantly

inferior to DenseNet (median AUC 0.912 in Arabidopsis and 0.961

in Oryza sativa). As a summary, this demonstrates that DenseNet

has achieved greater predictability than other baseline methods on a

total of 389 plant TFBS datasets from three plant model species.

TSPTFBS 2.0 integrating more
datasets is superior to TSPTFBS
on trans-species predictions

We next ask whether TSPTFBS 2.0 which integrated more

datasets will perform better than TSPTFBS 1.0 on trans-species
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TFBS predictions. To this end, we conducted a comparative analysis

of trans-species TFBS predictions between them under the idea of

transfer learning (Pan and Qiang, 2010). Firstly, we collected ChIP-

seq datasets of 15 TFs covering other six species from ChIP-Hub

(Fu et al. , 2022) (including each 1 for Arabis alpina ,

Chlamydomonas reinhardtii, Hordeum vulgare, Physcomitrella

patens, 2 for Eucalyptus grandis, and 9 for Solanum lycopersicum)

and then compared each TF prediction performance with TSPTFBS

1.0 and TSPTFBS 2.0 respectively.

For the result, 100% (9 out of 9) of tomato TFs in TSPTFBS 2.0

achieved greater positive predictive values (PPVs) and negative

predictive values (NPVs) than TSPTFBS 1.0, and 88.89% (8 out of

9) of tomato TFs achieved satisfied PPVs and NPVs between 0.8

and 1.0 (Figure 2A). For another 6 TFs from other five species,

66.7% (4 out of 6) of TFs in TSPTFBS 2.0 achieved greater PPVs and

NPVs than TSPTFBS 1.0, and 50% (3 out of 6) of TFs achieved

satisfied PPVs and NPVs between 0.8 and 1.0 (Figure 2B). In

summary, 86.67% (13 out of 15) TFs of TSPTFBS 2.0 yielded

greater PPVs and NPVs than those of TSPTFBS 1.0 (Figure 2C,

we listed PPVs and NPVs of 15 TFs with TSPTFBS 2.0 and

TSPTFBS 1.0 in Table S2), implying that TSPTFBS 2.0 trained

with more powerful model on more TFBS datasets is superior to

TSPTFBS 1.0 on trans-species predictions.
B

CA

FIGURE 2

The trans-species prediction performance. (A) The trans-species prediction performance (via PPV and NPV) of nine tomato TFs. (B) The trans-
species prediction performance (via PPV and NPV) of six TFs for other five species. (C) The comparative analysis on trans-species TFBS prediction
between TSPTFBS 2.0 and TSPTFBS 1.0 on a total of fifteen TFs covering six species (via PPV and NPV).
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A useful strategy of combining three
biological interpretability methods to
identify potential core motifs within a TFBS

There has been a new trend that plant scientists have employed

tiling-deletion-based CRISPR–Cas9 strategy to screen a gene

promoter and to identify its core motifs, which significantly affect

crop traits through regulating the expression of target gene, in plant

breeding (Song et al., 2022). We next ask whether we can identify

core motifs importantly contributing TF binding events, in turn

regulating target gene expression. To this end, we next explore a

new application, which is also a highlight of our current research:

identifying potential core motifs that significantly affect TF binding

by the following interpretability analysis.

Here, we adopted three mainstream interpretability methods:

backpropagation-based DeepLIFT (Shrikumar et al., 2017),

perturbation-based in-silico tiling deletion (de Almeida et al.,

2022) and in-silico mutagenesis (Alipanahi et al., 2015) from

different perspectives (see Materials and methods section for

more details). We next naturally ask whether combining three

interpretability methods can identify potential core motifs within

a TFBS accurately. We here focus on maize bHLH145 TF

(Zm00001d031717), and randomly select an example sequence

(Chr9: 1715886-1716386(+)) from its positive samples to

demonstrate the results of three methods (Figure 3): we found

that DeepLIFT has detected three regions (53-58 bp, 182-193 bp

and 262-267 bp) with successive high contribution scores, however,

we cannot judge whether those regions have great influences with

binding intensity after their deletions. Further combining the in-

silico tiling deletion result, we can clearly find that two of them have

obvious editing significance, and the in-silico mutagenesis result
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further indicated the mutation directions with the strongest editing

effects which relate to TF binding at every base (Figure 3). For

comparison, we also performed FIMO which scanned the given

DNA fragment to find motifs having good match with motifs in

database like MEME (Bailey et al., 2009). For the result, we found

that the regions detected by three interpretability methods are truly

knownmotifs (such as bHLH34 in the center). In contrast, the other

motifs detected by FIMO are ATHB-13, ZHD-1 and NAC043

(Figure 3), whose function need to be studied in the future. These

findings imply that we can accurately identify the potential core

motifs within a TFBS by combining three biological

interpretability methods.

TF mot i f ana lys i s wi th TF-MoDISco and g loba l

importance analysis

To investigate the biological implications of potential core

motifs identified by three interpretability methods, we employed a

motif discovery algorithm named TF-MoDISco to identify high-

quality and non-redundant TF motifs (Shrikumar et al., 2018).

Based on all the positive samples of maize bHLH145 TF, we totally

identified 9 seqlets, 6 out of which were perfectly matched to the

JASPAR database (Figure 4A). Expectedly, seqlet1 was mapped into

the bHLH145 motif in JASPAR (Figure 4A), implying that our

model has learned the core bHLH145 motif. To further explore

whether the identified core TF motifs are universally functional, we

performed the global importance analysis (GIA) to quantify their

effect sizes in the random context of negative samples (Koo et al.,

2021). We found that the core motif obtained by GIA is highly

consistent with it in JASPAR (Figure 4B), which indicates that the

core motif identified by TF-MoDISco also has important effects in a

random background, further demonstrating its sufficiency for

TF binding.
FIGURE 3

One positive in bHLH145 is used as an example to illustrate the ability to identify core motif of our work. The top panel shows the sequence region:
Chr9:1715866-1716386; the second panel shows the FIMO results; the third panel shows the DeepLIFT base contribution scores; the fourth panel
shows the result of in-silico tiling deletion which compute the difference of predicted value with a sliding window of 10 bp deletion across the
whole sequence; at the bottom, a heatmap showing the in-silico mutagenesis result.
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More interestingly, seqlet5 was mapped into the LEC2 motif

and has a high global importance (Figures 4A, C), which suggests

that the TF binding might involve cooperative TF motifs. We then

calculated motif occurrences of four cases (neither seqlet1 nor

seqlet5, only seqlet1, only seqlet5 and both seqlet1 and seqlet5) in

positive and negative samples respectively via a motif scanning

(Table S3). Expectedly, seqlet1 dominates the contributions and

appears in nearly a half of positive samples [(2682 + 260)/

6344≈46.4%)], and seqlet5 appears in a small number of positives

[(374 + 260)/6344≈9.99%)], implying its assistant function.

Interestingly, their co-occurrence in positives (260/6344≈4.1%) is

far greater than that of negative samples (4/6344≈0.063%)

(Figure 4D), which further suggests that there is a functional

interaction between the two seqlets in some positives and implies

the necessity of their co-occurrence for TF binding. Overall, the TF

motif analysis demonstrates that interpretability methods not only

can identify core motifs within a TFBS sample, but also have

potential contributions in revealing important TF motif syntax

such as motif co-occurrence.
A webserver as an application for
discovering potential core motifs within
any given plant promoters

Although our method can theoretically detect core motifs of any

genomic region, we focus on plant promoter region in view of its

high importance. Finally, we developed a pipeline of TSPTFBS 2.0,
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which integrates 389 DenseNet-based models of TF binding and the

above three interpretability methods. This pipeline was

implemented as a user-friendly web-server (http://www.hzau-

hulab.com/TSPTFBS/) for discovering potential core motifs

within any plant promoters. More precisely, for a given TF model

of interest, we allow the user to upload the promoter sequence

(upstream 500 bp of plant gene TSS of interest) in our website, and

the web-server will return the following results: (i) the predicted

binding intensity of the uploaded promoter sequence of the given

TF; (ii) numeric results of three interpretability methods—base

contribution score from DeepLIFT, the difference of predicted value

between WT (Wild Type) and the sequence after a 10 bp deletion

from in-silico tiling deletion and the difference of predicted value

between WT and the sequence after a point mutation from in-silico

mutagenesis; (iii) a logo graph for intuitively displaying the above

interpretability results.

We next take an example of rice IPA1 gene promoter for a

detailed demonstration. IPA1 is a key rice gene that is a master

regulator of rice plant architecture. Its function was known to

increase grains per panicle but reduce tillers; however, a recent

breakthrough showed that a 54-base pair (covering a critical TFBS

of An-1) cis-regulatory deletion can increase both grains per panicle

and tiller number (Song et al., 2022). An-1 binds to the binding

motif of ‘GCGCGTGT’ and it is a basic helix-loop-helix

transcription factor (bHLH TF), which positively regulated awn

length and negatively regulated grain number per panicle (Luo

et al., 2013). To investigate whether our novel strategy can identify

this An-1 motif without the prior knowledge of bHLH TF, we first
B

C D

A

FIGURE 4

TF motif analysis. (A) The motif analysis based on all the positives of bHLH145. Top panel, a comparative result of motif identified by TF-MoDISco
and known motif in JASPAR. (B) A heatmap of the difference in the global importance for 1,000 random negative samples embedded with single
nucleotide mutations of the DNA sequence fragment corresponding to the top affinity (‘GCACGTGC’). (C) Motif occurrence frequencies and global
importance values of 6 seqlets identified by TF-MoDISco in the bHLH145 positives. (D) Motif occurrence numbers of four cases (neither seqlet1 nor
seqlet5, only seqlet1, only seqlet5 and both seqlet1 and seqlet5) in bHLH145 positive and negative samples.
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employed FIMO to scan the promoter sequence of IPA1 (from -500

to TSS) and showed the scanning results in Figures 5B; S2B, in

which a total of nine motifs, including bHLH145, TCP9, TCP15,

have been detected by FIMO. This implies that the promoter

sequence of IPA1 has the above sequence motifs. And then we

searched our 389 TF models to find the corresponding TFs with the

same family of each of the above nine TFs. For bHLH TF family,

there are a total of 14 TF models (10 bHLH Zm TFs and 4 bHLH At

TFs). We plotted the predicted binding intensity of the promoter

sequence of IPA1 from each of the 14 bHLH TF models in Figure

S2A, and we chose the model of bHLH 47 in Zm to perform

interpretability analysis. For TCP TF family, there are two TCP TF

models of TCP 10 in Zm and TCP 23 in Zm, and we chose the

model of TCP 10 in Zm to perform interpretability analysis.
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We input the promoter sequence of IPA1 into the two TF models

of TCP10 in Zm and bHLH47 in Zm, and drew the corresponding logo

graphs of their interpretabilities in Figures 5A, C. As it can be seen from

Figure 5A, although an obvious peak (-299 to -293, corresponding to

TCP10) with successive high contribution scores appears in the

position near -300, the results from in-silico tiling deletion and in-

silicomutagenesis do not strongly support it. As the experimental result

(Song et al., 2022), we found that the editing event of IPA1-Pro9 (this

editing event has a deletion of the above region) only significantly

decreased the IPA1 level in shoot but not in young panicle, which leads

a significant increasement of tiller number but no significant change of

panicle weight. From Figure 5C, we found that all three interpretability

methods all support the importance of a peak (-124 to -117,

corresponding to bHLH47) near the position near -125, and we
B

C

A

FIGURE 5

The application for discovering potential core motifs based on rice IPA1 promoter. (A) The logo graph for intuitively displaying the interpretability
results of TCP10 model in Zea mays. The top panel shows the DeepLIFT base contribution scores; the second panel shows the result of in-silico
tiling deletion; at the bottom, a heatmap for showing the in-silico mutagenesis result. (B) The top panel shows the IPA1 promoter region:
Chr8:25245121-25245620; the second panel shows the experimental results from published work (Song et al., 2022) including: seven editing events
relative to the ZH11 WT and their corresponding changes in IPA1 gene expression and two phenotypes of tiller number and panicle weight; the third
panel shows the scanning results by FIMO; (C) The logo graph for intuitively displaying the interpretability results of bHLH47 model in Zea mays.
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surprisingly found that it can highlight the ‘GCGCGTGT’motif located

from -128 to -117 (marked with dashed box). Actually, the editing

event of IPA1-pro10 (it has a deletion of this peak) leads to

increasements both in tiller number and in panicle weight. As for

other scanning motifs by FIMO, we found no Zm TF models but only

found At TF models. And we drew them in Figure S2C and found no

obvious clues about the core motifs. In summary, the example of IPA1

implies that our webserver is helpful for identifying core motifs within

plant gene promoter and for supporting references of gene editing.
Discussion

Identifying the precise positions of core motifs within gene

promoter is of great demand in plants because they are the potential

editing targets. These core motifs are often TFBSs affecting gene

expressions. However, current plant research involving TFBS has

two research bottlenecks: the trans-species prediction bottleneck

and the identification bottleneck of functional motifs. In this paper,

we developed a large-scale TFBS models from three model plant

species of Arabidopsis, maize and rice and have proven that trans-

species prediction on 15 TFs from other six plant species is feasible.

We also developed three interpretability methods to identify base-

resolution core motif. Finally, we took rice IPA1 gene (Song et al.,

2022) as an example to discuss how to employ three interpretability

methods to contribute practical applications in plant breeding.
Conclusions

In conclusion, TSPTFBS 2.0 used DenseNet to improve the

predictability of TFBS prediction, and further verified that the

trans-species TFBS prediction capability of TSPTFBS 2.0 was

significantly improved, which is the first contribution of the

current work. The main contribution is that we combined three

interpretability methods to identify the potential core motif within a

TFBS, which will be a powerful tool for assisting plant scientists on

providing candidate targets of genome editing. To be convenient for

applications, TSPTFBS 2.0 integrates 389 DenseNet-based models

of TF binding and three interpretability methods, and it was

implemented as a user-friendly web-server (http://www.hzau-

hulab.com/TSPTFBS/), which has great potentials to provide

reliable editing target of genetic screen experiments in plants.
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