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Mulberry leaves feed Bombyxmori silkworms to generate silk thread. Diseases that

affect mulberry leaves have reduced crop and silk yields in sericulture, which

produces 90% of the world’s raw silk. Manual leaf disease identification is tedious

and error-prone. Computer vision can categorize leaf diseases early and

overcome the challenges of manual identification. No mulberry leaf deep

learning (DL) models have been reported. Therefore, in this study, two types of

leaf diseases: leaf rust and leaf spot, with disease-free leaves, were collected from

two regions of Bangladesh. Sericulture experts annotated the leaf images. The

images were pre-processed, and 6,000 synthetic images were generated using

typical image augmentation methods from the original 764 training images.

Additional 218 and 109 images were employed for testing and validation

respectively. In addition, a unique lightweight parallel depth-wise separable CNN

model, PDS-CNN was developed by applying depth-wise separable convolutional

layers to reduce parameters, layers, and size while boosting classification

performance. Finally, the explainable capability of PDS-CNN is obtained through

the use of SHapley Additive exPlanations (SHAP) evaluated by a sericulture

specialist. The proposed PDS-CNN outperforms well-known deep transfer

learning models, achieving an optimistic accuracy of 95.05 ± 2.86% for three-

class classifications and 96.06 ± 3.01% for binary classifications with only 0.53

million parameters, 8 layers, and a size of 6.3 megabytes. Furthermore, when

compared with other well-known transfer models, the proposed model identified

mulberry leaf diseases with higher accuracy, fewer factors, fewer layers, and lower

overall size. The visually expressive SHAP explanation images validate the models’

findings aligning with the predictions made the sericulture specialist. Based on

these findings, it is possible to conclude that the explainable AI (XAI)-based PDS-

CNN can provide sericulture specialists with an effective tool for accurately

categorizing mulberry leaves.

KEYWORDS

mulberry leaf, depth wise separable convolution, parallel convolution, explainable
artificial intelligence (XAI), Shapley Additive Explanations (SHAP)
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1175515/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1175515/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1175515/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1175515&domain=pdf&date_stamp=2023-09-19
mailto:mchowdhury@qu.edu.qa
https://doi.org/10.3389/fpls.2023.1175515
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1175515
https://www.frontiersin.org/journals/plant-science


Nahiduzzaman et al. 10.3389/fpls.2023.1175515
1 Introduction

Agricultural production, like any other industry, assists farmers

in securing their financial future. Agricultural expansion is critical

for a powerful nation because it meets a real need in the global

economy and ensures sustainability. Plants are susceptible to

disease at various phases of development, just like humans. As a

result, the farmer’s overall crop output and revenue suffer. With the

global population expected to exceed 9 billion by 2050, developing

innovative methods for identifying and mitigating plant diseases

can increase food supplies while reducing the demand for pesticides

(Sharma et al., 2020). Early detection and analysis of the several

forms of illnesses that might harm a crop are critical to the

profitability of the agriculture business. Traditionally,

conventional methods for diagnosing and identifying plant

diseases have relied on professional observation with only their

naked eyes. Furthermore, this method can be tedious, long, and

expensive, rendering it unsustainable for millions of small and

medium-sized farms around the world. As a result, there is a

significant danger of the illness spreading to other healthy plants.

To address these challenges, researchers from around the world

have presented cutting-edge automated systems that use machine

learning (ML) and deep learning (DL) techniques to detect diseases

in various plants such as rice/paddy (Lu et al., 2017; Malvade et al.,

2022), tomato (Hassanien et al., 2017; Ireri et al., 2019), cotton

(Ferentinos, 2018; Patil and Patil, 2021), watermelon (Pantazi et al.,

2019; Singh, 2019), and sunflower (Singh, 2019) from various parts

of the plants, particularly their leaves (Singh and Misra, 2017;

Dhingra et al., 2019; Pantazi et al., 2019). The bulk of the

experiments described used leaf photos from the Plant Village

dataset as well as real-time data comparable to these plants.

Furthermore, the authors (Ferentinos, 2018) classified plant

illnesses using 58 different plant species.

The mulberry (Morus spp.), a member of the Moraceae family,

is a fast-growing, deciduous woody tree species native to India and

China’s Himalayan foothills (Yuan and Zhao, 2017). Mulberry is

economically valuable because silkworm larvae (Bombyx mori) feed

on its leaves to make mori silk. Mulberry leaves are also fed to

animals. Despite its long history of use in silk manufacture and

animal husbandry, the ecological relevance of mulberry has been

underestimated. In recent years, there has been a broad

acknowledgement of this plant’s effectiveness in a variety of

disciplines, including environmental safety, medicine, and

industry (Rohela et al., 2020). Figure 1 depicts the various

applications of mulberry. Mulberry leaves, on the other hand, are

widely utilized in the raising of the silkworm, whose cocoons are

spun into silk yarn. The silkworm produces silk protein by using the

protein found in mulberry leaves (namely, fibroin and sericin). The

silk fiber produced is used in the commercial production of high-

quality silk apparel. Mulberry trees provide up to 90% of the world’s

raw silk supply, and their cultivation is critical to the economic well-

being of countless people, particularly in India and Bangladesh

(Chowdhury et al., 2017). Because of the mulberry leaf’s economic

importance in sericulture, the quality and amount of leaf produced

per unit area have a direct impact on silk cocoon yield.
Frontiers in Plant Science 02
Sericulture has been identified as a viable new economic driver

in Bangladesh. Bangladesh has a huge possibility to develop major

economic growth in this sector with the assistance of the

government and non-governmental organizations. To further the

study of sericulture, the government of Bangladesh founded the

Bangladesh Sericulture Research and Training Centre in Rajshahi.

The Bangladesh Sericulture Board was founded in 1977 by

Ordinance No. 62, signed by the President of the People’s

Republic of Bangladesh (Chowdhury et al., 2017). Only two sub-

districts (Bholahat and Shibganj) in the current Nawabganj district

of the Rajshahi division were initially suited for sericulture. Since

Bangladesh’s independence, sericulture has extended to 36 districts

out of a total of 64 (Banglapedia, 2021), contributing to poverty

reduction and increased employment prospects throughout the

country, particularly in rural areas.

Yet, sericulture can only be successful if the silkworms are fed

fresh mulberry leaves. Mulberry plants are vulnerable to several

fungal diseases, the most frequent of which are Cercospora

moricola’s leaf rust and leaf spot infections (Banglapedia, 2021).

Mulberry plants are vulnerable to a variety of pests, including the

hairy caterpillar (Spilarctia obliqua), among others. Diseases and

pests typically cause a considerable decrease in mulberry leaf yield,

which leads to a decrease in silk production. As a result, farmers are

incurring enormous economic losses, which has a detrimental

influence on Bangladesh’s national economy (Rashid et al., 2014).

Furthermore, silk gowns have traditional importance in specific

areas of Bangladesh; thus, the loss in silk manufacturing has been

exacerbated by the use of various synthetic fibers. If this problem is

not addressed properly, future generations will be unaware of this

traditional product and its aesthetic worth, and those affiliated with

this sector will be unemployed.

However, no study has been conducted to the best of the

authors’ knowledge to identify mulberry illnesses from their
FIGURE 1

The mulberry's varied applications in many scenarios.
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leaves using image classification. Similarly, because there was no

existing image dataset for mulberry leaves, photos of mulberry

leaves were obtained in Rajshahi, Bangladesh, for this research to

establish a unique dataset, which was manually categorized by a

sericulture specialist into “healthy,” “leaf spot,” and “leaf rust.”Only

two diseases were considered for this research because they are

common in Bangladesh during the winter season, and the photos

were obtained during the winter months in Bangladesh. The images

are then preprocessed using various methodologies, and a novel

lightweight parallel PDS-CNN model for disease classification in

mulberry leaves is constructed based on those processed images. It’s

also worth noting that, to the best of the authors’ knowledge, no

studies have assessed the interpretability capabilities of ML/DL

models using SHapley Additive exPlanations (SHAP) or local

interpretable model-agnostic explanations (LIME) in this area of

the agricultural industry (classify distinct plant ailments from leaf

images). As a result, this study provided a novel framework based

on explainable artificial intelligence (XAI) that demonstrated which

sections of a picture the proposed model paid significantly more

attention to than the others. The unique, lightweight model

provided here can be put into an embedded system to assist

farmers in the field in the early diagnosis of mulberry diseases,

avoiding crop loss and ensuring the production of healthy leaves for

several applications. The major contributions of this work are

as follows:
Fron
1. For the first time, a unique dataset of 1,091 annotated

mulberry leaf images (Healthy: 440, Leaf Rust: 489, and

Leaf Spot: 162) was created as no such datasets are available

in the existing open sources.

2. To assure the building of a strong AI model with no

overfitting concerns, synthetic data was generated using

standard data augmentation methods.

3. To classify mulberry diseases, a novel lightweight parallel

depthwise separable convolutional neural network (PDS-

CNN) model was developed through customization of

existing lightweight CNN model.

4. The classification performance, as well as the parameters,

layers, and sizes of the models, were compared to various

well-known transfer learning (TL) models.

5. For the first time, the interpretability capacity of the

proposed framework has been exhibited using SHAP to

ensure the model is correctly focused on the area of interest.
2 Literature review

Scientists have recently devised unique approaches for the

automatic identification and classification of numerous plant

diseases. This section investigates and reviews some of these

strategies. To detect bacterial spot disease in peach leaf images,

Bedi et al. created a hybrid model by combining a convolutional

auto-encoder and a convolutional neural network (CNN) (Bedi and

Gole, 2021). The PlantVillage dataset provided the researchers with
tiers in Plant Science 03
4,457 leaf images (healthy: 2,160 and bacterial spot: 2,297), with

70% of the images utilized for training and 30% used to calculate the

model’s performance, which reached an accuracy of 98.38%.

Similarly, Akbar et al. suggested a VGG-19-based lightweight

CNN (LWNet) model identify and categorize peace leaf images

into healthy and bacteriosis images (Akbar et al., 2022). Initially,

they photographed 625 healthy and 375 diseased leaf images from a

research farm at Pakistan’s Agricultural University in Peshawar.

Subsequently, using these genuine leaf images, 10,000 (Healthy:

5,500 and bacterial spot: 4,500) synthetic data points were

generated, which were then subjected to image pre-processing

procedures such as image scaling, noise removal, and background

removal. Eventually, 7,000 images were used to train their model,

and 3,000 images were utilized to test the LWNet model, resulting

in an accuracy of 98.87% and a simulation time of 1 hour 56

minutes and 38 seconds.

Lu et al. developed a deep CNN model to recognize ten types of

rice diseases from images of rice plant leaves (Lu et al., 2017). They

obtained 500 images from the Heilongjiang Academy of Land

Reclamation Sciences in China with the Canon EOS 5D Mark III,

then selected 10,000 12×12 patches from these photographs to train

their CNN model. They also ran 10-fold cross-validation (CV) on

their model and compared the results for different filter sizes,

attaining the greatest accuracy of 95.48%. Additionally, Ramesh

et al. suggested a deep neural network optimized with the Jaya

algorithm (DNN JOA) to classify four types of rice plant diseases

from rice plant leaves (Ramesh and Vydeki, 2020). The 650 leaf

images (healthy: 95, bacterial blight: 125, blast: 170, sheath rot: 110,

and brown spot: 150) were taken in the rural areas of Ayikudi and

Panpoli, Tirunelveli District, Tamilnadu, using a high-resolution

digital camera (DC). The authors used a clustering algorithm to

separate the diseased, normal, and background sections. The DNN

JOA model was trained using 70% of the images, 10% of the images

were used for validation, and 20% of the images were used to test the

proposed model. The model achieved an overall accuracy of 97%

after 125 epochs. Anami et al. employed a pre-trained transfer

learning (TL) model, VGG-16, to automatically classify 12 forms of

stress from paddy plant leaf images (Anami et al., 2020). The

proposed VGG-16 model was trained using 3,600 images and

tested using 2,400 images, with average stress classification

accuracies of 90.75%, 93.38%, 93.135, 95.08%, 92.13%, and

92.89% for Jaya, Abhilasham, Mugad Suganda, Mugad 101, and

Mugad Siri, respectively. Malvades et al. also collected 3,355 paddy

leaf photos (healthy: 1,488, brown spot: 523, hispa pests: 565, leaf

blast: 779) and then used several common image augmentation

techniques to reduce overfitting (Malvade et al., 2022). They

compared five TL models for the classification of paddy crop

stresses; among them, the ResNet-50 model showed promising

accuracy of 92.61% while training 70% of all images in

1,626 seconds.

Gonzalez-Huitron et al. used four TL models: MobileNetV2,

NasNetMobile, Xception, and MobileNetV3 to diagnose 10

different tomato leaf diseases from images of tomato leaves

(Gonzalez-Huitron et al., 2021). A total of 109,290 images were

obtained from 18,215 images in the PlantVillage dataset utilizing

data augmentation, and 30% of the data was used to test their
frontiersin.org

https://doi.org/10.3389/fpls.2023.1175515
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nahiduzzaman et al. 10.3389/fpls.2023.1175515
models, with the best accuracy of nearly 100% attained using

Xception at 2,512 seconds per epoch. Furthermore, they deployed

their model on the Raspberry Pi 4 single-board computer. Abbas

et al. used the PlantVillage dataset with a TL model called

DenseNet121 to detect several types of tomato leaf diseases

(Abbas et al., 2021). To begin, the authors used a conditional

generative adversarial network (771,454 trainable parameters) to

create 4,000 synthetic tomato leaf images, which were then mixed

with 16,012 genuine pictures. The DenseNet121 was then fine-

tuned by replacing the top fully connected (FC) layer and softmax

layer with convolutional layers (CL) with the ReLU activation

function, followed by an FC layer and a softmax layer to classify

ten different forms of tomato leaf diseases. For the 5, 7, and 10

classes, the model achieved 99.51%, 98.65%, and 97.11%,

respectively. Similarly, Chowdhury et al. used 18,161 tomato leaf

pictures from the PlantVillage dataset to detect tomato leaf illnesses

using three TL models: EfficientNet-B0, B4, and B7 (Chowdhury

et al., 2021). They used various augmentation approaches to balance

the data and reduce overfitting because the dataset was not

balanced. They tested their models on 20% of tomato leaf images,

and EfficientNet-B4 achieved the maximum accuracy with 99.95%,

99.12%, and 99.89% for 2, 6, and 10-class classification, respectively.

To detect three types of grape diseases from leaf images, Ji et al.

developed a combined CNN model based on two TL models:

GoogleNet and ResNet50 (Ji et al., 2020). The PlantVillage

collection yielded a total of 1,619 grape leaf images (healthy: 171,

black rot: 476, esca: 552, and isariopsis leaf spot: 420). The authors

used GoogLeNet and ResNet to extract features from leaf images,

and the features from these two models were concatenated before

being sent into the Fully connected layers and a SoftMax layer to

discriminate these diseases from healthy leaf images. The suggested

UnitedModel achieved 98.57% accuracy, 99.05% precision, and

98.88% recall, on average. Paymode et al (Paymode and Malode,

2022). used a VGG16 model to detect numerous crop leaf diseases

from images of tomato and grape leaves. Farmers from

Aurangabad, India, collected a total of 14,421 tomato leaf images

(early blight: 1,000, mosaic virus: 373, bacterial spot: 2,127, late

blight: 1,909, leaf mould: 952, septoria leaf spot: 1,771, spot: 1,404,

spider mites: 1,676, and yellow leaf curf: 3,207). Following that, they

used various image processing methods such as filtering, grayscale

transformation, data augmentation, and so on. Lastly, for grape and

tomato leaf disease classification, the VGG16 model was trained for

40 and 30 epochs, respectively, and attained an accuracy of 98.40%

and 95.71%.

Ferentinos used several TL models including as AlexNet,

GoogLeNet, VGG, etc to detect 58 specific diseases of various

plants such as oranges, apples, onions, watermelons, strawberries,

and soybeans from leaf images (Ferentinos, 2018). A total of 87,848

leaf images of healthy and diseased plants were collected, with

70,300 utilized to train their models and 17,548 used to test the

suggested models. The VGG model achieved an optimistic accuracy

of 99.48% after 48 epochs at a time of 7,294 seconds per epoch.

Furthermore, the model classifies every single image in 2

milliseconds on a single graphics processing unit (GPU). Zhang

et al., on the other hand, used a BM-500GE digital camera to

capture 700 images of cucumber leaves (healthy: 100, downy
Frontiers in Plant Science 04
mildew: 100, anthracnose: 100, grey mold: 100, angular leaf spot:

100, black spot: 100, and powdery mildew: 100). The author

presented a global pooling dilated CNN for the classification of

six types of cucumber leaf diseases and achieved an accuracy of

94.65%, with training and testing times of 6.2 hours and 3.58

seconds, respectively. Singh classified seven forms of sunflower

leaf diseases from leaf images using a particle swarm optimization

(PSO) technique (Singh, 2019). Median filtering improved the

quality of leaf images, and the PSO algorithm reached an

accuracy of 98%. Ayalew et al. used Gabor wavelet characteristics

to classify scenes in wild blueberry fields (Ayalew et al., 2021). The

authors used an IDSEye 1220SE/C industrial camera to acquire

3,281 images from five fields, and the classification accuracy for

each field was between 87.9% and 98.3%, with a total of 27 to 72

Gabor features used. Raouhi et al. classified seven olive disorders,

including healthy images, using seven TL models such as

EffiecientNetB7, InceptionV3, VGG19, ResNet50, and others with

four activation functions: Adam, Adagrad, SGD, and Rmsprop

(Raouhi et al., 2022). The scientists collected 5,571 images of olive

leaves from various parts of Morocco and employed several data

augmentation approaches to deal with the overfitting problem.

Using MobileNet with the Rmsprop function, 20% of the data

used to test their various models attained the best accuracy of

98.43%. Table 1 outlines various leaf disease classification methods

and associated performance factors.

Based on the literature review, it is possible to conclude that the

majority of studies used the PlantVillage dataset and also acquired

real-time data equivalent to these plants. Furthermore, the authors

(Ferentinos, 2018) classified plant diseases using 58 different plant

species. According to the findings of these investigations, no research

on the classification of diseases affecting mulberry leaves has been

undertaken. The bulk of research employed TL models with a

significant number of parameters, such as VGG16 with 138.4

million (M) parameters, and ResNet50 with 25.6M parameters,

Xception with 22.9M parameters, DenseNet121 with 8.1M

parameters, and so on, which need extensive GPU training time.

Furthermore, several researchers spent a long time creating unique

CNN models, such as 6.2 hours (Zhang et al., 2019) and 1 hour 56

minutes and 38 seconds (Akbar et al., 2022). Indeed, implementing

these algorithms in low-power embedded devices, such as low-

configuration Android mobiles, is particularly difficult. As a result,

a lightweight model with fewer parameters and layers that require less

training time than TL models are required to run on low-

configuration Android mobiles. Additionally, no studies proved the

use of explainable AI, such as SHAP or LIME, to focus on disease

location in leaf images to explain the model’s interpretability.
3 Methodology

3.1 Proposed framework

In response to the difficulties posed by mulberry leaf disease

identification, a classification approach based on deep learning has

been implemented. Figure 2 depicts the three key processes of the

proposed framework: generating an image dataset, applying deep
frontiersin.org
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learning for classification, and providing an interpretable model

with SHAP. Since there is no dataset available for this domain, leaf

images from two regions in Bangladesh with two leaf diseases were

collected and labelled by a seasoned sericulture researcher.

Following the collection and analysis of the images, the labelled

data were separated into three categories (disease-free leaves, leaf

rust, and leaf spot). In this work, a disease-affected leaf class was

generated for the binary classification by assigning leaf rust and leaf

spot to the same class. 70% of the images are used for training, 10%

for validation, and 20% for testing the DL models using five-fold

cross-validation. The images are then reshaped and pre-processed

using standard techniques for normalization and enhancement.

Then, a novel lightweight parallel depth-wise separable

convolutional neural network (PDS-CNN) was created to

categorize leaf diseases and SHAP was used to interpret

disease location.
Frontiers in Plant Science 05
3.2 Mulberry leaf image acquisition

Images of mulberry leaves are typically obtained using a digital

camera or smartphone camera. The images may have been captured

in a greenhouse, laboratory, or natural habitat. After consulting

with researchers from the Bangladesh Sericulture Development

Board (BSDB) in Rajshahi, Bangladesh, two certified and

widespread mulberry leaf diseases (leaf spot and leaf rust) were

selected for this experiment. In this study, images were acquired

from mulberry gardens in Mirganj, Bagha, Rajshahi, and Vodra,

Rajshahi, using a high-resolution DSLR camera in real-world

situations. The mulberry dataset consists of a total of 1,091

images that have been classified by a sericulture expert into three

classes: 440 healthy leaves, 489 leaves with leaf rust, and 162 leaves

with leaf spots. Each leaf image has a resolution of 4,000 by 6,000

pixels. The sericulture experts were chosen from the main center of
FIGURE 2

Proposed framework for mulberry leaf disease classification.
TABLE 1 Summary of the state-of-art models.

References Dataset Best Model Testing Accuracy Best Model’s
Parameters
(Million)

XAI

(Mohanty et al., 2016) PlantVillage (14 Plants’ Leaves) GoogLeNet 99.3% 7 No

(Ferentinos, 2018) Custom (58 Plants’ Leaves) VGGNet 99.48% 138.4 No

(Zhang et al., 2019) Custom (Cucumber Leaves) Custom CNN 94.65% – No

(Chohan et al., 2020) PlantVillage (14 Plants’ Leaves) VGG-19 98.3% 143 No

(Sanga et al., 2020) Custom (Banana Leaves) ResNet-152 99.2% 60 No

(Abbas et al., 2021) PlantVillage (Tomato Leaves) DenseNet121 97.11% 8.1 No

(Chowdhury et al., 2021) PlantVillage (Tomato Leaves) EfficientNet-B4 99.95% 19.5 No

(Paymode and Malode, 2022) Custom (Grape and Tomato Leaves) VGG16 Grape: 98.40% and Tomato: 95.71%, 138.4 No

(Akbar et al., 2022) Custom (Peace Leaves) LWNet 98.87% – No

(Raouhi et al., 2022) Custom (Olive Leaves) MobileNet 98.43% 4.3 No
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sericulture in Bangladesh with more than 10 years of experience in

this field. Figure 3 depicts a few examples of the acquired images.
3.3 Image pre-processing

The accuracy of the classification is directly influenced by the

quality of the image preprocessing. This study simplifies the image

processing stages so they can be easily implemented on embedded

systems. During preprocessing, the images in the dataset are

reduced to 124 pixels in width and height to reduce the need for

more storage space and processing resources. Often, a high number

of intensity values are used to depict an image. To simplify the

complexity of the images, normalization is conducted, and the scale

is modified from 0-255 to 0-1 by dividing the pixel values by 255.
3.4 Image augmentation

The dataset is unbalanced, as shown in Table 2, where 764, 218

and 109 images were used for training, testing and validation

respectively. As a result, different image augmentation techniques

were used on the training images (Figure 4A) to balance the dataset.

A random rotation of 30° was performed (Figure 4B). The images

were randomly flipped by 50% in the horizontal and vertical

orientations, as seen in Figures 4C, D In addition, as shown in

Figure 4E, a random affine (degrees 5-15, translate 0.1-0.2, scale 0.7-

0.8) was used. A total of 6,000 synthetic images were generated from

the original 764 training images. Following image augmentation, a

total of 6,000 and 4,000 training images for the three-class and two-

class schemes, respectively, with 2,000 images for each class,

were developed.
3.5 Customization of deep learning models

According to a review of the literature on the limits of various

transfer learning (TL) models, the bulk of TL models have

extremely large parameters, layers, and sizes, resulting in much

longer computing power (Ferentinos, 2018; Chohan et al., 2020;

Sanga et al., 2020; Chowdhury et al., 2021; Paymode and Malode,
Frontiers in Plant Science 06
2022). As a result, to address these difficulties, a simple, lightweight

parallel depth-wise separable convolutional neural network with

fewer parameters, layers, and size while requiring low overhead was

designed in a customized form. A detailed explanation of the PDS-

CNN model, as well as brief explanations of the state-of-the-art

(SOTA) TL models employed in this study, are provided in the

following subsections.

3.5.1 Parallel depthwise separable convolutional
neural network

The specific objective was to create a CNN model that could

efficiently extract the most significant characteristics with a small

number of parameters and layers, allowing it to be used in a variety of

real-world applications. However, if there aren’t enough parameters and

layers, the model may fail to capture distinguishing features, and if there

are too many, the model may overfit, resulting in a longer processing

time. Taking these considerations into mind, a lightweight PDS-CNN

model was created to extract discriminant features with low resources

(small parameters, layers, and size). Figure 5 depicts the lightweight PDS-

CNN architecture for mulberry leaf disease classification.

Because a lightweight CNN model is proposed, the model is

simplified in comparison to the TL models. The suggested model had

nine convolutional layers (CL) and three fully connected layers (FC).

The model would not have been able to extract the most critical

features if only one CL had been utilized instead of five. In contrast, if

five CLs are used sequentially, the number of layers (depth) increases,

making the model more complex. As a result, the first five CLs were

run in parallel, and their selection was dependent on trial and error.

Each CL utilized a total of 256 kernels, with the first, second, third,

fourth, and fifth kernel sizes being 11×11, 9×9, 7×7, 5×5, and 3×3,

respectively. For picking the kernel size, our work followed the design

of Krizhevsky et al., who employed big kernel sizes (such as 11×11,

etc.) while ensuring appropriate classification performance

(Krizhevsky et al., 2017; Nahiduzzaman et al., 2023a). Because

different kernels produce distinct feature maps, different kernels

were examined and combined, even if their sizes ranged from tiny

to huge, to find notable features and achieve acceptable classification

performance. The padding size was kept constant for the first five CLs

to extract the relevant information in the border element of the

mulberry leaf images. The feature maps generated by the concurrent

CLs were then merged and fed into a sequential CL.
B CA

FIGURE 3

Samples of (A) disease-free leaf; (B) leaf rust; and (C) leaf spot.
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Furthermore, depthwise separable convolution (DSC) was

employed instead of conventional convolution by dividing the

typical convolution operation into two parts: a depthwise

convolution and a pointwise convolution. First and foremost, a

depthwise convolution applied a small kernel to a small section of

an input feature map, resulting in a new feature map with the same

number of channels. The depthwise convolution output is then

passed through a pointwise convolution, where a 1×1
Frontiers in Plant Science 07
convolutional kernel is applied to each channel to create a new

feature map with fewer channels. This DSC lowered the suggested

CNN’s parameters from 2.2 million to 0.53 million (reducing

computing complexity) and enhanced the classification

performance of the proposed framework. Following the last four

CLs, a batch normalization (BN) and a max-pooling layer with a

2×2 kernel were added to the processing chain. The sizes of the

four CLs were set to 128, 64, 32, and 16, respectively, with 3×3
B C D EA

FIGURE 4

Samples of an (A) original image; (B) random rotation; (C) random horizontal flip; (D) random vertical flip; and (E) random affine.
FIGURE 5

Proposed lightweight parallel depthwise separable convolutional neural network. (*DSConv2D means depthwise separable convolution and BN
means batch normalization).
TABLE 2 The division of a dataset into training, testing, and validation sets for both multiclass and binary classes.

Schemes Types Training Set Validation Set Testing Set

Before Augmentation After Augmentation

Scheme 1: Three-class Disease-free leaf 308 2,000 44 88

Leaf Rust 342 2,000 49 98

Leaf Spot 114 2,000 16 32

Total 764 6,000 109 218

Scheme 2: Binary Disease-free leaf 308 2,000 44 88

Disease-affected leaf 456 2,000 65 130

Total 764 4,000 109 218
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kernels, and the padding sizes were set to VALID. BN was used

because it re-centers and re-scales each layer’s inputs, which

speeds up and stabilizes the model’s execution. The ReLU

activation function was used for all CLs. Aside from three fully

connected (FC) layers, dropout was utilized to prevent overfitting

and speed up the training process by disregarding 50% of all nodes

at random. As a result, the proposed model has a sophisticated

architecture comprising nine convolutional layers. The initial five

layers operate in parallel, effectively functioning as a single layer in

the overall structure. Following this unique configuration, four

additional convolutional layers are incorporated, bringing the

cumulative count to five convolutional layers. The model also

includes three fully connected layers in conjunction with these

convolutional layers. This intricate arrangement results in a total

of eight distinct layers. In this investigation, two dropouts were

used after the final two CLs and two more after the first two FC

layers. In the final FC layer, the SoftMax activation function was

employed to classify mulberry leaf disorders. There were three and

two nodes in the final FC layer for multiclass and binary

classifications, respectively. The loss function for the model was

the sparse categorical cross-entropy loss function, and an ADAM

optimizer with a learning rate of 0.001 was utilized. Ultimately,

with a batch size of 32, the suggested lightweight PDS-CNNmodel

was trained for 100 epochs. The PDS-CNN model is summarized

in Table 3.

3.5.2 Deep transfer learning models
Transfer learning models have been effectively applied to a wide

range of possible applications in recent years, including medical

diagnosis and disease classification (Singh andMisra, 2017; Dhingra

et al., 2019; Zhang et al., 2019; Chowdhury et al., 2020; Rahman

et al., 2020a; Rahman et al., 2020b; Chowdhury et al., 2021;

Nahiduzzaman et al., 2021b; Nahiduzzaman et al., 2021a;

Qiblawey et al., 2021; Nahiduzzaman et al., 2023a; Nahiduzzaman

et al., 2023b). Six TL models were used in this study: MobileNet

(Howard et al., 2017), MobileNetV2 (Sandler et al., 2018), VGG19

(Simonyan and Zisserman, 2014), Xception (Chollet, 2017),

DenseNet121 (Huang et al., 2017), and ResNet152 (He et al.,

2016). All of these pre-trained models were trained using the

ImageNet dataset, which comprises over 14 million images and

1,000 classifications. Following the loading of these models, the final

layers were updated by adding three FC layers with 512, 256, and 3

nodes for identifying mulberry leaf disorders. Figure 6 depicts the

improved architecture of the TL models. These TL models were

then trained for 100 epochs with a batch size of 32. In terms of

classification outcomes and processing resources (parameters,

layers, and sizes), the suggested novel lightweight PDS-CNN

model was compared to the TL methods rather than earlier

research (since no studies with the new mulberry dataset

are available).

A concise explanation of these pre-trained networks is reported

below. The Visual Geometry Group (VGG) at the University of
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Oxford introduced the VGG19 (Simonyan and Zisserman, 2014)

CNN architecture in 2014. The architecture of VGG19 is made up

of CLs with a huge number of filters per layer. After each

convolutional layer comes to a max-pooling layer and a ReLU

activation algorithm. Towards the end of the model, there are three

fully connected layers, followed by a classification SoftMax

activation function.
TABLE 3 An overview of the PDS-CNN model to classify mulberry
leaf diseases.

Layer (Type) Output Shape Parameters

model (Functional) (None, 124, 124, 1280) 5,975

DS_Conv6 (DS_Conv2D) (None, 122, 122, 128) 175,488

bn1 (BatchNormalization) (None, 122, 122, 128) 512

Av (Activation) (None, 122, 122, 128) 0

mp1 (MaxPooling2D) (None, 61, 61, 128) 0

DS_Conv7 (Conv2D) (None, 59, 59, 64) 9,408

bn2 (BatchNormalization) (None, 59, 59, 64) 256

av2 (Activation) (None, 59, 59, 64) 0

mp2 (MaxPooling2D) (None, 29, 29, 64) 0

DS_Conv8 (DS_Conv2D) (None, 27, 27, 32) 2,656

bn3 (BatchNormalization) (None, 27, 27, 32) 128

av3 (Activation) (None, 27, 27, 32) 0

mp2 (MaxPooling2D) (None, 13, 13, 32) 0

dp1 (Dropout) (None, 13, 13, 32) 0

DS_Conv9 (DS_Conv2D) (None, 11, 11, 16) 816

bn4 (BatchNormalization) (None, 11, 11, 16) 64

av4 (Activation) (None, 11, 11, 16) 0

mp3 (MaxPooling2D) (None, 5, 5, 16) 0

dp2 (Dropout) (None, 5, 5, 16) 0

ft (Flatten) (None, 400) 0

Dense1 (Dense) (None, 512) 205,312

bn3 (BatchNormalization) (None, 512) 2,048

dp3 (Dropout) (None, 512) 0

Dense2 (Dense) (None, 256) 131,328

bn4 (BatchNormalization) (None, 256) 1,024

dp4 (Dropout) (None, 256) 0

Output (Dense) (None, 3) 771

Total Parameters 535,786

Trainable Parameters 533,770

Non-trainable Parameters 2,016
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ResNet152 (He et al., 2016), a CNN architecture with deep

depth and excellent accuracy, was developed by Microsoft Research

in 2015. Due to the “vanishing gradients” problem, where the

gradients of the parameters grow very small when the error is

backpropagated through several layers, very deep neural networks

have trouble learning. To address this issue, ResNet152 employs a

residual connection to bypass one or more levels and connect a

layer’s input to its output directly. Gradient flow is facilitated,

allowing the network to learn effectively even at deep levels.

In 2016, Google released Xception (Chollet, 2017), which used

depthwise separable convolutions. The entire input feature map is

filtered by standard convolution to produce a single output feature

map. A depthwise separable convolution applies the filter

exclusively to the depth (channel) dimension of the input feature

map, followed by a pointwise convolution to the output. This

network can extract features from multiple channels separately,

saving computation and memory.

In 2017, Google introduced the MobileNet (Howard et al.,

2017) design, a CNN architecture that performs well on mobile

and embedded devices with minimal processing capabilities.

MobileNet employed a depthwise separable convolutional layer,

which was generated by dividing a conventional convolution

operation into depthwise and pointwise convolutions. By doing

so, we may dramatically reduce the number of computations and

parameters that the network must execute. MobileNetV2 (Sandler

et al., 2018) is a MobileNet update. In actuality, MobileNet

employs typical residual blocks with the same number of filters

on the block’s input and output. In contrast, MobileNetV2

employs inverted residual blocks, which have different numbers

of filters at the input and output of the block. As a result,

MobileNetV2 has a reduced model size and can compute faster

than MobileNet.

Huang et al. (2017) introduced DenseNet121, a densely

connected convolutional network design, in 2017. It is a variant

of the DenseNet structure, which employs a dense block structure

with 121 layers, with the feature maps of all previous layers given

into the current layer as inputs. As a result, information flows more

smoothly across the network, and the issue of disappearing

gradients is alleviated. DenseNet121 additionally employs 11

convolutional layers known as “bottleneck layers” to limit the

number of feature mappings and control network expansion.
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3.6 Explainable artificial intelligence

XAI in deep learning refers to the ability to comprehend and

describe how a deep neural network operates and makes decisions

(Lundberg, 2017). This is especially crucial for deep learning

models, which can be ambiguous and challenging to understand.

SHAP was utilized for the first time in this domain in this study to

remove the “black box” nature of DL models, allowing the results

from the PDS-CNN model to be further evaluated and explained so

that sericulture professionals could use it in real-world scenarios. As

a result, the model boosts their confidence when categorizing

disease-free, leaf rust, and leaf spot leaves.

SHAP ranks the importance of model features by calculating the

average of each feature value’s marginal contributions. The scores

assigned to each pixel in a predicted image show the function of that

pixel and can be used to clarify a categorization. The Shapley value

was calculated using all conceivable combinations of mulberry leaf

disease features. The Shapley values are pixelated, and the findings

show that red pixels improve the likelihood of correctly identifying

a class, whereas blue pixels lower it (Lundberg, 2017; Bhandari et al.,

2022). The Shapley value was calculated using Equation (1).

∅k =  oM ⊆Nnk
M ! (A − Mj j − 1) !

A !
½f x(M ∪  k) − f x(M)� (1)

Where fx denotes the variation in output inclusion caused by

Shapely values for a specific feature k. M is a subset of all features

from feature N , excluding feature k. Mj(A−jMj−1)j
A ! is the weighting

factor that counts the number of permutations of the subsetM. The

predicted result, denoted by fx(M), is derived from equation (2).

f x   (M) = P½f (x)jxM� (2)

SHAP replaces each original characteristic (xk) with a binary

variable (b
0
k) that indicates whether xk is present or absent, as

demonstrated in Eq. (3)

l   (b0) = ∅0 +  oA
k=1 ∅k b

0
k   (3)

Where ∅0 denotes the bias, ∅k b
0
k represents the contribution

of the feature, A represents the number of simplified input features,

and l(b0) is the substitute model for the proposed framework f (x).

The extent to which the presence of feature k contributes to the final

result and ∅k assists in comprehension of the actual model.
FIGURE 6

The modified architecture of transfer learning models to classify mulberry leaf diseases.
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4 Assessment metrics
and implementation

The efficacy of the lightweight PDS-CNN model was estimated

using a confusion matrix (CM). The following equations were used

to calculate the accuracy, precision, recall, f1-score, and area under

the curve (AUC) from the CM (Swets, 1988; Powers, 2020).

Accuracy   =  
TP + TN  

TP + TN + FP + FN
      (4)

Precision   =  
TP

TP + FP
(5)

Recall   =  
TP

TP + FN
(6)

F1 − Score   =  
2� (Precision� Recall)

Precision + Recall
(7)

AUC   =  
1
2
(

TP

TP + FN
  +  

TN

TN + FP
) (8)

Where true positives, true negatives, false positives, and false

negatives were represented by TP , TN , FP and FN , respectively.

Keras was utilized to implement all deep learning algorithms and

XAI, with TensorFlow as the backend running on the software

PyCharm Community Edition (2021.2.3). A PC with 11th

generation Intel(R) Core (TM) i9-11900 CPU @2.50GHz,

128GB RAM, and an NVIDIA GeForce RTX 3090 24 GB GPU

running 64-bit Windows 10 Pro was used for model training

and testing.
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5 Results and discussion

In this study, both three-class and binary classifications were

considered with a 5-fold CV and SHAP to assess the performance of

the DL models.
5.1 Scheme 1: result for
three-class classification

5.1.1 Custom CNN models
First, a parallel CNN (PN-CNN) model without DSC was

developed and trained using 764 images from disease-free leaves

(0), leaf rust (1), and leaf spot (2), with 308, 342, and 114 images,

respectively. This PN-CNN model without augmentation (PN-CNN

WOA) was tested and validated using 218 images (88 disease-free

leaves, 98 leaves with leaf rust, and 32 leaves with leaf spots) and 109

images (44 disease-free leaves, 49 leaves with leaf rust, and 16 leaves

with leaf spots). The confusion matrix presented in Figure 7 was used

to conduct class-specific performance assessments. As indicated in

Table 4, the average test accuracy, precision, and recall were 85.04 ±

4.89%, 84.0 ± 5.10%, and 78.8 ± 6.93% over the 5-fold mulberry

dataset. Several conventional image augmentation approaches were

used to improve the performance of the PN-CNN model. Each class

had 2,000 images after augmentation, for a total of 6,000 images used

to train the PN-CNN WA (with augmentation) model. The same

images were utilized for validation and testing the model, and the

results were promising, with average accuracy, precision, and recall of

93.12 ± 2.1%, 92.8 ± 2.93%, and 89.20 ± 5.34%, as shown in Table 4.

The suggested PN-CNN model comprises 2.2 million (M)

parameters and is 24.5 megabytes (MB) in size. To minimize
B C D EA

FIGURE 7

Confusion metrices for three-class classification of (A) Fold 1, (B) Fold 2, (C) Fold 3, (D) Fold 4, and (E) Fold 5.
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model parameters and size, the normal CLs were replaced by depth-

wise separable CLs. This change lowered the resources (parameters

and size) while improving classification performance. With

parameters of only 0.53 M (nearly one-fourth of PN-CNN) and six

times less (6.4 MB) than the PN-CNN model, the suggested

lightweight PDS-CNN achieved an average test accuracy of 95.05 ±

2.86% (2% higher than PN-CNN) and recall of 92.80 ± 4.53% (3.6%

higher than PN-CNN). PDS-CNN had an AUC of 98.79 ± 1.22%,

which was about 0.5% higher than the PN-CNN (98.48 ± 0.99%)

model. The PDS-CNN model achieved a 99.90% class-wise ROC

across three classes, demonstrating its greater discriminant

competence over the other two models (the ROCs of the PN-CNN
Frontiers in Plant Science 11
WOA and PN-CNN WA were 99.29% and 99.27%, respectively,

which are shown in Figure 8).

5.1.2 Deep pre-trained models
In this section, the six TL models were trained on 6,000 leaf

images for three-class classification, with 2,000 images for each class.

Actually, prior work has yet to be done on the mulberry leaf disease.

As a result, the performance of the PDS-CNNmodel was compared to

that of the six TL models to ensure that its performance (both in terms

of classification performance and resource) is appropriate for this new

dataset. All of the TL models were validated using the same images

(109 leaf images), and the classification performance of the models
TABLE 4 Multiclass classification performance for comparison of PN-CNN WOA (without augmentation), PN-CNN, and PDS-CNN WA.

Model Name Metrices Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average µ±s(%)

PN-CNN WOA Precision 0.91 0.76 0.81 0.86 0.86 84.0±5.10

Recall 0.81 0.79 0.66 0.81 0.87 78.8±6.93

F1-Score 0.84 0.76 0.66 0.83 0.86 79.0±7.32

AUC (%) 95.75 91.64 91.71 97.98 97.11 94.84±2.68

Accuracy (%) 89.91 78.89 79.36 87.61 89.45 85.04±4.89

PN-CNN WA Precision 0.94 0.89 0.94 0.90 0.97 92.80±2.93

Recall 0.94 0.88 0.80 0.95 0.89 89.20±5.34

F1-Score 0.94 0.88 0.82 0.91 0.91 89.20±4.1

AUC (%) 99.25 97.92 96.79 99.27 99.18 98.48±0.99

Accuracy (%) 95.87 90.82 90.82 93.12 94.97 93.12±2.1

PDS-CNN WA Precision 0.93 0.89 0.91 0.95 0.98 93.20±3.12

Recall 0.95 0.89 0.86 0.98 0.96 92.80±4.53

F1-Score 0.94 0.89 0.88 0.97 0.97 93.00±3.85

AUC 99.46 97.94 96.81 99.90 99.87 98.79±1.22

Accuracy 95.87 90.83 92.66 97.71 98.17 95.05±2.86
Bold results represent the best results for a particular metric among different models (with augmentation).
B CA

FIGURE 8

Best ROC for three-class classification of (A) PN-CNN without augmentation, (B) PN-CNN with augmentation, and (C) PDS-CNN with augmentation.
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was evaluated using 218 images. DenseNet121 has the highest average

accuracy, precision, and recall scores of 93.12 ± 1.86%, 91.6 ± 2.65%,

and 92.0 ± 3.16%, respectively. ResNet152, on the other hand, has the

lowest accuracy, with accuracy, precision, and recall of 67.25 ± 5.00%,

64.6 ± 8.50%, and 62.8 ± 6.76%, respectively, as shown in Table 5.

The average AUCs for DenseNet121, MobileNet, MobileNetV2,

Xception, VGG19, and ResNet152 were 98.77 ± 0.88%, 97.72 ±

1.18%, 88.8 ± 2.99%, 95.42 ± 2.61%, 96.08 ± 1.92%, and 82.06 ±

4.25, respectively. As shown in Figure 9, all of the TL models achieved

the best class-wise ROC for fold-4.
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5.2 Scheme 2: results for
binary classification

5.2.1 Custom CNN models
The same approach for multiclass classification was used for

binary classification. The PN-CNN WOA (no augmentation) model

was trained using 764 leaf images, 308 of which were disease-free and

456 of which were disease-affected (1). Themodel was validated using

109 images (44 of disease-free leaves and 65 of diseased leaves), and

the performance was evaluated using 218 images (disease-free leaf: 88
TABLE 5 Multiclass classification performance of six transfer learning models with augmentation.

Model Name Metrices Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average µ±s(%)

DenseNet121 Precision 0.95 0.87 0.91 0.92 0.93 91.6±2.65

Recall 0.95 0.92 0.86 0.93 0.94 92.00±3.16

F1-Score 0.95 0.89 0.88 0.93 0.93 91.6±2.65

AUC (%) 99.29 97.25 98.31 99.49 99.52 98.77±0.88

Accuracy (%) 95.87 90.83 91.28 94.04 93.58 93.12±1.86

MobileNet Precision 0.90 0.88 0.95 0.96 0.88 91.4±3.44

Recall 0.85 0.91 0.87 0.96 0.89 89.6±3.77

F1-Score 0.87 0.89 0.90 0.96 0.89 90.2±3.06

AUC (%) 97.03 96.83 96.77 99.86 98.13 97.72±1.18

Accuracy (%) 91.74 92.20 92.66 96.79 91.74 93.03±1.91

MobileNetV2 Precision 0.91 0.84 0.90 0.93 0.92 90.00±3.16

Recall 0.88 0.88 0.84 0.92 0.90 88.4±2.65

F1-Score 0.89 0.85 0.86 0.93 0.91 88.8±2.99

AUC (%) 97.79 96.07 95.84 99.41 99.51 97.72±1.57

Accuracy (%) 93.12 88.53 88.99 93.12 93.12 91.38±2.14

Xception Precision 0.83 0.80 0.89 0.91 0.90 86.6±4.32

Recall 0.80 0.82 0.85 0.94 0.90 86.2±5.15

F1-Score 0.81 0.81 0.86 0.92 0.90 86.00±4.52

AUC (%) 94.46 93.27 92.47 99.29 97.61 95.42±2.61

Accuracy (%) 86.69 85.32 90.37 93.12 92.20 89.54±3.05

VGG19 Precision 0.86 0.82 0.84 0.93 0.88 86.6±3.77

Recall 0.82 0.83 0.80 0.92 0.86 84.6±4.18

F1-Score 0.84 0.82 0.82 0.92 0.86 85.2±3.71

AUC (%) 95.58 95.00 93.33 98.31 98.18 96.08±1.92

Accuracy (%) 89.45 84.40 83.94 92.20 89.45 87.89±3.20

ResNet152 Precision 0.49 0.66 0.66 0.67 0.75 64.6±8.50

Recall 0.53 0.65 0.57 0.68 0.71 62.8±6.76

F1-Score 0.50 0.65 0.58 0.64 0.72 61.8±7.39

AUC (%) 77.97 85.44 75.87 85.56 85.45 82.06±4.25

Accuracy (%) 67.88 69.27 61.47 62.39 75.23 67.25±5.00
Bold results represent the best results for a particular metric among different models.
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and disease-affected leaf: 130). Figure 10 shows how the CMwas used

to investigate the models’ categorization performance. The PN-CNN

WOA model’s accuracy, precision, and recall were 91.65 ± 4.95%,

92.4 ± 4.45%, and 91.2 ± 4.96%, respectively. Image augmentation

was used to improve the model’s performance. Image augmentation

was utilized to create 4,000 images after merging the two classes (leaf

rust and leaf spot), with 2,000 images from each class used to train the

model. The PN-CNNWAmodel enhanced testing accuracy by about

2% (93.30 ± 5.85%) when validated and tested with the same number

of images. The PN-CNN WA (with augmentation) required more

resources (more parameters, layers, and size) to distinguish between

disease-affected and disease-free leaves. As a result, PDS-CNN was

also used to do the binary classification. Table 6 shows that the
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suggested lightweight PDS-CNN model achieved an optimistic

accuracy of 96.06 ± 3.01% (nearly 3% higher than the PN-CNN

WA model). Other than that, the recall rose by over 3% (96.2 ±

3.06%) over the PN-CNN WA model with lower resources. The

average AUC for PN-CNNWA is slightly lower (98.71 ± 0.84%) than

for PN-CNN WOA (98.32 ± 1.91%). Still, the PDS-CNN model

achieved a promising AUC of 99.42 ± 1.04%, which is nearly 1%

higher than the PN-CNN WOA model, demonstrating that it has a

better discriminant capability than the other two models. Based on

these findings, it is possible to conclude that the proposed PDS-CNN

model is resilient for both binary and multiclass classifications. The

fold-5 produced the best class-wise ROC, which was 100% for both

models, as shown in Figure 11.
B C
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FIGURE 9

Best class-wise ROC for three-class classification of (A) DenseNet12, (B) MobileNet, (C) MobileNetV2, (D) Xception, (E) VGG19, and (F) ResNet152
with augmentation.
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FIGURE 10

Confusion metrices for the binary classification of (A) Fold 1, (B) Fold 2, (C) Fold 3, (D) Fold 4, and (E) Fold 5.
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5.2.2 Deep pre-trained models
The same 4,000 images of leaves were utilized to train the

custom CNN model as well as the six TL models used for binary

classification in this case. All of the TL models were validated using

the same set of 109 leaf images, and their classification accuracy was

evaluated across 218 images. DenseNet121 achieved the best overall

accuracy (98.78 ± 1.04%), precision (94.2 ± 2.93%), and recall (94.8

± 2.48%). ResNet152 has the lowest accuracy, precision, and recall,

with values of 71.84 ± 5.48%, 73.8 ± 6.31%, and 7.00 ± 2.97%,

respectively, according to Table 7. DenseNet121 had an AUC of

98.78 ± 1.04%, MobileNet had an AUC of 97.89 ± 1.88%,

MobileNetV2 had an AUC of 98.25 ± 1.12%, Xception had an

AUC of 95.13 ± 5.48%, VGG19 had an AUC of 95.99 ± 2.55%, and

ResNet152 had an AUC of 79.32 ± 5.26%. All TL models had the

best class-wise ROC for fold-4, as shown in Figure 12.
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5.3 Performance comparison of PDS-CNN
with SOTA TL models

As indicated in Table 8, this section compares the performance

of lightweight PDS-CNN with that of well-known TL models in

terms of classification results and computational resources

(parameters, layers, and sizes). DenseNet121, as previously stated,

achieved the best classification results among the other five TL

models for all three class and binary classifications. As shown in

Figure 13, the suggested PDS-CNN achieved a reasonable accuracy

of 95.05% for three-class classification, approximately 2% higher

than the DenseNet121. Except for that, the AUC was 98.79%, which

was higher than DenseNet121 (98.77%).

For binary classification, the PDS-CNN outperformed the

DenseNet121 with accuracy, precision, and recall of 96.06%
B CA

FIGURE 11

Best ROC for binary classification of (A) PN-CNN without augmentation, (B) PN-CNN with augmentation, and (C) PDS-CNN with augmentation.
TABLE 6 Binary classification performance for comparison of PN-CNN WOA (without augmentation), PN-CNN, and PDS-CNN WA (with
augmentation).

Model Name Metrices Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average µ±s(%)

PN-CNN WOA Precision 0.97 0.92 0.85 0.91 0.97 92.4±4.45

Recall 0.97 0.92 0.86 0.85 0.96 91.2±4.96

F1-Score 0.97 0.92 0.86 0.85 0.96 91.2±4.96

AUC (%) 99.14 97.26 98.92 99.76 98.46 98.71±0.84

Accuracy (%) 96.79 91.28 83.49 89.91 96.79 91.65±4.95

PN-CNN WA Precision 0.98 0.87 0.87 0.97 1.00 93.8±5.64

Recall 0.98 0.88 0.88 0.96 0.99 93.8±4.83

F1-Score 0.98 0.87 0.86 0.97 0.99 93.4±5.68

AUC (%) 99.55 95 97.36 99.69 100 98.32±1.91

Accuracy (%) 97.71 86.70 85.77 96.79 99.54 93.30±5.85

PDS-CNN WA Precision 0.96 0.91 0.94 0.98 1.00 95.8±3.12

Recall 0.97 0.91 0.95 0.98 1.00 96.2±3.06

F1-Score 0.96 0.91 0.94 0.98 1.00 95.8±3.12

AUC 99.86 97.34 99.91 99.97 100 99.42±1.04

Accuracy 96.33 91.28 94.50 98.17 100 96.06±3.01
Bold results represent the best results for a particular metric among different models.
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(almost 2% higher), 95.8% (almost 1.5% higher), and 96.2% (at

most 2% higher). Furthermore, as shown in Figure 14, the AUC of

the proposed PDS-CNN was nearly 1.0% (99.42%) higher than that

of DenseNet121 (98.78%). Based on these findings, the lightweight

PDS-CNN produced demonstrated promising discriminant

capability across all six TL models.

Additionally, with 91 layers and a size of 68 MB, MobileNet has

the fewest total parameters (for this Mulberry dataset) of any TL

model, but its accuracy (93.03% for three-class classification and
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92.75% for binary classification) is not greater than DenesNet121.

The proposed PDS-CNN model, on the other hand, has only 0.535

million, which is about 8 times smaller than MobileNet, and the

proposed custom CNN model includes 8 layers (13 times less than

MobileNet). Furthermore, the proposed lightweight model is only

6.3 MB in size, which is ten times lower than the MobileNet, as

shown in Figure 15. Based on the findings, the suggested framework

efficiently identified mulberry leaf diseases with higher accuracy,

fewer factors, fewer layers, and lower overall size.
TABLE 7 Binary classification performance of six transfer learning models with augmentation.

Model Name Metrices Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average µ±s(%)

DenseNet121 Precision 0.89 0.94 0.97 0.94 0.97 94.2±2.93

Recall 0.90 0.95 0.96 0.96 0.97 94.8±2.48

F1-Score 0.89 0.94 0.97 0.95 0.97 94.4±2.94

AUC (%) 97.13 97.99 99.79 99.70 99.27 98.78±1.04

Accuracy (%) 89.45 94.49 96.79 94.95 96.79 94.49±2.69

MobileNet Precision 0.86 0.92 0.99 0.99 0.93 93.8±4.87

Recall 0.87 0.87 0.98 0.98 0.90 92.00±5.02

F1-Score 0.85 0.89 0.99 0.99 0.91 92.6±5.57

AUC (%) 94.79 98.20 99.63 99.89 96.96 97.89±1.88

Accuracy (%) 85.32 89.45 98.62 98.62 91.74 92.75±5.22

MobileNetV2 Precision 0.88 0.94 0.90 0.97 0.96 93.00±3.46

Recall 0.89 0.93 0.91 0.97 0.94 92.8±2.71

F1-Score 0.88 0.93 0.90 0.97 0.95 92.6±3.26

AUC (%) 96.82 97.20 98.20 99.60 99.41 98.25±1.12

Accuracy (%) 88.07 93.58 89.91 96.79 94.95 92.66±3.22

Xception Precision 0.73 0.87 0.92 0.97 0.95 88.8±8.59

Recall 0.74 0.87 0.93 0.97 0.95 89.2±8.30

F1-Score 0.73 0.87 0.92 0.97 0.95 88.8±8.59

AUC (%) 84.41 95.83 97.88 99.31 98.22 95.13±5.48

Accuracy (%) 72.94 87.16 92.66 96.79 94.95 88.9±8.61

VGG19 Precision 0.82 0.84 0.90 0.88 0.96 88.00±4.89

Recall 0.84 0.82 0.90 0.88 0.95 87.8±4.58

F1-Score 0.84 0.82 0.90 0.88 0.95 87.8±4.58

AUC (%) 91.81 94.42 97.66 97.20 98.87 95.99±2.55

Accuracy (%) 81.63 83.49 90.37 88.53 95.41 87.89±4.93

ResNet152 Precision 0.70 0.76 0.67 0.71 0.85 73.8±6.31

Recall 0.68 0.74 0.68 0.70 0.75 71.00±2.97

F1-Score 0.65 0.75 0.67 0.70 0.76 70.6±4.32

AUC (%) 78.89 85.18 69.83 79.70 83.01 79.32±5.26

Accuracy (%) 64.69 76.15 66.97 72.02 79.36 71.84±5.48
Bold results represent the best results for a particular metric among different models.
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5.4 Interpretability PDS-CNN using SHAP

The DL models are “black boxes” by definition. To address this

issue and explain how the PDS-CNN model classifies the leaf

disease by focusing on a specific region of the images, SHAP was

incorporated into the proposed model for the first time in this work.

The SHAP results (Figure 16) for a specific image offer explanation

images for all three classes (disease-free leaf, leaf rust, and leaf spot).
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The relevant grey explanation backgrounds are almost invisible

with the input images to the left. The first row reveals that the first

explanation image has more red pixels, indicating that the leaf is

disease-free. The lack of blue pixels in leaf rust and leaf spot SHAP

explanation images, on the other hand, shows that the input image

is not the leaf rust or the leaf spot. In the second row, however, the

absence of red pixels in the SHAP explanation images of disease-

free and leaf spots, as well as the presence of a large number of red
B C

D E F

A

FIGURE 12

Best class-wise ROC for binary classification of (A) DenseNet12, (B) MobileNet, (C) MobileNetV2, (D) Xception, (E) VGG19, and (F) ResNet152
with augmentation.
TABLE 8 Performance comparison for multi-class and binary classifications in terms of classification results and computational resources. For
performance results, average values are mentioned with standard deviations.

Performance Criteria PDS-CNN DenseNet121 MobileNet MobileNetV2 Xception VGG19 ResNet152

Total Parameters (Million) 0.535 11.88 8 12.87 37.77 22.5 75.82

Trainable Parameters (Million) 0.533 4.8 4.8 10.61 16.9 2.49 16.9

Number of Layers 8 431 91 158 136 26 519

Size (Megabytes) 6.3 83.4 68 130 273 105 417

Three-class Avg. Precision 93.20±3.12 91.6±2.65 91.4±3.44 90.00±3.16 86.6±4.32 86.6±3.77 64.6±8.50

Avg. Recall 92.80±4.53 92.00±3.16 89.6±3.77 88.4±2.65 86.2±5.15 84.6±4.18 62.8±6.76

Avg. F1-score 93.00±3.85 91.6±2.65 90.2±3.06 88.8±2.99 86.00±4.52 85.2±3.71 61.8±7.39

Avg. AUC 98.79±1.22 98.77±0.88 97.72±1.18 97.72±1.57 95.42±2.61 96.08±1.92 82.06±4.25

Avg. Accuracy 95.05±2.86 93.12±1.86 93.03±1.91 91.38±2.14 89.54±3.05 87.89±3.20 67.25±5.00

Binary Avg. Precision 95.8±3.12 94.2±2.93 93.8±4.87 93.00±3.46 88.8±8.59 88.00±4.89 73.8±6.31

Avg. Recall 96.2±3.06 94.8±2.48 92.00±5.02 92.8±2.71 89.2±8.30 87.8±4.58 71.00±2.97

Avg. F1-score 95.8±3.12 94.4±2.94 92.6±5.57 92.6±3.26 88.8±8.59 87.8±4.58 70.6±4.32

Avg. AUC 99.42±1.04 98.78±1.04 97.89±1.88 98.25±1.12 95.13±5.48 95.99±2.55 79.32±5.26

Avg. Accuracy 96.06±3.01 94.2±2.93 92.75±5.22 92.66±3.22 88.9±8.61 87.89±4.93 71.84±5.48
Bold results represent the best results for a particular metric among different models.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1175515
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nahiduzzaman et al. 10.3389/fpls.2023.1175515
pixels in the SHAP explanation image of leaf rust, accurately

indicate that the image belongs to the leaf rust class. Similarly, in

the third row, a high concentration of red pixels in the SHAP

explanation image of a leaf spot and a high concentration of blue

pixels in the SHAP explanation image of a disease-free leaf and leaf

rust properly detect the original image containing the leaf spot

disease. This visual explanation of the SHAP explanation images

validates the model’s findings and gives the sericulture specialist or

farmers concerned a clear indication of the mulberry diseases.
5.5 Discussion and future work

Although the architecture of the proposed lightweight PDS-

CNNmodel is simple, it has just nine convolutional layers and three

dense layers, with the first five CLs running in parallel (cutting nine

CLs to five CLs) to ensure that the discriminant features were

recorded. Yet, as demonstrated in Table 8, the model outperforms

the other six models in classification performance. One of the key
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goals of this research was to create a model that improved

classification results while reducing the number of parameters,

layers, and size, which was accomplished by employing DS CLs

instead of conventional CLs and making them suitable for use on

embedded devices. Furthermore, SHAP has been introduced to

ensure that the proposed model focuses on the correct disease-

affected regions of an image rather than the other parts, making the

model more readable to sericulture experts and assisting them in

fast and accurate mulberry leaf disease classification, as well as

assisting farmers in learning to distinguish one disease from another

from these marked leaf images.

Due to a lack of leaf images, standard image augmentation

methods were used to create synthetic images. As a result, this

research will be expanded in the future by gathering more leaf

images from all three classes and including a new class of powdery

mildew leaf disease. As the model was hampered by an imbalanced

data problem, a more reliable model will be built and applied on

embedded systems such as mobile phones or raspberry pi to classify

diseases directly from mulberry fields, which will benefit farmers

and sericulture specialists.

The developed model can be applicable to identification of other

leaf diseases and this will be considered for other major crops

in Bangladesh.
6 Conclusion

An explanation generation (XAI) framework, in conjunction

with a novel lightweight PDS-CNNmodel, is proposed in this paper

for classifying disease-free leaf, leaf rust, and leaf spot from the

newly made mulberry leaf images database. This XAI-based PDS-

CNN model obtained 95.05 ± 2.86% accuracy for three-class

classifications and 96.06 ± 3.01% accuracy for binary

classifications with 0.53M parameters, 8 layers, and 6.3MB in size.

The lightweight model achieved a promising classification

performance while using fewer computational resources than the
FIGURE 13

Graphical comparison of classification results for multiclass
classification.
FIGURE 14

Graphical comparison of classification results for binary
classification.
FIGURE 15

Computational resources comparison between the proposed PDS-
CNN and TL models.
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TL models, and the model’s interpretability was induced by SHAP

and confirmed by sericulture experts, indicating that the proposed

framework is capable of providing convincing and consistent results

for mulberry leaf disease classification. Because of the model’s

distinguishing features, it has the potential to be practiced by

both sericulture professionals and farmers from rural areas. This

has the potential to play a critical role in Bangladesh’s agriculture

sector by assisting farmers in the early identification of mulberry

leaf diseases, resulting in significant production savings and

economic gain for farmers.
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FIGURE 16

The sample images and the corresponding SHAP explanation images for the three classes.
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