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Research of segmentation
recognition of small disease
spots on apple leaves based on
hybrid loss function and CBAM

Xiaoqian Zhang †, Dongming Li †, Xuan Liu, Tao Sun,
Xiujun Lin and Zhenhui Ren*

College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China
Identification technology of apple diseases is of great significance in improving

production efficiency and quality. This paper has used apple Alternaria blotch and

brown spot disease leaves as the research object and proposes a disease spot

segmentation and disease identification method based on DFL-UNet+CBAM to

address the problems of low recognition accuracy and poor performance of

small spot segmentation in apple leaf disease recognition. The goal of this paper

is to accurately prevent and control apple diseases, avoid fruit quality degradation

and yield reduction, and reduce the resulting economic losses. DFL-UNet

+CBAM model has employed a hybrid loss function of Dice Loss and Focal

Loss as the loss function and added CBAM attentionmechanism to both effective

feature layers extracted by the backbone network and the results of the first

upsampling, enhancing the model to rescale the inter-feature weighting

relationships, enhance the channel features of leaf disease spots and

suppressing the channel features of healthy parts of the leaf, and improving

the network’s ability to extract disease features while also increasing model

robustness. In general, after training, the average loss rate of the improvedmodel

decreases from 0.063 to 0.008 under the premise of ensuring the accuracy of

image segmentation. The smaller the loss value is, the better the model is. In the

lesion segmentation and disease identification test, MIoU was 91.07%, MPA was

95.58%, F1 Score was 95.16%, MIoU index increased by 1.96%, predicted disease

area and actual disease area overlap increased, MPA increased by 1.06%,

predicted category correctness increased, F1 Score increased by 1.14%, the

number of correctly identified lesion pixels increased, and the segmentation

result was more accurate. Specifically, compared to the original U-Net model,

the segmentation of Alternaria blotch disease, the MIoU value increased by

4.41%, the MPA value increased by 4.13%, the Precision increased by 1.49%, the

Recall increased by 4.13%, and the F1 Score increased by 2.81%; in the

segmentation of brown spots, MIoU values increased by 1.18%, MPA values by

0.6%, Precision by 0.78%, Recall by 0.6%, and F1 Score by 0.69%. The spot

diameter of the Alternaria blotch disease is 0.2-0.3cm in the early stage, 0.5-

0.6cm in the middle and late stages, and the spot diameter of the brown spot

disease is 0.3-3cm. Obviously, brown spot spots are larger than Alternaria blotch

spots. The segmentation performance of smaller disease spots has increased

more noticeably, according to the quantitative analysis results, proving that the

model’s capacity to segment smaller disease spots has greatly improved. The
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1175027/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1175027/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1175027/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1175027/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1175027&domain=pdf&date_stamp=2023-06-06
mailto:renzh68@163.com
https://doi.org/10.3389/fpls.2023.1175027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1175027
https://www.frontiersin.org/journals/plant-science


Zhang et al. 10.3389/fpls.2023.1175027

Frontiers in Plant Science
findings demonstrate that for the detection of apple leaf diseases, the method

suggested in this research has a greater recognition accuracy and better

segmentation performance. The model in this paper can obtain more

sophisticated semantic information in comparison to the traditional U-Net,

further enhance the recognition accuracy and segmentation performance of

apple leaf spots, and address the issues of low accuracy and low efficiency of

conventional disease recognition methods as well as the challenging

convergence of conventional deep convolutional networks.
KEYWORDS

hybrid loss function, CBAM, U-net, small spot segmentation, apple leaf disease
Introduction

Apples are rich in medicinal and nutritional value and are one

of the most widely planted fruit industries in the world (Khan et al.,

2022). From the data of recent years, the growth rate of apple

production has been decreasing year by year (Liu et al., 2018), and

analyzing the reasons for this, diseases are one of the important

influencing factors. Diseases of apple trees occur in the roots,

branches, fruits, and leaves, and most of them initially spread

from the leaves, so accurate and effective identification of apple

leaf disease types and the degree of disease is a key aspect of apple

disease protection management. According to statistics, there are

more than 100 kinds of apple leaf diseases, among which Alternaria

blotch and brown spot disease are the two most common leaf

diseases of apple trees. In this paper, we have segmented the spots

and classified the diseases for the 2 common types of apple

leaf diseases.

The traditional method of judging fruit tree leaf diseases mainly

relies on expert experience by manually extracting the color, texture,

and shape characteristics of diseased leaf images (Ayaz et al., 2021).

However, in actual production activities, it is easy to misjudge the type

of disease and thus misuse pesticides, which affects apple production.

Therefore, a more convenient and accurate disease diagnosis method is

urgently needed to analyze and determine the type of disease which

provides researchers with a reasonable application strategy to prevent

and control the disease on time and reduce the planting management

pressure of fruit farmers. With the breakthrough progress of deep

convolutional neural networks in classification tasks on open data sets,

many scholars have applied image segmentation technology to the field

of disease spot recognition to segment disease images and identify them

in real-time, scientifically determine the type of leaf diseases and the

degree of disease, take timely and effective measures to improve apple

yield, and help fruit farmers achieve early disease control.

The current challenges of apple leaf and spot image

segmentation can be summarized into the following three types:
1. Unbalanced pixel ratio. The disease spot information is

readily lost in the disease spot segmentation task because

the pixels in the diseased region only make up a small
02
portion of all the pixels in the entire image. Additionally,

because of the imbalanced pixel ratio, a lot of pixels in the

background that can be classified easily hide a lot of the

pixels in the rare diseased zone during the loss summing,

which negatively affects model training and, as a result, the

segmentation of diseased spots.

2. Hard example sample problem. The extraction of target leaf

edges and disease areas is problematic in the natural

environment due to leaf overlap, uneven lighting, and

shadows. These difficult-to-classify pixels directly affect

the outcomes of leaf segmentation, which in turn affects

the extraction of disease spots.

3. When an apple tree is infected in its early stages, the fruit

has not yet developed, and the illness first appears in the

leaves. Brown to dark brown little round spots with a

diameter of 2 to 3 mm was generated on the young leaves

during the early stages of spotted defoliation, and purple

haloes were frequently present surrounding the lesions with

obvious margins. Yellowish-brown dots that eventually

became circular emerged on the leaf surface in the early

stages of brown spot disease. The early stages of spotted

defoliation and brown spot are quite similar, making it

challenging to tell them apart. This makes it difficult to

identify the types of diseases, which has an impact on early

disease prevention and control.
In order to more precisely locate disease areas and identify

disease species, as well as to lay the groundwork for future

assessments of the severity of disease in fruit trees and effective

disease control methods, the main motivation for the current study

is to segment the smaller spots on apple leaves and classify similar

diseases. Smaller spots are challenging to identify in lesion

segmentation, necessitating model improvement to enhance

lesion segmentation performance. Early detection of apple leaf

diseases is essential for timely disease management, illness

prevention, and mitigation of effects on fruit quality and fruit

yield. Further, the performance of various semantic segmentation

models (such as Deeplabv3+, PSPNet (Pyramid Scene Parseing

Network), and U-Net) in spot segmentation has been the focus of

recent research, and performance evaluation measures like MIOU
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(Mean Intersection over Union), MPA (Mean Pixel Accuracy),

Precision, and F1 scores were taken into account in the

current work.

Too et al. (Too et al., 2019) compared various convolutional

neural network models, including VGG16, InceptionV4, ResNet50,

ResNet101, ResNet152, and DenseNets121, using plant leaf diseases

from the publicly available Plant Village dataset as the research

object. The results of the experiment revealed that the DenseNets

network model performed the best in terms of classifying and

identifying plant leaf diseases. Lin et al. (Lin et al., 2019) improved

the UNet-based deep convolutional neural network model was

proposed for cucumber powdery mildew to segment and extract

the diseased areas of cucumber leaves with an average pixel

accuracy of 96.08%, which is better than traditional detection

methods such as K-means, random forest, and GBDT (Gradient

Boosting Decision Tree). Zhong Y et al. (Zhong and Zhao, 2020)

proposed three methods to identify apple leaf diseases: regression,

multi-label classification, and Focal Loss function based on

DenseNet-121 deep convolutional network, and the accuracy of

the method on the test set was 93.51%, 93.31%, and 93.71%,

respectively, which was better than the traditional CE (cross-

entropy) loss function-based multi-classification methods. Santos

et al. (Santos et al., 2020) used the Mask R-CNN instance

segmentation network model to segment, detect and count the

grape trees in the real scene, compared with other network models,

the F-score of the Mask R-CNN network model achieved an

optimal effect of 0.91. Ngugi et al. (Ngugi et al., 2020) modified

the encoder component of the UNet network model to offer the

network the ability of multi-scale feature extraction to achieve

tomato leaf disease spot segmentation on complicated backdrops,

thus increasing the segmentation accuracy of tomato leaf illnesses.

On the entire plant leaf specimen dataset, Hussein et al. (Hussein

et al., 2021) used DeepLabV3+ to conduct segmentation

experiments and found that utilizing a deep learning semantic

segmentation model produced superior semantic segmentation

outcomes than target detection techniques like Faster R-CNN

(Ren et al., 2017) and Yolo v5. Wang P et al. (Wang et al., 2021)

proposed to use CA-ENet to identify different apple diseases. This

method integrates a coordinate attention block in the EfficientNet-

B4 network, uses deep separable convolution in the convolution

module, and introduces the h-swish activation function. The

experimental results show that the accuracy of this method is

98.92%, and the average F1 score is 0.988, which is better than

ResNet-152, DenseNet-264, and ResNeXt-101. Tassis L M et al.

(Tassis et al., 2021) used the Mask R-CNN network, U-Net, and

PSPNet networks to automatically detect identify disease spots in

field images containing some coffee trees and obtained 73.90%

accuracy and 71.90% recall in the instance segmentation task; for U-

Net and PSPNet networks, 94.25% and 93.54% average intersection

and union were obtained. Li X et al. (Li et al., 2022) used U-Net,

PSPNet, and DeepLabV3+ (Chen et al., 2018a) semantic

segmentation model for potato leaf segmentation, and the MIoU

of the model was 89.91% and MPA was 94.24%.

Studies have shown that plant leaf lesion segmentation based on

deep learning semantic segmentation models is feasible, but existing

studies have only used CNN-based models to identify crops and
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plant diseases without improving the models, and there are fewer

studies on segmentation of apple leaf lesion regions based on

semantic segmentation. Liu et al. (Liu et al., 2022) used the

severity of apple Alternaria blotch assessed using DeeplabV3 +,

PSPNet, and UNet. The correlation coefficient and consistency

correlation coefficient were both 0.992 and the average accuracy

of severity categorization was 96.41%. The study’s lack of many

disease instances in a single leaf image was a drawback, even though

the reference value and anticipated value were in agreement. In

addition, in prior research, the loss function of the model is typically

a single loss function. In this study, to enhance the segmentation

performance and achieve more precise segmentation of leaves and

disease spots under natural conditions, we fused two loss functions

and added attention mechanisms to both the two effective feature

layers extracted by the backbone network and the outcomes of the

first upsampling.

Therefore, this paper has improved the U-Net model by

adopting a hybrid loss function and adding an attention

mechanism to perform pixel feature extraction and spot

segmentation for two common types of apple leaf diseases, so that

the disease can be recognized accurately. This method has improved

the recognition accuracy and segmentation effect for small targets

such as apple leaf spots while ensuring its feature extraction and

classification ability.

The main contributions of this work are as follows:
1. Dice Loss and Focal Loss are combined as the loss function

in this paper, causing the network to pay more attention to

the similarity of lesions, increase the accuracy of image

segmentation, and optimize the segmentation details.

2. The original U-Net model is proposed to be enhanced with

an attention mechanism in this research. By comparing the

segmentation accuracy after incorporating the three

attention mechanisms SENet (Squeeze-and-Excitation

Networks), ECANet (Efficient Channel Attention

Module), and CBAM (Convolutional Block Attention

Module), it is found that adding CBAM to the original

model improves the network’s capacity to extract illness

features and increases the robustness of the model.

3. The model in this work has the best segmentation

performance in smaller disease spots segmentation

recognition when the segmentation performances of

Deeplabv3+, PSPNet, U-Net, and DFL-UNet+CBAM are

compared.

4. The classification and identification of related diseases, as

well as the segmentation and recognition of smaller disease

spots in apple leaves, were accomplished. In general, the

results of this experiment can serve as a technical

foundation for the future segmentation, classification, and

precise management of plant leaf disease spots.
The structure of the whole document is as follows. The first

section of this essay provides an overview of the study context and

topic’s importance, the research’s driving forces, its current state, its

main contributions, and its primary ideas. In Section 2, the

suggested modeling strategy is introduced, with an emphasis on
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the U-Net algorithm, the attention mechanism, and the loss

function, as well as a description of the enhanced network

topology. The study’s materials and procedures are described in

Section 3, including the dataset preparation process, model training

environment, model implementation platform, and an explanation

of each model assessment metric’s parameter. The fourth section

examines the experimental findings, investigates the segmentation

impact of the model trained on smaller disease spots using a variety

of algorithms, loss functions, and attention processes, and discusses

the training strategy for the model with the best segmentation effect.

The discussion of the research is introduced in Section 5, which

mostly outlines the issues that need to be resolved. Section 6

summarizes the research of this paper and introduces the

research conclusions of the test.
Improved U-Net network structure

U-Net network structure

One of the earliest full convolutional network-based image

segmentation algorithms, U-Net is an upgraded semantic

segmentation network built on FCN (Fully Convolutional

Networks) (Shelhamer et al., 2017) and may maintain more local

features in the segmentation outcomes.

The “U-shaped” symmetric encoder-decoder structure of the U-

Net network’s second half, which is upsampling, is used for feature

extraction in the first half. The enhanced feature extraction part of the

process can be used to up-sample the five initial effective feature layers

obtained from the backbone part and perform feature fusion to obtain

an effective feature layer that fuses all features to classify each feature

point. The backbone feature extraction part makes up the first half.
Loss function

In this paper, a hybrid loss function was utilized to close the gap

between the prediction results and the true values and achieved high

confidence in the boundaries of segmented images. The commonly

used loss function was CE Loss, but its role was relatively small

when the examples were unbalanced. Lin, T.-Y. et al. (Lin et al.,

2020) proposed focal loss to improve the accuracy of dense object

detection. Dice Loss (Wang et al., 2020) and Focal Loss (Chen and

Qin, 2022) were taken into consideration in order to address the

issues of poor segmentation performance of smaller disease spots in

apple leaves and the challenge of classifying apple Alternaria blotch

and brown spot disease diseases with similar disease characteristics

at the early stage of disease onset.

The basic idea behind Dice Loss was to measure the regional

similarity between the prediction result and the true value during

training; however, using Dice Loss directly reduced training

stability. To avoid the problem of assigning different weights to

the same class while ignoring the presence of hard examples in both

positive and negative examples, such as pixels in the diseased area

covered by raindrops and light or other leaf pixels in the

background, the network was focused on learning hard examples
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by using a Focal Loss function that increases the loss value of

challenging examples. By increasing the loss value of hard examples

and forcing the network to concentrate on learning hard examples,

it addressed the issue of unbalanced positive and negative examples

as well as unbalanced hard and easy examples.

(1) CE loss is used to measure the difference between two

probability distributions and the gap between model learning and

reality. The traditional cross-entropy loss function is the most often

used loss function in classification. Equation (1) displays its formula.

CE   Loss = −(yi log pi + (1 − yi) log (1 − pi)) (1)

(2) Dice Loss places more emphasis on identifying leaf regions

and gauges how well the outcomes anticipated and actual values in

the area match up. Equation (2) illustrates the formula.

Dice   loss =
2TP

2TP + FN + FP
(2)

where, correspondingly, TP (True Positive), FP (False Positive),

and FN (False Negative) represent the total number of true

positives, false positives, and false negatives.

(3) Focal Loss focuses the network on learning hard examples

by enhancing the loss value of hard examples, balancing positive

and negative examples and difficult and easy classification examples,

as shown in equation (3).

Focal loss(Y, P) = −
1
no

n
i=1½ayi(1 − pi)

g ln pi + (1 − a)(1

− yi)p
g
i ln (1 − pi)� (3)

In the equation, n stands for the total number of apple leaf

samples, yifor the input sample’s true category, pifor the likelihood

that the sample is 1, and gfor the modulation coefficient. The

average logarithmic loss for each sample is shown by the

logarithmic loss for all samples. To strengthen the focus on

positive examples and improve the imbalance of targets in the

case of extremely unbalanced categories, adding (1 − pi)
gwill cause

the loss value of samples with high prediction probability to

decrease while the loss value of samples with low prediction

probability to increase. Currently, image segmentation can only

use it for binary classification. The positive example in the binary

classification problem has a label of 1, and the negative example has

a label of 0. For the positive example, the more 1 − pi, the harder it is

to categorize the sample. The more piis greater, the more

challenging it is to classify negative examples.

In this study, the loss function employed a hybrid loss function

(DFL) that scaled both Dice Loss and Focal Loss to the same order

of magnitude to predict the input data, with Dice Loss emphasizing

similarity and Focal Loss improving segmentation specifics to

increase image segmentation accuracy.
Attentional mechanism

Jain et al. (Jain et al., 2022) compared the Attention-UNet

model with the UNet, UNet + + and UNet3P models, the AUC

(Area Under Curve) value is 0.97, while the AUC values of other
frontiersin.org
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models are 0.964,0.966 and 0.965, respectively. The results show

that the attention mechanism is beneficial to segment very bright

and blurred plaque images that are difficult to diagnose using

other methods.

The inclusion of an attention mechanism was thought to

improve feature extraction because the leaf spot areas are smaller.

The model would then assign different weights to each location of

the input image and concentrate on the areas with crucial

information, which would help it make more accurate judgments

while using fewer resources. The attention mechanism has

demonstrated strong performance in previous research on tasks

like categorization, detection, and segmentation (Karthik et al.,

2020; Mi et al., 2020). In this study, we thoroughly examined

SENet (Hu et al., 2020), ECANet (Yu et al., 2022), and CBAM

(Ma et al., 2022), three attention mechanisms, and we chose the best

module to enhance apple leaf spot segmentation.

ECANet removed the two FC (Fully Connected) layers used in

SENet and performed global average pooling without

dimensionality reduction. It used the current channel and its k

neighboring channels for local cross-channel interaction. SENet

performed global average pooling of the input feature layer, took the

Sigmoid after completing two full joins, obtained the weight of each

channel of the input feature layer, and then multiplied that weight

by the original input feature layer. Compared to SENet’s attention

mechanism, which focused exclusively on channels, CBAM was a

lightweight attention module that could be integrated into virtually

any convolutional neural network, and almost negligible

computation and parameters were introduced. It combined the

channel attention mechanism and the spatial attention mechanism

to jointly learn the important local detail information in the image,

assign higher weights to the diseased spot region in the neural

network’s feature map and lower weights to the background,

improved the neural network’s attention to the diseased spot in

the image, and then enhanced the network’s capacity for feature

learning and expression.

In order to boost the network’s capacity to extract disease

features and the resilience of the model, an attention mechanism

was added to the two effective feature layers that the backbone

network extracted, as well as to the outcomes of the

initial upsampling.
Improved U-Net network structure

This paper proposed an improved model based on U-Net that

keeps the backbone feature extraction network but enhanced it by

adding CBAM modules to the two effective feature layers extracted

by the backbone network; after being subjected to feature fusion to

complete two convolution operations, the effective feature layers

obtained in the coding stage are then subjected to upsampling to

recover the original image accuracy and detail information pixel by

pixel. The CBAM attention module was then embedded after the

first upsampling. The model was designed to recalibrate the weight

relationships between features, amplify channel features of leaf

disease spots, and suppressed channel features of healthy regions

of leaves to improve the network’s ability to extract disease features
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and to increase the model’s robustness. The upper portion of the

improved U-Net network was the backbone feature extraction

network, and the lower portion was the enhanced feature

extraction network.

Additionally, the improved model predicts the input data using a

mixed loss function (DFL), which scales the focus loss and dice loss to

the same magnitude. During training, Dice Loss focuses more on

identifying the foreground region and assesses how closely the results

of the prediction match the actual value in the area. By strengthening

the loss value of hard examples (such as pixels in the diseased area

covered by raindrops and light or other leaf pixels in the background),

the Focal Loss function makes the network focus on the learning of

difficult samples and solves the problem of imbalance between positive

and negative examples and imbalance between difficult and easy

samples. The structure of the network is shown in Figure 1.
Materials and methods

Dataset source

The image samples of apple leaf diseases in this experiment

came from the public data set Plant Village (Geetharamani and

Pandian, 2019). The dataset manually collects images of indoor and

outdoor diseased apple leaves. In order to ensure the versatility of

the model, outdoor landscape images were taken on sunny and

rainy days, respectively.

The data set in this paper contains different situations of a single

leaf with a single disease and multiple diseases and multi-leaf

images in complex backgrounds. As seen in Figure 2, the leaf

diseases include single Alternaria blotch, brown spot, and

multiple diseases (including brown spot and mosaic) of apple

leaves. The samples in this dataset include pre-processing

operations on the acquired images, such as image rotation,

horizontal and vertical mirroring, a sharpness value, brightness

value, contrast adjustment, and Gaussian blur on the original

disease images. This pre-processing was done to prevent

overfitting issues in the later network training phase, to improve

the anti-interference ability of complex conditions as well as the

generalization ability of the model, to increase the diversity, and to

avoid generating problems during the network training phase, and

thus the model robustness is enhanced.

Also to ensure a balanced sample, 1200 images of a single

Alternaria blotch, 1200 images of a single brown spot, 600 images of

apple leaf diseases infected with multiple diseases (mosaic and

brown spot), a total of 3000 original images (JPG format) were

selected, with a 1:1 ratio of complex background images to simple

laboratory background images, which is more challenging than

laboratory images of diseased leaves with simple backgrounds, with

an original image size of 512 pixels * 512 pixels, and the dataset was

divided into training, validation and test sets in a 6:2:2 ratio. As

demonstrated in Figure 2, the image of apple leaf disease has the

traits of a smaller disease spot and high similarity, which presents

numerous difficulties for image segmentation.

For leaf segmentation, it is difficult to extract the target leaf’s

edge because there are multiple leaves overlapping in the
frontiersin.org
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background of the image in the outdoor scene. Additionally, there

are shadows in the leaf image due to uneven illumination, self-

crimping, folding, and other factors, which makes the segmentation

more challenging. Diverse and challenging to extract features from

the target leaf scales. The extraction of disease spot features and the

precise detection of disease spots are greatly hampered by the

smaller disease spot pixels, which make up 0.2% to 0.4% of

the leaf pixels in spot segmentation. Outside, there are materials

that resemble spots that could prevent infections from being

extracted. The segmentation impact of disease spots is easily

influenced by the spots on raindrops and leaves.
Dataset production

The photos must be converted into a dataset in PASCAL VOC

format by the specifications of the model for the dataset.

JPEGImages, ImageSets, and Annotations were the three main

files that made up the PASCAL VOC format dataset.

The Segmentation folder of the ImageSets file contained four

text files: train.txt, val.txt, test.txt, and trainval.txt, which,

respectively, represented the training set, validation set, test set,

and summary of the training and validation sets required by the

model. The numbers of the photographs in each of the four text
Frontiers in Plant Science 06
files’ respective sets, with each image number on a distinct line,

made up their contents. To ensure the generalizability of the model,

the image numbers were created at random.

The function of Annocations file was mainly to store the

annotation information corresponding to the leaf image. In order

to train the model, a large number of data annotations of the data

set must be performed; this work used Labelme as the data labeling

software. The annotation file is initially stored in.json format, and

then changed to a tag image in.png format by batch converting the

file, as shown in Figure 3.
Setting up the testing environment
and parameters

Intel Core i7-9700, 32 GB of RAM, and an Nvidia GeForce RTX

2080Ti graphics card were the specifications of the computer’s

processor. Model construction, training, and prediction were

performed in this deep learning environment using Tensorflow-

gpu1.13.2, keras2.1.5, Windows 10, 64-bit operating system, Python

3.6.13 compiled environment, CUDA10.1 architecture, and

cuDNN7.4.1 Development library. When compared to other

adaptive learning rate algorithms, the Adam approach is simple

to use, very computationally efficient, memory-light has a quicker
FIGURE 2

Examples of apple leaf disease image.
FIGURE 1

Improved U-Net network structure diagram.
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convergence time and is invariant to diagonal gradient rescaling. In

order to select the model with the best segmentation effect through

interaction, this experiment trains the models using the Adam

optimizer until convergence.

During training, the input image is 512*512 pixels. Padding=1 is

utilized so that each input square can serve as the convolution

window’s center and stride=1 is used to limit the number of input

parameters and processing. The output size is the same as the input

when stride and padding are both set to 1. In order to nonlinearly

transform the input, the activation function needs to be introduced.

The activation function used in this paper is sigmoid. The whole

training is divided into two stages, the freezing stage and the

thawing stage. The quantity of images entered into the network at

once during training is referred to as the batch size. The model

training generation is known as an epoch. It can be regarded as a

suitable training generation when there is a minimal difference in

error between the training set and the test set. In order to ensure

that the model achieves the best effect in terms of accuracy and

training time, this paper sets the training generation to 200.

According to the graphics performance of the operating system

and the size of the image, the first 50 stages are the freezing stage,

the batch size is set to 4, and the last 150 stages are the thawing

stage, the batch size is set to 2, to ensure that the model achieves the

best effect in terms of accuracy and training time, and avoids

insufficient memory. The average value of the updated network

weight in the algorithm is the initial learning rate. The maximum

learning rate is set at 0.0001 in order to speed up the model

training’s transition into a stable learning state. The learning rate

is reduced by the cosine annealing attenuation method. Period = 5 is

set during training to attenuate the model once every 5 epochs and

preserve it, preventing the loss of the training model in the event of

a power outage or an abnormal exit during long-term training.
Model evaluation indicators

This study evaluated the classification accuracy of the model for

the disease classification problem using true positive (TP, the

number of times the model accurately predicts the disease type),

true negative (TN, the number of times the model accurately

predicts the leaf area), false positive (FP, the possibility of
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misjudging the leaf area as the spot area), and false negative (FN,

the possibility of misjudging the spot area as the leaf area).

After the establishment of the model, it was necessary to

evaluate its effectiveness. This work suggested using the mean

intersection ratio MIoU (Shoaib et al., 2022), the category average

pixel accuracy MPA, the precision rate Precision, and the

comprehensive evaluation index F1 Score (Shoaib et al., 2022) as

the evaluation index of the segmentation results in order to quantify

and assess the model’s performance.

To facilitate the interpretation of the evaluation metric

formulas, it is assumed that the data set has a total of k   +   1

categories. pij denotes the number of pixels for which category iis

predicted to category j, pii denotes the number of pixels that are

correctly predicted, and pij and pji denote the number of false

negative and false positive pixels, respectively.

(1) MIoU

The average of the ratio between the intersection and

concatenation of the set of pixels whose true value is the spot and

the set of pixels whose predicted value is the spot is determined, as

indicated in equation (4). The higher the MIoU value, the higher the

overlapping degree between the projected spot area and the actual

spot area.

MIoU =
1

k + 1o
k
i=0

pii

ok
j=0pij +ok

j=0pji − pii
(4)

(2) MPA

Equation (5) demonstrates that MPA is the average of the

percentage of total pixels that fall into the proper prediction

category.

MPA =
1

k + 1o
k
i=0

Pii

ok
j=0Pij

(5)

(3) Precision

The accuracy rate is defined as the proportion of actual diseased

pixels to those predicted as such by the model, as indicated in

equation (6). Less false detection areas are seen in the prediction

results as the value increases.

Precision =
TP

TP+FP
(6)

(4) Recall
FIGURE 3

Examples image of a.png tag image.
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The recall rate, also known as the check-all rate, is the

proportion of spots that are detected to all spots in the data set,

as is evident from equation (7).

Recall =
TP

TP+FN
(7)

(5) F1 Score

The F1 Score metric combines the Precision and Recall outputs,

as given in equation (8). F1 Score accepts values between 0 and 1.

The model’s best output is represented by 1, while its worst output is

represented by 0. The more correctly recognized spot pixels, the

more accurate the segmentation result.

F1 =
2*Precision*Recall
Precision+Recall

(8)
Test results and analysis

Test process

After 250 epochs of training the U-Net model, the Loss finally

converged to 0.022. Figure 4 depicts the Loss’s evolution throughout

training epochs. It is clear from the figure that the Loss stopped

dropping and stabilized around 200 epochs, indicating that the

model had progressively converged at that point. The U-Net model

with 200 and 250 epochs of training was chosen to compare the test

results in order to determine the best model for this experiment.

The findings are displayed in Table 1.

Table 1 shows that as training epochs increased, MIoU, MPA,

and Precision values fell at training 250 epochs, indicating the

occurrence of an overfitting phenomenon. As a result, the model in

this research was chosen for training 200 epochs.

In the experiment to segment unhealthy spots, the target pixel

points can be separated into two primary categories: diseased spots

and healthy parts. Since the background does not include any

diseased spots, it is likewise segmented into healthy parts. Three
Frontiers in Plant Science 08
loss functions—CEL, CEDL, and DFL—are employed in this study’s

ablation experiments, with U-Net serving as the main body. The

experiment assesses the effectiveness of the loss functions using the

loss rate and accuracy of the validation set. Table 2 presents

the outcomes.

Table 2 compares the performance of the original U-Net and

the improved U-Net deep learning designs using various loss

functions. Verification loss, accuracy, MIoU, and MPA are

employed as evaluation indicators for these variables. As can be

observed, under the presumption that picture segmentation

accuracy is guaranteed, the outcomes of the four parameters are

0.008, 98.86%, 91.07%, and 95.58%, respectively, after adding the

DFL mixed loss function. The modified model’s average loss rate

dropped from 0.063 to 0.008; the lower the loss, the more accurate

the model, the MPA increased by 1.06%, the prediction category

correctness increased, the MIoU score rose by 1.96%, and the more

the predicted illness area overlapped with the actual disease region.

The challenge of distinguishing apple Alternaria blotch disease and

brown spot disease with high similarity in the early stage of disease

is resolved by the addition of the DFL mixed loss function, which

also addresses the issue of poor segmentation performance of

smaller disease points. Additionally, it lessens the disparity

between simple and difficult training examples as well as the

disparity between positive and negative training examples. The

process by which the effective loss value of the U-Net model

changes when different loss functions are applied is shown in

Figure 5. The outcomes demonstrate that the DFL mixed loss

function employed in this study has the smallest loss value, the

fastest decline rate, and the smoothest training procedure.

The model is trained by adding various attention mechanism

modules using the same experimental setting and training

parameters as U-Net combined with hybrid loss function DFL.

The experimental findings are displayed in Table 3 to compare the

various types of segmentation MIoU.

As shown in Table 3, the accuracy of disease identification can

be increased by adding SENet or ECANet, but the addition of the

CBAM attention mechanism results in superior disease

identification. The comparison shows that the MIoU value of

smaller Alternaria blotch disease spots increases by 2.97%,

indicating that the CBAM attention mechanism can effectively

focus on the disease spots in the image and suppress the

interference information. To address the issue of the DFL-UNet

model’s poor segmentation performance of smaller spots, we

decided to integrate the CBAM module in this study.
FIGURE 4

Loss curve.
TABLE 1 Comparison of segmentation results for different epochs of
training.

Epoch MIoU/(%) MPA/(%) Precision/(%)

200 89.11 94.52 93.53

250 88.96 94.30 93.24
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Results analysis

The segmentation performance of the Deeplabv3+ model,

PSPNet model, original U-Net model, and DFL-UNet+CBAM

model was compared, and the results are shown in Table 4. In

this paper, MIoU, MPA, and F1 Score were all used as evaluation

metrics for segmentation results under the same research object and

the same experimental conditions.

As can be seen in Table 4, when comparing the four models, the

MIoU, MPA, and F1 Score of the DFL-UNet+CBAM model

proposed in this paper are the highest, increasing by 1.96% in

MIoU value, 1.06% in MPA value, and 1.14% in F1 Score when

compared with the original U-Net model. This shows that the

model in this paper correctly identifies the most diseased pixels and

can effectively optimize the segmentation results and obtain more.

The change in MIoU value during model training is depicted in

Figure 6, and it is also obvious from the change curve that the model

used in this paper has the greatest MIoU value, suggesting the

highest overlap between the predicted spot area and the actual

spot area.

Table 5 compares the segmentation performance of smaller

spots before and after model modification using MIOU, MPA,

Precision, Recall, and F1 scores as assessment metrics. This

comparison is done to indicate the benefit of the suggested

method in recognizing smaller spots.
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As can be seen from Table 5, compared to the original U-Net

model, the segmentation of Alternaria blotch disease, the MIoU

value increased by 4.41%, the MPA value increased by 4.13%, the

Precision increased by 1.49%, the Recall increased by 4.13%, and the

F1 Score increased by 2.81%; in the segmentation of brown spots,

MIoU values increased by 1.18%, MPA values by 0.6%, Precision by

0.78%, Recall by 0.6%, and F1 Score by 0.69%. The spot diameter of

the Alternaria blotch disease is 0.2-0.3cm in the early stage, 0.5-

0.6cm in the middle and late stages, and the spot diameter of the

brown spot disease is 0.3-3cm. Obviously, brown spot spots are

larger than Alternaria blotch spots. The segmentation performance

of smaller disease spots has increased more noticeably, according to

the quantitative analysis results, proving that the model’s capacity to

segment smaller disease spots has greatly improved.

Additionally, the proposed model’s training and validation

performance are assessed using the training set F1 score, validation

set F1 score, a training set loss, and validation set loss. This is done to

further validate the performance of the model segmentation. The loss

value is used to quantify the discrepancy between the model’s true

value and its predicted value, and the F1 score is calculated as a

weighted average of Precision and Recall metrics. Better model

robustness is associated with smaller loss functions. The training

score determines the generalization ability of the algorithm in its

training samples. The verification score determines the optimal

model (Srinivasu et al., 2022). Figure 7 displays the model’s

performance in relation to the hyperparameters.

In this study, we used a trained semantic segmentation model to

predict apple leaf disease in laboratory and field environments. The

image dataset must meet two criteria: first, it must allow for the

simultaneous occurrence of various illnesses on the same leaf; and

second, it must allow for the presence of complicated backgrounds

in some images to guarantee the data images’ excellent

generalization ability.

In comparison to the Deeplabv3+ model, the PSPNet model,

and the original U-Net model, the segmentation results of the DFL-

UNet+CBAMmodel utilized in this paper are shown in Figure 8 for

the test set of apple disease leaf photos.

The prediction outcomes of single-leaf spot segmentation

against various backgrounds are shown in Figure 8. Figure 8

shows it abundantly clear that the network structure suggested in

this paper achieves more accurate segmentation for apple leaf spots

and produces better segmentation results for both the disease

location on the leaf and the size of the spot area. This network

structure is also more accurate than other networks used in this
TABLE 2 Experimental results of loss function ablation.

Loss function Network Val-acc/(%) Val-loss MIoU/(%) MPA/(%)

CEL Original U-Net 98.34 0.063 89.11 94.52

CEDL Original U-Net 98.37 0.055 89.33 94.85

DFL Original U-Net 98.40 0.010 90.09 95.14

CEL Improved U-Net 98.51 0.039 90.89 95.07

CEDL Improved U-Net 98.76 0.045 89.96 94.90

DFL Improved U-Net 98.86 0.008 91.07 95.58
FIGURE 5

Loss curves of different loss functions.
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paper. When recognizing brown spot disease, the Deeplabv3+

model in Figure 8C incorrectly recognized the green halo area

surrounding the illness spot as the disease spot; the PSPNet model

in Figure 8D has a condition where the object boundary

segmentation is discontinuous and the segmentation result is

rough, the border between the leaf and the backdrop is hazy, and

there is a missing section for the area affected by the brown spot

disease. Analysis of the segmentation results of the model proposed

in this paper demonstrates that the model in this paper can segment

the semantic objects completely, finely, and accurately, and it is

apparent from Figure 8F that the recognition results of the disease

spots and the segmentation results of the edges of the disease spots

in this paper are more accurate.

Comparing Figure 8C and Figure 8D, it can be seen that the

network structure of the proposed model performs well in the

segmentation of smaller spots. Although the U-Net model in

Figure 8E identified smaller spots in the apple Alternaria leaf spot

and brown spot categories of foliar diseases, the identified spot area

was incomplete. In contrast, the model in Figure 8F accurately

identified the smaller spots in the categories of apple ringspot and

brown spot, and the recognition results were more accurate.
Discussion

Semantic segmentation and attention mechanisms have been

widely used in the realm of disease recognition. An ASPP (Atrous

Spatial Pyramid Pooling)-based DeepLabV3+ semantic

segmentation network model, for instance, was developed by Li L

et al. (Li et al., 2023). The experimental findings revealed that the

model’s average pixel accuracy (MPA) and average intersection

(MIoU) reached 97.26% and 83.85%, respectively. Additionally, Li

Q et al. (Li et al., 2021) proposed an integrated U-Net segmentation

model for small sample datasets, merging U-edge Net’s features and

high-level features using ASPP. The experimental findings
Frontiers in Plant Science 10
demonstrated that the method significantly increased the

segmentation accuracy of the target fruits as well as the model’s

capacity for generalization.

The segmentation task of apple leaves and spot areas was

carried out in this study using three traditional semantic

segmentation network models (DeepLabV3+, PSPNet, and U-

Net). The segmentation performance of the model was evaluated

throughout the experiment. Also, the performance of the model is

addressed in relation to the implications of various loss functions

and attention mechanisms. Following are our findings:
1. Three semantic segmentation network models (DeepLabV3

+, PSPNet, and PSPNet) were compared and their

segmentation and convergence capabilities for the apple

leaf and speckle regions were examined. The findings

indicate that PSPNet and Deeplabv3+ are not as effective

in segmenting data as the U-Net network model.

2. Investigated is how the U-Net network model chooses its

loss function. According to the results, the addition of the

DFL hybrid loss function improves the segmentation

performance and classification capacity of the model. The

average loss rate val-loss lowers from 0.063 to 0.008, the

MIoU index increases by 1.96%, and the MPA increases by

1.06%.

3. Compare the different U-Net attention mechanism

modules. The findings demonstrate that the addition of

the CBAM attention mechanism improves the disease

recognition effect. Comparatively, it is discovered that the

MIoU value of the smaller speckle leaf spot disease spot is

increased by 2.97%, demonstrating that the CBAM

attention mechanism can concentrate on and pay

attention to the disease spot in the image, as well as

effectively suppress the interference information, which

enhances the model’s focus on the target channel and

spatial information.
TABLE 4 Comparison table of segmentation performance of different models.

Model MIoU/(%) MPA/(%) F1 Score/(%)

Deeplabv3+ 85.94 92.04 91.80

PSPNet 83.49 86.81 90.40

U-Net 89.11 94.52 94.02

DFL-UNet+CBAM 91.07 95.58 95.16
TABLE 3 Comparison of the cross-merge ratio (MIoU) for each category of the model after adding the attention mechanism.

Segmentation Model leaf/(%) Alternaria blotch/(%) Brown spot disease/(%)

DFL-UNet 93.70 76.05 84.12

DFL-UNet+SENet 94.05 78.56 84.93

DFL-UNet+ECANet 93.43 78.99 85.11

DFL-UNet+CBAM 94.86 79.02 85.28
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In the prior research, the loss function of the model is typically a

single loss function. In this study, to enhance the segmentation

performance and achieve more precise segmentation of leaves and

disease spots under natural conditions, we fused two loss functions

and added attention mechanisms to both the two effective feature

layers extracted by the backbone network and the outcomes of the

first upsampling.

Overall, our technique demonstrates good adaptability in the

single background and complicated background segmentation and

detection of leaf spots. But because there are so many distractions in

the natural world (such as uneven lighting), incorrect detection and

missed detection will always happen there. In order to test the

segmentation performance of the model, Figure 9 uses the relatively

smaller and more challenging-to-identify Alternaria blotch disease

as an example. It then displays the segmentation prediction results

of the diseased leaves and disease spots in the multi-leaf image in

the natural environment. The findings demonstrate that the disease

spot segmentation effect is effective when the uneven light shadow

coverage is varied, however, there is a false detection part between

the leaf and the background.

The target leaves’ edges are difficult to extract because the

background of the image in the outdoor scene has multiple leaves

overlapping each other. Additionally, there are shadows in the leaf

images due to uneven lighting or because of curling and folding,

which makes the segmentation more challenging.

The area of light irradiation to the leaves is also diverse, as

illustrated in Figure 9, due to different shooting angles and self-
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curling factors. As a result, diseased leaves are concealed by other

leaves or object shadows, which causes the pigment imbalance

problem. Diagram 9 (a) (b) The disease leaf identification is

insufficient because only a small portion of the disease leaf’s edge

was impacted by other leaves, a phenomenon known as missed

detection; in Figure 9(c), the disease leaf edge segmentation is

inaccurate because there is cross-over between leaves and a light

uneven dual impact; as seen in Figure 9(d), the diseased leaf shadow

is heavier Part of the incorrect check for the background area, the

overall image tone is dark, the color of the measured target

is distorted.

The following issues still need to be resolved even though we

explored the segmentation recognition of smaller spots in apple

leaves in this work and increased the segmentation effect and

recognition accuracy of smaller spots.
1. The ability to quickly diagnose diseases in fruit trees is

crucial for practical production, so future research should

focus on enhancing the network structure to reduce the

model segmentation time. This will help fruit farmers

quickly confirm the diagnosis of diseases in fruit trees

and quickly apply pesticides.

2. In actual, there are frequently several leaves in a single

image and the leaves are set against a complicated

background. The presence of disease spots on many

leaves is not taken into account in this work.

Consequently, to enhance the segmentation performance

of disease leaves and thereby enhance the precision of

disease spot recognition, the model needs to be further

enhanced in the upcoming research.

3. The actual development of disease species is complex and

varied. Despite the fact that the method described in this

paper enhances the segmentation performance of smaller

spots in apple leaf diseases and the recognition precision of

difficult-to-classify diseases, the disease species in the

training data set still need to be increased, and the disease

species can be increased later to improve the recognition

and segmentation ability of the model for various diseases

and make the model broadly applicable.
Conclusion

In practice, the naked eye can easily misinterpret the type of

disease and thus overuse pesticides, which in turn affects apple
FIGURE 6

Comparison of different model segmentation mean intersection
over union.
TABLE 5 Analysis of quantitative results of U-Net and improved U-Net.

Model Disease types MIoU/(%) MPA/(%) Precision/(%) Recall/(%) F1 Score/(%)

Original U-Net
Alternaria blotch 74.61 84.93 86.02 84.93 85.47

Brown spot 84.1 92.7 90.06 92.7 91.36

Improved U-Net
Alternaria blotch 79.02 89.06 87.51 89.06 88.28

Brown spot 85.28 93.3 90.84 93.3 92.05
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production. Therefore, disease diagnosis must be easier, faster, and

more accurate, while the type of disease must be analyzed and

determined. Apple leaf spot is very small and has similar

characteristics when the disease first appears, while the actual

orchard environment has different light conditions, overlapping

leaf shade, etc. A deep learning-based apple leaf disease spot

segmentation technique is suggested for apple leaf disease

recognition by utilizing CNN’s strong feature extraction

capabilities in order to minimize the influence on disease spot

segmentation. The core network architecture used by the method is

a convolutional neural network called U-Net, and to better extract

picture features, its structure and parameters have been modified

and optimized. The identification of apple leaf disease depends

directly on the precision of the segmentation method. In order to

address the issues of low recognition accuracy and subpar

performance of smaller spot segmentation in apple leaf disease

recognition, this paper uses apple leaf Alternaria blotch and brown
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spot as its research object. It then proposes a method of spot

segmentation and disease recognition based on hybrid loss function

and CBAM. The following conclusions were obtained from

the study:
1. To deal with the issue of poor performance in segmenting

smaller spots in apple leaves, a model for apple leaf disease

segmentation based on hybrid loss function and CBAM

network has been developed. Firstly, the model using mixed

loss function of Dice Loss and Focal Loss has swapped out

the original cross entropy function, which has given larger

weight to the samples that are difficult to classify, making

the model pay more attention to the target with smaller

pixel proportion. Secondly, the backbone network’s two

useful feature layers and the outcomes of the first

upsampling have been combined with the CBAM module

to complete the extraction of pixel features and disease spot
A B

FIGURE 7

Training and validation set details. (A) Loss function curve. (B) F1 score curve.
B C D E FA

FIGURE 8

Comparison of segmentation results of various models. (A) Original images. (B) Ground truth. (C) Deeplabv3+ segmentation results. (D) PSPNet
segmentation results. (E) U-Net segmentation results. (F) Improved U-Net segmentation results.
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Fron
segmentation for apple Alternaria blotch and brown spot.

This has caused the model to pay more attention to the

regions with important information.

2. MIoU values in DFL-UNet+CBAMmodel employed in this

study were 91.07%, MPA values o were 95.58%, and F1

Score values were 95.16%. These values were higher than

those of the original U-Net model by 1.96%, 1.06%, and

1.14% respectively, and the illness identification impact was

also enhanced. The segmentation result images have also

shown that the DFL-UNet+CBAM model has had better

segmentation and recognition capabilities, can more

precisely identify smaller disease spot areas, improves the

detection and recognition accuracy of smaller disease spots,

better satisfies the requirements of apple leaf disease

recognition, and provides a basis for the diagnosis of

apple leaf diseases.

3. In the multi-blade environment of nature, several leaves

may coexist on a single map, and various illnesses may be

present on the leaves. The experimental results

demonstrate that the semantic segmentation model of

apple leaf diseases trained in this paper using a single leaf

dataset can not only detect a single background in the

laboratory but can also be used to detect apple leaf diseases

in the complex background of the natural environment; it

can not only detect single objects of single and multiple

leaves, but it can also detect multiple objects of single

leaves, demonstrating powerful segmentation performance.
Research demonstrates that the model can ensure segmentation

accuracy in complicated orchard environments as well as

laboratores, particularly when it comes to the edge segmentation

accuracy of smaller disease spots. The suggested method performs

segmentation better than other methods, and the model has good

generalizability. In the future, it might serve as a technical

foundation for the segmentation, categorization, and precise

management of plant leaf disease spots.
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FIGURE 9

Detection fault analysis. (A) Leaf occlusion. (B) Self-crimp factor. (C) Leaf folding. (D) Insufficient light.
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