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Major pests of corn insects include corn borer, armyworm, bollworm, aphid, and

corn leaf mites. Timely and accurate detection of these pests is crucial for

effective pests control and scientific decision making. However, existing

methods for identification based on traditional machine learning and neural

networks are limited by high model training costs and low recognition accuracy.

To address these problems, we proposed a YOLOv7 maize pests identification

method incorporating the Adan optimizer. First, we selected three major corn

pests, corn borer, armyworm and bollworm as research objects. Then, we

collected and constructed a corn pests dataset by using data augmentation to

address the problem of scarce corn pests data. Second, we chose the YOLOv7

network as the detection model, and we proposed to replace the original

optimizer of YOLOv7 with the Adan optimizer for its high computational cost.

The Adan optimizer can efficiently sense the surrounding gradient information in

advance, allowing the model to escape sharp local minima. Thus, the robustness

and accuracy of the model can be improved while significantly reducing the

computing power. Finally, we did ablation experiments and compared the

experiments with traditional methods and other common object detection

networks. Theoretical analysis and experimental result show that the model

incorporating with Adan optimizer only requires 1/2-2/3 of the computing power

of the original network to obtain performance beyond that of the original

network. The mAP@[.5:.95] (mean Average Precision) of the improved network

reaches 96.69% and the precision reaches 99.95%. Meanwhile, the mAP@[.5:.95]

was improved by 2.79%-11.83% compared to the original YOLOv7 and 41.98%-

60.61% compared to other common object detection models. In complex

natural scenes, our proposed method is not only time-efficient and has higher

recognition accuracy, reaching the level of SOTA.
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1 Introduction

In the past decade, due to the excellent performance of machine

learning and deep learning techniques on other tasks, scholars have

applied them to crop pests and disease identification and have made

good, progress in pests and disease identification. Scholars have

applied them to crop pests and disease identification and made

good progress. In 2010, Al-Bashish et al. (Al Bashish et al., 2010a).

Introduced proposed the use of K-means clustering with HSI color

space co-occurrence to extract color and texture features of plants,

ultimately classifying five different plant diseases with a simple

neural network. Since then, research works based on various

machine learning methods to identify plant diseases and pests

have emerged. In 2016, Sladojevic et al. (Al Bashish et al., 2010a).

developed a new method for identifying 13 different plant diseases

using deep convolutional neural networks, achieving a final

accuracy of 96.3%. The authors created a comprehensive database

and methodology for modeling, which is essential for future

research in this field. Scholars have gradually realized the great

potential of deep learning techniques, and research on pests and

disease identification based on various deep learning methods has

proliferated. For instance, Amara et al. (2017) identified and

classified banana leaf diseases in the natural environment by

using LeNet network, Nachtigall et al. (Bochkovskiy et al., 2020).

used CNN to recognize diseases, nutrient deficiencies and herbicide

damage in apple leaf images. Inspired by these previous works, our

team conducted research on corn borer and anthracnose spore

identification using different machine learning methods, all of

which yielded promising result. However, these traditional

machine learning and deep learning methods above still have

their own limitations, such as high model training cost and poor

robustness, which sharply increase the cost of academic research or

industrial implementation. Therefore, it is important to find a pests

identification method with low training cost, accurate identification

and good robustness.
1.1 Related work and motivation

With the development of digital image processing and machine

learning techniques, intelligent detection and identification of crop

diseases and pests have become increasingly prevalent. In plant

disease identification, Sasaki et al. (Girshick, 2015). utilized spectral

reflectance differences to distinguish healthy and diseased areas on

cucumber leaves, while Vıźhányó et al. (Girshick et al., 2014). used

color point differences to identify diseased mushrooms. In China,

Guili Xu et al. (He et al., 2017). achieved over 70% accuracy in

identifying tomato leaves based on histogram-based color feature

extraction. Yuxia Zhao et al. (Li et al., 2022). used a Bayesian

classifier to successfully identify five diseases, including maize rust.

Our team has proposed several algorithms, such as the marker

watershed algorithm (Lin et al., 2017a) and the Otsu separation and

symbolic similarity-driven level set algorithm (Lin et al., 2017b), for

accurate statistics of anthracnose spore distribution density on

farms for better control. Additionally, our team proposed an

accurate segmentation method for diseased fruits based on log
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similarity-constrained Otsu and distance rule level set activity

profile evolution (Liu et al., 2019), which can achieve good

segmentation of diseased fruits.

In the field of plant pests identification, various methods have

been proposed to improve the accuracy and efficiency of the

identification process. However, most of these methods have

limitations that need to be addressed. For instance, In terms of

plant pests identification, Prof. Zorui Shen of China Agricultural

University (Liu et al., 2008) firstly used mathematical morphology

to solve the problem and achieved good result, but the variation of

the selection of structural elements in mathematical morphology

will affect the identification result, then it will cause the robustness

of the identification algorithm is not strong. For insects’ color

characteristics, Dr. Zhu used color histogram and double-tree

complex wavelet transform (Liu et al., 2016) and support vector

machine (Mohanty et al., 2016) to further improve the recognition

rate, but this method requires reliable data sets for training, so a

large number of images need to be acquired and the cost is high. In

addition, Dr. Zhu also proposed the color histogram combined with

Weber descriptors for insect recognition of Lepidoptera (Nachtigall

et al., 2016), CART-based combined with LLC (Redmon et al.,

2016), and color-based combined with OpponentSIFT features

(Redmon and Farhadi, 2017). However, these methods require

manual extraction of features and are not applicable to borer

moth family pests. To address these limitations, we propose an

automatic pests monitoring robotic vehicle with a Pyralidae

recognition scheme based on histogram and multi-template image

reverse mapping method (Redmon and Farhadi, 2018). This new

approach enables the automatic capture of pests images and

achieves a recognition accuracy of up to 94.3% in the natural

farm planting scenario. We also propose a pests image

segmentation method based on GMM and DRLSE (Ren et al.,

2015), which can automatically identify positive and negative

samples of specific pests from a large number of scene images

with recognition accuracy of up to 95%. Additionally, our proposed

hybrid Gaussian model-based texture disparity representation and

texture disparity-guided DRLSE model (Sammany and Medhat,

2007) can also achieve accurate segmentation of crop pests

and diseases.

While the traditional machine learning methods have

contributed to the field of crop pests and disease identification,

they have certain limitations that prevent them from achieving the

desired result. The advancements in deep learning technology have

paved the way for researchers to apply deep learning algorithms to

pests recognition, resulting in significant progress in this field. Deep

learning algorithms can automatically extract image features,

making good use of this information to achieve high accuracy in

pests and disease identification. Several studies have used deep

learning techniques to identify and classify pests, achieving higher

robustness, generalization, and accuracy. For example, Sammany

et al. (Sasaki et al., 1998). utilized genetic algorithms to improve

neural networks, reducing the dimensionality of feature vectors and

improving pests recognition efficiency. Similarly, Al Bashish et al.

(Sladojevic et al., 2016). used the K-means clustering algorithm to

classify images into clusters, extracted feature values of color and

texture for each cluster, and inputted them into neural networks for
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classification. Mohanty et al. (Tian et al., 2019). used the GoogleNet

convolutional neural network structure to build a pests

identification model with satisfactory result. Compared to

traditional machine learning methods, deep neural network-based

pests recognition methods have better accuracy, making them an

important research direction in pests recognition. As deep learning

technology continues to advance, we can expect more

breakthroughs in crop pests and disease identification, which will

undoubtedly benefit the agriculture industry.

Deep learning models have shown promising result in

identifying and detecting pests. However, there are still

limitations that need to be addressed. In recent years, various

sophisticated training methods have been developed to improve

the generalization and robustness of deep models. Nevertheless, the

cost of training these models has increased significantly due to the

higher computing power required. This increase in training cost has

a considerable impact on the research and industrial

implementations. One common approach to reduce the training

time is to increase the batch size and assist parallel training.

However, a larger batch size often leads to a decrease in

performance. The YOLOv7 method (Vızhányó and Felföldi,

2000), which is the current SOTA in object detection, also faces

the same challenge. In this context, a new YOLOv7 corn pests

identification method is proposed in this paper, which incorporates

the Adan optimizer. This new method uses Adan (Wang et al.,

2022), a novel optimizer that can sense the surrounding gradient

information and efficiently escape from sharp local minimal areas.

By replacing the original optimizer of YOLOv7 with Adan, the

model can achieve faster and better training without compromising

its accuracy. The proposed YOLOv7 method can identify major

corn pests in complex natural environments quickly and accurately,

reducing the cost of practical application of model. With fewer

parameter updates, the deep model can achieve faster and more

accurate identification, making it suitable for various applications.

In summary, the YOLOv7 corn pests identification method

incorporating the Adan optimizer presented in this paper can

significantly reduce the training time and cost while maintaining

the accuracy of the model. It is expected to contribute to the efficient

and accurate identification of pests in agricultural production.
1.2 Contributions
Fron
1. To address the lack of maize pests data, we used data

augmentation techniques to construct a maize pests image

dataset, which effectively improved the training of the

model.

2. We replaced the original optimizer of YOLOv7 with a new

optimizer, Adan, which combines a rewritten Nesterov

momentum algorithm with an adaptive optimization

algorithm and introduces decoupled weight decay,

allowing the model to increase its speed without

degrading its accuracy, thus enabling faster and better

training of the model and reducing the cost of

implementing the model.
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3. From the theoretical analysis and experimental result, it can

be seen that the YOLOv7 network incorporating the Adan

optimizer can effectively alleviate the negative impact

caused by the increase of batch size, and solve the

problem that the training speed and training accuracy

cannot be achieved at the same time.
1.3 Paper organization

The rest of this paper is organized as follows. The second part

Section 2 mainly introduces the related network model; In the third

part Section 3, experimental scheme, process and results are

introduced in detail; The fourth part Section 4 discusses the

experimental results; The fifth part Section 5 summarizes the full

text and puts forward the existing deficiencies and the direction that

can be improved.
2 Materials and methods

This section first introduces the basic concepts of object

detection network. Then it describes the YOLOv7 network and

Adan optimizer used in this project, and finally introduces the

proposed improved network.
2.1 Object detection network

Object detection is one of the core problems in the field of

computer vision. It needs to find out all the objects of interest in an

image, and determine their classes and locations. Object detection is

always the most challenging problem in the field of computer vision

because of the different appearances, shapes and poses of various

objects, as well as the interference of illumination, occlusion and

other factors during imaging. A diagram of the object detection task

is shown in Figure 1.

The current popular algorithms can be divided into two

categories, one is the two-stage algorithm based on Region

Proposal, which find out some candidate regions primarily, and

then adjust the regions for classification, such as the series of R-

CNN (Regions with CNN features) algorithm (Xu et al., 2002; Zhao

and Hu, 2015; Wang et al., 2020; Xie et al., 2022). The other

category is one-stage algorithm, such as SSD (Zhao et al., 2015)

(Single Shot Multibox Detector), the series of YOLO (You Only

Look Once) algorithm (Vızhányó and Felföldi, 2000; Zhao et al.,

2007; Zhu et al., 2015a; Zhu et al., 2015b; Zhao et al., 2019; Zhao

et al., 2020), RetinaNet (Zhu et al., 2010), FCOS (Zhu et al., 2012)

(Fully Convolutional One-Stage Object Detection) and other such

side-to-side networks. They only use a convolutional neural

network to directly predict classes and locations of different

objects. Comparing the two categories of object detection

algorithms, the former is more accurate but slower, while the

latter is faster but less accurate. In this paper, some representative
frontiersin.org
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networks in the above two categories are selected for

comparative experiments.
2.2 YOLOv7

YOLOv7 is a new network framework based on the series

of YOLO algorithm, which mainly designs a better performance

detect ion model through the fol lowing four aspects :

backbone design with new ELAN module, composite model

scaling, deep supervision label assignment strategy and model

re-parameterization.

The first improvement is the design of new network structure.

YOLOv7 proposes such a view: the shortest and longest gradient

paths can be controlled to achieve more effective learning and

convergence of deep networks. Based on this idea, YOLOv7 designs

the E-ELAN network structure as shown in Figure 2 on the basis of

ELAN. In common ELAN module, the whole network reaches a

stable state regardless of the gradient path length and the number of

computing modules. However, if more ELAN modules are stacked

indefinitely, this stable state may be destroyed and the parameter

utilization may be reduced. Based on the above shortcomings,

YOLOv7 proposes the E-ELAN module. E-ELAN module adopts

the structure of expand, shuffle and merge cardinality, and it can

guide different computing blocks to learn more diversified

characteristics compared to common ELAN module, thus

improving the learning ability of the network without destroying

the original gradient path.

The second improvement is composite model scaling. The main

purpose of model scaling is to adjust certain properties of the model

and generate models of different sizes to meet the needs of different

inference speeds. If the E-ELAN method described above is applied

directly to a cascaded model, the action of directly scaling up the

depth of the model will result in a change in the scale of the input

and output channels. As a result, the model’s usage of hardware

may decrease. Therefore, for the cascaded model, a composite

model method must be proposed. The method must consider that

the width of the transition layer should also be changed by the same

amount when the depth of the computing module is scaled. Based

on these ideas, YOLOv7 proposes a network architecture as shown

in Figure 3. The network only needs to scale the depth in the
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computation block when performing the model scaling, and the rest

of the transport block will use the corresponding width scaling. The

composite scaling method can preserve the properties of the model

at the initial design and maintain the optimal structure.

The third improvement is deep supervision label assignment

strategy. Deep supervision is a common technique in deep network

training, it adds auxiliary head for loss calculation in the middle of

the network to assist training. In order to differentiate auxiliary

head for different functions, the final output head is called the Lead

Head and the auxiliary training head is called the Aux Head. The

core idea of deep supervision is to take shallow network weight and

auxiliary loss as guidance, combine the output result with Ground
A B

FIGURE 1

Schematic diagram of object detection: (A) Original map. (B) Object detection map.
FIGURE 2

E-ELAN structure diagram. bold values means the better results.
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True (GT), and use some calculation and optimization methods to

generate reliable soft labels. For example, YOLO uses the bounding

box regression and GT and the IOU of the prediction box as soft

labels. The current common method of assigning soft labels to Aux

Head and Lead Head is shown in the Figure 4A, which separates

Aux Head and Lead Head, and uses their respective prediction

result and GT to perform label assignment. In contrast, YOLOv7

network uses the Lead Head prediction result as a guide to generate

coarse-to-fine hierarchical labels for Aux Heads and other Lead

Heads learning. The two proposed deep supervision label

assignment strategies are shown in Figures 4B, C. The reason for

this is that the Lead Head has strong learning ability, and the

generated soft labels should better represent the distribution and

correlation between the source and target data. By allowing the

shallow Aux Heads to directly learn the information that Lead

Heads has already learned, the Lead Heads will be better able to

focus on learning residual information that has not yet

been learned.

The last improvement is model re-parameterization. Re-

parameterization is a technique used to improve a model after

training, which increases the training time but improves the

inference result. Although model re-parameterization has

achieved excellent performance on VGG, when applied directly to

architectures such as ResNet and DenseNet, it instead causes a

significant decrease in accuracy. For these reasons, YOLOv7 uses

the constant connection-free RepConvN to redesign the

architecture of the reparameterized convolution by replacing the
Frontiers in Plant Science 05
3×3 convolutional layers of the E-ELAN computational block with

constant connection-free RepConv layers.
2.3 Adan optimizer

The most direct way to speed up the convergence of the

optimizer is to import momentums. The deep model optimizers

proposed in recent years all follow the same momentum paradigm

used in Adam - the reball method. However, with the advent of ViT,

researchers found that Adam was not able to train ViT. And

AdamW, an improved version of Adam, gradually became the

preferred choice for training ViT and even ConvNext. However,

AdamW does not change the momentum paradigm in Adam,

which tends to cause the performance of AdamW-trained

networks to drop dramatically when the batch size increases to a

certain threshold.

In the field of traditional convex optimization, there is an

momentum algorithm equal to the heavy ball method, the

Nesterov momentum algorithm. As shown in Equation 1.

AGD : gk = ∇f (qk − h(1 − b1)mk−1) + xk,mk

= (1 − b1)mk−1 + gk, qk+1 = qk − hmk

(1)

The Nesterov momentum algorithm has a faster theoretical

convergence rate than the heavy ball method for smooth and

generally convex problems, and can theoretically withstand larger
A B C

FIGURE 4

Deep supervision label assignment strategies: (A) Common strategy. (B, C) Two proposed strategies of YOLOv7. bold values means the better results.
FIGURE 3

Composite model scaling for YOLOv7. bold values means the better results.
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batch size. Different from the heavy ball method, Nesterov

algorithm does not calculate the gradient at the current point, but

uses the momentum to find an extrapolation point, and then carries

on the momentum accumulation after calculating the gradient at

the point. Although Nesterov momentum algorithm has some

advantages, it is rarely applied and explored in depth optimizers.

One of the main reasons is that Nesterov algorithm needs to

calculate gradient at extrapolated points, which requires multiple

overloading of model parameters during updating at current points

and requires artificial back-propagation (BP) at extrapolated points.

These inconveniences greatly limit the application of Nesterov

momentum algorithm in depth model optimizer.

In order to give full play to the advantages of the Nesterov

momentum algorithm, Adan researchers obtained the final Adan

optimizer by combining the rewritten Nesterov momentum with

the adaptive optimization algorithm and introducing decoupled

weight attenuation. In order to solve the problem of multiple model

parameter overloads in the Nesterov momentum algorithm, the

researchers first rewrote the Nesterov momentum algorithm as

shown in Equation 2.

 Reformulated AGD :  

gk = Ez∼D½∇f (qk, z )� + xk
mk = (1 − b1)mk−1 + ½gk + (1 − b1)(gk − gk−1)�
qk+1 = qk − hmk

8>><
>>:

(2)

Combining the rewritten Nesterov momentum algorithm with

the adaptive class optimizer - replacing the update of m_k from the

cumulative form to the moving average form and using the second-

order moment to deflate the learning rate - has resulted in a basic

version of Adan’s algorithm. As shown in Equation 3.

Vanilla Adan :

mk = (1 − b1)mk−1 + b1½gk + (1 − b1)(gk − gk−1)�
nk = (1 − b3)nk−1 + b3½gk + (1 − b1)(gk − gk−1)�2

nk = h= ffiffiffiffiffiffiffiffiffiffiffiffi
nk + ϵ

p

qk+1 = qk − hk ∘mk

8>>>>><
>>>>>:

(3)

Although it can be seen that the update of m_k combines the

gradient with the gradient’s difference, in real-world applications it

is frequently necessary to treat the two physically distinct

meaningful things separately. For this reason, the researchers

developed the gradient difference momentum v_k, as shown in

Equation 4.

mk = (1 − b1)mk−1 + b1gk, vk = (1 − b2)vk−1 + b2(gk − gk−1) (4)

Here different momentum/average coefficients are set for the

momentum of the gradient and its difference. The gradient

difference term can slow down the optimizer update when

adjacent gradients are not consistent and, conversely, speed up

the update when the gradients are in the same direction.

Based on the idea of L2 regular decoupling, Adan introduces a

weight attenuation strategy, each iteration of Adan can be regarded

as minimizing some first-order approximation of the optimization

objective F, as shown in Equation 5.
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qk+1 = qk − hk ∘ �mk = argmin 
q

(F(qk) + 〈 �mk, b − qk 〉+
1
2h

jjq − qk j2 ffiffiffiffinkp ),
���

where j xj jj2 ffiffiffiffinkp : = 〈 x,
ffiffiffiffiffiffiffiffiffiffiffiffi
nk + ϵ

p
∘ x 〉, �mk : = mk + (1 − b2)vk

(5)

Because L2 weight regularization in F is too simple and smooth,

it is unnecessary to make a first-order approximation. Therefore,

only the first-order approximation of training loss can be performed

and L2 weight regularization can be ignored. Then the last iteration

of Adan will become as shown in Equation 6.

qk+1 = qk − hk ∘ �mk = argmin
q

F(qk) + �mk, q − lqk +
1
2h

jjq − qk j2 ffiffiffiffinkp
���
(6)

The final Adan optimization algorithm can be obtained by

combining the above two improvements Equation 4 and Equation 6

into the base version of Adan.
2.4 The proposed identification method

Since the network architecture is not changed, we still use the

original network structure of YOLOv7, as shown in Figure 5.

After replacing the optimizer inside YOLOv7 with Adan, the loss

function module will calculate the loss of this forward inference

according to the difference between the output of model and the real

label. Subsequently, the model will take the derivative of loss to obtain

the gradient of each learnable parameter. Then the Adan optimizer can

obtain the gradient and update parameters through the optimization

strategy described above, such as m_k, v_k, n_k, etc. The model keeps

the loss decreasing by updating these parameters after each inference,

thus gradually reducing the difference between the output of model and

the real label, and finally achieving the convergence. The whole model

training process is shown in Figure 6, and the pseudocode is shown in

algorithm 1.
Input: An image [H×W×3].

Output: Detection image.

Preprocessing: The input RGB image aligned to

an RGB image of size 640×640.

Training
for every image in training set do

Stage 1: The processed images are input into

the backbone module for feature

extraction, while the backbone module will

output three feature maps in different

scales. And these feature maps will be

input into the head module together for

prediction.

Stage 2: In the head module, three types of

feature maps will be fused and input into

RepVGG block and detect block to predict

objects.

Stage 3: The loss function module will

calculate the loss of this inference
frontiersin.org
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Fron
according to the difference between the

output of model and the real label.

Subsequently, the model will take the

derivative of loss to get the gradient and

pass it to the optimizer module.

Stage 4: Adan Optimizer will initialize the

following parameters: initialization θ0,

step size η, average parameter

(β1,β2,β3,ϵ[0,1]
3), stable parameter,

weight decays ϵ>0 and restart condition λ

k>0, and then start the optimizing

strategy.

for k<K do

compute the stochastic gradient estimator

gk at θk;

mk = (1 − b1) mk − 1 + b1gk=*set m0 = g0*=

vk = (1 − b2) vk − 1 + b2(gk − gk − 1)=*set v1 = g1 − g0*=;
nk = (1 − b3) nk − 1 + b3½gk + (1 − b2)(gk − gk − 1)�2

nk = h=(
ffiffiffiffiffiffiffiffiffiffiffiffi
nk + ϵ

p
)

qk + 1 = (1 + lkh) − 1½qk − hk−1 ∘ (mk + (1 − b2)vk)�if restart condition holds then

get stochastic gradient estimator g0 at θk

+1;

m0 = g0, v0 = 0, n0 = (g0)
2, update θ1 by Line

7, k = 1;
tiers in Plant Science 07
end

end
d

ALGORITHM 1
Description of the algorithm of YOLOv7 incorporating the Adan optimizer
3 Experiments and result

3.1 Experimental scheme

The experimental scheme proposed is shown as Figure 7. We

first pre-processed the original dataset, mainly including data

recovery, data filtering and data filling. In order to solve the

problem of scarce data, we used data augmentation and transfer

learning to ensure that the network can fully learn the features. The

two technologies will be introduced in detail in the following

sections. And then, the augmented dataset was divided into

training set, testing set and validation set. The training set and

validation set was input into the original YOLOv7 network, the

improved YOLOv7 network and other comparative networks

respectively. If the performance of the model does not meet

expectations, we will adjust the network’s hyperparameters and

retrain it. After that, the testing set was input into trained models to

test the performance of different models. Finally, we compared and

analyzed the experimental result.
FIGURE 6

Flow chart of model training.
FIGURE 5

Network structure diagram.
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3.2 Evaluation metrics

For binary classification problem, A is called “positive” and B is

called “negative,” and the classifier correctly predicts “True” and

incorrectly predicts “False”. According to these four basic

combinations, the four basic elements of the confusion matrix are

TP (True Positive), FN (False Negative), TN ((True Negative), and

FP (False Positive), as shown in Table 1.

In object detection experiments, IoU, Precision, Recall, AP and

mAP are commonly used as evaluation indexes. Among them, IoU

represents the intersection ratio between the predicted result and

the true label for each category, as shown in Eq.7. Precision refers to

the proportion of data whose value is true indeed when the classifier

predicts it to be true, while Recall refers to the percentage of the

classifier predicts to be correct for all data that is true, respectively,

the formulas of the two is Eq.8 and Eq.9. However, all three indexes

have their limitations, therefore AP/mAP is often used to evaluate

the performance of object detection task.

 IoU  = TP
TP+FP+FN (7)

 Precision  = TP
TP+FP (8)

 Recall  = TP
TP+FN (9)

If we take different confidence levels, we can get different

Precision and Recall, and if we get the confidence level dense

enough, we will obtain the Precision-Recall curve(PR curve), as

shown in Figure 8. While AP refers to the area under the curve, and
Frontiers in Plant Science 08
mAP is the average of the AP values for all classes. In particular, the

mAP@[.5:.95] refers to the mAP at different IoU thresholds (from

0.5 to 0.95, in steps of 0.05).
3.3 Dataset acquisition

Due to the scarcity of public corn pests dataset, we collected

some images of three major corn pests: corn borer, bollworm, and

armyworm on the web as our original dataset, including 31 images

of corn borer, 36 images of bollworm, 31 images of armyworm and

31 negative images. Prior to beginning the experiment, we used

data augmentation techniques to the technique expands a total of

129 images to 5160 images as our final dataset. During training, we

use a ratio of 8:1:1 to split the dataset into a training set, a

validation set and a testing set. And the training set has 4128

images, the validation set has 516 images and the testing set has

516 images.
FIGURE 7

Flow chart of experimental scheme.
TABLE 1 Confusion matrix.

Truth Prediction

T F

P TP FN

N FP TN
 FIGURE 8

Schematic diagram of PR curve.
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3.4 Data augmentation

As deep learning requires a large amount of data for training, we

used data augmentation on the original dataset, such as random

rotation transform, blur transformation, flip transform, addition of

Gaussian noise and so on. The random rotation and flip

transformation models are able to simulate the different locations of

insect presence, while the blur transformation and Gaussian noise

could better simulate the various environment that may occur in

reality. Figure 9 shows the images which performing

data augmentation.
1 https://github.com/xpwu95/IP102
3.5 Transfer learning

Transfer learning is a popular method in the field of computer

vision, because it can build accurate models in less time. By using

transfer learning, model do not start training from scratch, but start

with the patterns of solving problems that learned from previous

problems. In the field of computer vision, transfer learning is usually

represented by the use of pre-trained models. Pre-trained models are

models that trained on large baseline datasets. For example, in object

detection tasks, backbone neural network is first used for feature

extraction. The backbone used here is generally a neural network

such as VGG, ResNet, etc. Therefore, when training an object detection

model, the parameters of the backbone can be initialized by using the

pre-trained weights of these neural networks so that more effective

features can be extracted at the beginning.
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In this paper, we selected the IP102 public dataset as a pre-

trained dataset1. The IP102 dataset is a large-scale dataset for pests

identification, which contains more than 75,000 images of 102 pests

classes. These images exhibit a natural long-tailed distribution. In

addition, about 19,000 of these images have added bounding boxes

for object detection. We select these images with object detection

frames, and feed them into individual networks for training to

obtain pre-trained weights. The pre-trained weights will be

transferred to our own dataset for use, and it can make the final

model more robust and convincing in the pests identification task.
3.6 Experimental environment and
parameter settings

The experimental environment configuration of this paper is

as follows: OS is Linux, GPUs are two Tesla V100 with 80G

memories, training environment is python 3.7, Pytorch 1.11.0.

while Labelme is used to annotate the data. In training, to ensure

comparability across experiments and appropriateness of training,

each training epoch consists of 100 rounds and the img_size is

320×320. In order to verify the good performance of our proposed

algorithm under large batch size, we set the batch size to 512.

While for training of YOLOv7, the weight_decay is 0.002 and

learning rate is 0.001.
B

C D

A

FIGURE 9

Data augmentation effect display: (A) Original image. (B) Random crop. (C) Flip. (D) Decrease in brightness.
frontiersin.org

https://github.com/xpwu95/IP102
https://doi.org/10.3389/fpls.2023.1174556
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1174556
3.7 Experiment result

Figure 10 shows the prediction performance of the YOLOv7

network incorporating with the Adan optimizer when facing

different species of maize pests.

In order to verify the effectiveness of the algorithm proposed in

this paper, we compared the improved network with the original

network which using Adam, AdamW and SGD. We also tested

several other object detection networks: SSD (Zhao et al., 2015),

RetinaNet (Zhu et al., 2010), FCOS (Zhu et al., 2012), Faster RCNN

(Xu et al., 2002) and FPN (Zhu and Zhang, 2013). Finally, we put

these networks together and compared them with the result of our

previous works, and the performance evaluation indexes are

[mAP@.5:.95] and precision which are described above. The

result is shown in Table 2.

We also compared the differences between the YOLOv7

network loaded with Adan and other networks when face with

the same image. And the prediction result are shown in Figure 11.
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4 Discussion

The experimental result in Table 2 shows that the YOLOv7

network incorporating the Adan outperforms traditional ML

algorithms and other comparative networks in the comparison of

both mAP@[.5:.95] and precision. Meanwhile, from Figure 10 we

can see that the improved network has a good performance on

different types of maize pests. What’s more, further comparison of

three different networks in Figure 11 shows that the YOLOv7

network incorporating Adan can still perform well in more

complex natural environment with no errors. SSD network and

the YOLOv7 network incorporating the Adam both have errors in

prediction of the same images. The YOLOv7 network with the

Adam misidentified the background as insects in two images, while

SSD network misidentified insects as the background in both

images. The final comparison of performance indexes and

prediction result verifies that Adan optimizer can effectively

improve the model performance and help the YOLOv7 network
FIGURE 10

Test result: (A) bollworm. (B) armyworm. (C) corn borer.
TABLE 2 Performance comparison of different networks.

Networks mAP@[.5:.95] Precision

YOLOv7(Adam) (Vızhányó and Felföldi, 2000) 0.8646 99.66%

YOLOv7(AdamW) (Vızhányó and Felföldi, 2000) 0.9032 99.64%

YOLOv7(SGD) (Vızhányó and Felföldi, 2000) 0.9407 99.91%

Faster R-CNN (Xu et al., 2002) 0.6655 88.99%

SSD (Zhao et al., 2015) 0.6608 98.87%

RetinaNet (Zhu et al., 2010) 0.681 98.2%

FCOS (Zhu et al., 2012) 0.602 86.8%

FPN (Zhu and Zhang, 2013) 0.6337 87.6%

Histogram Reverse Mapping
and Invariant Moment (Redmon and Farhadi, 2018)

None 94.3%

GMM and DRLSE (Ren et al., 2015) None 86.364%

Ours 0.9669 99.95%
fr
The bold values means the better results.
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reduce the possibility of false recognition and missed recognition,

thus making the network more efficient and error-free in pests

recognition task. For further confirmation, we collected data of the

map[.5:.95] and precision of YOLOv7 networks which using

different optimizers in the experiment when the epoch changed,

as shown in Tables 3, 4. Based on these data, we plotted the

performance trends of four optimizers, as shown in Figure 12.

From Figure 12 we can see that the YOLOv7 incorporating with

Adan optimizer converges faster than YOLOv7 loaded with other

optimizers in both mAP@[.5:.95] and precision, and the result are

consistent with our theoretical analysis. In process of calculating

momentums, Adan uses the modified Nesterov momentum

algorithm, while Adam with AdamW use the traditional reballing

algorithm. The modified Nesterov momentum algorithm helps

Adan to sense the surrounding gradient information in advance,

which helps model to escape from the sharp local minimal regions

efficiently, thus speeding up the convergence of Adan. The

comparison of map[.5:.95] and precision shows that Adan can

obtain greater performance by using only 1/2-2/3 of the

computation of other optimizers. What’s more, the mAP@[.5:.95]

increases by 2.79%-11.83% compared to original optimizers. The

experimental result also confirm that Adan only needs less than 2/3
Frontiers in Plant Science 11
of computation of the original network to obtain the performance

beyond it, which is proposed in the original paper of Adan.
5 Conclusions

In this paper, a new deep learning algorithm based on YOLOv7

network and Adan optimizer is proposed, and a feasible maize pests

identification scheme is proposed as well, which is successfully applied

to the identification task of maize pests. The mAP@[.5:.95] of the

improved network reaches 96.69% and the precision reaches 99.95% in

this task, which breaks the bottleneck of the original networks. And it

also confirms the feasibility and effectiveness of applying deep

convolutional neural networks to the task of crop pests and disease

identification, and it has positive significance for crop pests and disease

prevention and control. We can quickly identify common corn pests

and take appropriate measures by using this model, and scientifically

carryout pests control methods to reduce possible economic losses and

promote agricultural modernization.

However, the environment is more complex in real life. There are

many other insects with similar characteristics, while the difficulty of

detection in complex environment will be greatly increased due to the
FIGURE 11

Comparison of the prediction effect of different networks when facing the same image: (A) YOLOv7(Adan). (B) YOLOv7(Adam). (C) SSD.
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TABLE 3 Comparison of [mAP@.5:.95] changes with epochs for different optimizers.

epochs Ours YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)

10/100 0.4202 0.342 0.2719 0.241

20/100 0.5444 0.2034 0.3086 0.3765

30/100 0.7107 0.4091 0.4758 0.3746

40/100 0.8681 0.5632 0.7297 0.5812

50/100 0.8691 0.7674 0.802 0.6337

60/100 0.9212 0.8176 0.8966 0.7758

70/100 0.9401 0.8409 0.8846 0.8022

80/100 0.9615 0.8699 0.9083 0.8103

90/100 0.9658 0.9089 0.9289 0.8916

100/100 0.9669 0.8646 0.9032 0.9407
F
rontiers in Plant Science
 12
The bold values means the better results.
TABLE 4 Comparison of precision changes with epochs for different optimizers.

epochs Ours YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)

10/100 0.3589 0.4026 0.2933 0.4015

20/100 0.8744 0.3229 0.5222 0.5031

30/100 0.968 0.6481 0.7153 0.6272

40/100 0.9717 0.7398 0.9332 0.9803

50/100 0.9974 0.9466 0.9774 0.995

60/100 0.9981 0.9823 0.9962 0.9979

70/100 0.9986 0.9825 0.9978 0.9967

80/100 0.9991 0.9918 0.9972 0.9989

(Continued)
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FIGURE 12

Comparison of precision changes with epoches for different optimizers. (A) map@[.5:.95] (B) precision.
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limitations of scarce data. Meanwhile, some corn pests will appear in

the form of eggs in real life, while these eggs are tiny and their

characteristics are difficult to distinguish, making identification more

difficult. What’s worse, pests data are scarce and difficult to collect, and

the cost of manual labeling is very high. Therefore, how to obtain

sufficient data and enough computing power is the key of future pests

controlling technology researches.
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TABLE 4 Continued

epochs Ours YOLOv7(Adam) YOLOv7(AdamW) YOLOv7(SGD)

90/100 0.999 0.9959 0.997 0.9997

100/100 0.9995 0.9966 0.9982 0.9991
The bold values means the better results.
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