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Soil biodiversity plays an important role in both agricultural productivity and

ecosystem functions. Cover crop species influence the primary productivity of

the ecosystem and basal resources. However, it remains poorly understood how

different cover crop treatments influence the community of soil nematodes in an

orchard ecosystem. In this study, field experiments were conducted to

investigate the effects of cover crop treatments with different species

numbers, i.e., no cover crop (CK), two cover crop species (C2), four cover crop

species (C4), and eight cover crop species (C8), on weed biomass, together with

composition, abundance, and metabolic footprint of soil nematode community

in a kiwifruit orchard. As compared to the CK group, the groups of cover crop

treatments had lower weed biomass, which decreased with the increase of the

cover crop diversity. Moreover, for the abundance of total nematodes, fungivores

exhibited higher levels in C4 and C8 treatments than that in CK, bacterivores had

a higher abundance in C4 treatment, and plant parasites had a higher abundance

in C2 and C8 treatments. Cover crop treatments also changed the structure of

nematode community and enhanced the nematode interactions and complexity

of nematode community network. In addition, C4 increased the Wasilewska

index but decreased the plant–parasite index. The metabolic footprints of

fungivores were higher in cover crop treatments compared with CK, and C4

and C8 also increased the functional metabolic footprint of nematode. Soil

nematode faunal analysis based on nematode metabolic footprints showed that

C8 improved the soil nutrient status and food wed stability. Mantel test and

redundancy analysis showed that soil microbial biomass nitrogen and carbon,

organic carbon, nitrate nitrogen, moisture content, pH, and cover crop biomass

were the main factors that affect soil nematode community. In conclusion, cover

crop treatments with four or eight plant species displayed a positive role in weed

control, improvement of soil health, and promotion of energy flow in the soil

food web through the increase in the metabolic footprints of nematodes in

kiwifruit orchard.

KEYWORDS

cover crop, soil nematode community, nematode ecological indices, nematode
metabolic footprints, network analysis, orchard ecosystem
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1 Introduction

Soil nematodes are ubiquitous inhabitants of soil ecosystems

(Guan et al., 2018), which could reflect the small changes of soil

environment, occupy multiple trophic levels, and play a central role

in soil food web (Pen-Mouratov et al., 2003; Yeates, 2003). Soil

nematodes participate in organic matter decomposition, nutrient

mineralization, energy transmission, and plant growth. The species

and function diversity of nematode influence plant diversity and

biomass, soil microbial biomass, nitrogen mineralization, and

ecosystem succession (De Deyn et al., 2004; Jiang et al., 2017).

They have been usually used as indicators for assessing the soil

health levels, disturbance degree of soil (Bongers et al., 1997;

Bongiorno et al., 2019), and ecosystem succession (Tsiafouli et al.,

2017; Song et al., 2020). Nematode community varies with soil

management practices (such as soil surface crop cover and

fertilization) in agroecosystems.

Cover cropping is considered to be one of the main measures

for improving soil health, increasing production and quality, and

achieving sustainable management of orchard. There is substantial

evidence that the abundance and diversity of soil nematode are

influenced by cover crop. For instance, the number of enrichment

opportunist bacterial feeding nematodes is significantly greater in

cover cropped tomato–corn rotations (DuPont et al., 2009).

Incorporating cover crops into a corn–soybean rotation is helpful

for the diversity and complexity of free-living nematodes, thus

enhancing the cycling of energy and nutrients belowground

(Leslie et al., 2017). As compared to monocultures, cover crop

diversity can amplify ecosystem benefits through simultaneously

functioning to increase biological nitrogen fixation, retain nitrogen

of soil, and increase total nitrogen (TN) and carbon of soil (Blesh

and Martin, 2018; Norton et al., 2019). Moreover, plant diversity

enhances root biomass, which increases root-derived organic inputs

and the resource availability for soil nematode communities, thus

enhancing soil nematode abundance and diversity (Djigal et al.,

2012). Previous studies have shown that a high plant diversity

provides multifunctionality and maintains more ecosystem services

by producing a variety of substrates and altering habitat conditions

(Spedding et al., 2004; Carrera et al., 2007; Isbell et al., 2011), which

considerably affects nematode community structure (Spedding

et al., 2004; Cesarz et al., 2017) and their functions that are

related to nutrient cycling (Delgado-Baquerizo et al., 2016; Zhang

et al., 2020).

In China, the orchard area is 11.168 million hectares, and the

fruit output is 261 million tons, accounting for 20.0% and 15.7% of

the world, respectively, ranking among the top in the world (FAO,

2018). For a long time, the extensive management of the orchard,

the low degree of standardization, and the problems of fruit quality

and safety have severely restricted the sustainable and healthy

development of the fruit industry. Cover crop can bring multiple

ecological, production, and economic benefits. To date, the positive

significance of cover crop on soil health has been generally

recognized by international organization experts. However,
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whether cover crop diversity can bring multiple potential benefits

is still unknown. Therefore, a good understanding of the nematode

community driven by cover crop species diversity could help extend

the functional connections between the above-ground ecosystem

and the soil food web in the orchard ecosystem. Our study focused

on the responses of nematodes community to cover crop species

diversity in the context of orchard systems, documenting the main

factors that influence soil nematode community. By establishing a

cover crop species diversity experiment, we compared the

influences of four cover crop treatments [two cover crop species

(C2), four cover crop species (C4), eight cover crop species (C8),

and no cover crops as a control (CK)] on the composition,

abundance, metabolic footprint of soil nematode, soil organic

carbon (SOC), TN, carbon/nitrogen ratio (C/N), nitrate nitrogen

(NO3
−-N), ammonium nitrogen (NH4

+-N), pH, soil moisture

content (SMC), microbial biomass carbon (MBC), microbial

biomass nitrogen (MBN), plant biomass, and diversity. The aims

of this study are as follows: 1) to investigate the responses of weed

growth, soil nematode abundance, and food web to different cover

crop treatments in a kiwifruit orchard; and 2) to determine how the

cover crop diversity and soil environmental factors affect soil

nematode community under different cover crop treatments in

kiwifruit orchard ecosystem.
2 Materials and methods

2.1 Site description and
experimental design

The study was conducted in a kiwifruit planting base of the

Economic Crop Research Institute, Shiyan Academy of Agricultural

Sciences, Shiyan city, Hubei Province, China (32°50′N, 110°60′E).
The mean annual precipitation was 950 mm, with an average

annual temperature of 16°C and a frost-free period of 248 days.

Prior to the experiment, the soil had the following chemical

properties: soil organic matter content of 6.67 g kg−1, TN content

of 0.44 g kg−1, total phosphorus (P) content of 0.49 g kg−1, and

pH 8.14.

The experiment was conducted in a kiwifruit (Actinidia

chinensis Planch.) orchard. Kiwifruit trees were planted during

2015 at a spacing of 5 m × 3 m. In 2016, the cover crop

experiment was established as a randomized design with three

replications. Cover crop treatments include C2, C4, C8, and CK.

These four experimental treatments resulted in 12 plots (2 m ×

20 m). Before sowing seeds, all plots were ploughed with a small

rotary cultivator. All cover crop seeds were sown to inter-row of the

kiwifruit trees by hand. In the CK treatment, the weeds were

removed regularly by hand, and the weed residues were removed

to leave bare soil in the whole process of the experiments. In

addition, field management measures are consistent in all plots.

The cover crops were mowed down three or four times a year by a

mower, and the residues were left on the ground for natural
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decomposition. Cover crop species were chosen to represent a

diversity of plant families (Poaceae, Fabaceae, and Asteraceae)

according to different functional groups, with the characteristics

of high above-ground biomass, nitrogen fixation, and honey source

plants providing habitat and food for predatory natural enemies,

and play an important role in improving soil fertility and reducing

pests. In addition, the height of cover crops was different, which

could make full use of the resources and space, form different levels

of community structure, provide different niche for the arthropod,

and improve the biodiversity of the kiwifruit orchard. Cover crops

applied in our experiment were screened in before the experiment,

and all the cover crops could adapt to the local climatic conditions

and grow. The cover crop species and seeding rates were shown in

Table S1. We used the recommendation according to the seed

company. In C2 treatment, the sowing rate of the two cover crops

was the recommended sowing rate. In C4 treatment, the sowing rate

of the four cover crops was the 60% of recommended sowing rate.

In C8 treatment, the sowing rate of the eight cover crops was the

30% of recommended sowing rate.
2.2 Soil and plant sampling

Ten 20-cm deep soil cores were sampled randomly in each of the

12 plots using a 3.5-cm-diameter soil probe during November 2019

when kiwifruits were harvested. The 10 soil cores were mixed into

one composite sample. After removal of roots and stones, each

composite sample was divided into two parts, where the first part

was stored at 4°C for determining SMC, NO3
−-N, NH4

+-N, MBC,

MBN, and nematodes, and the second part was air-dried and stored

at room temperature for determining soil pH, SOC, and TN. The

samples of plant were collected on August in 2019. In each of the

plots, one square area (1 m × 0.5 m) was sampled randomly. All plant

species, including weeds, were clipped at the soil surface separately.

All plant samples were oven dried for 72 h at 65°C and weighed. Plant

Shannon–Weiner index (H) was calculated as −∑(Pi × ln Pi), where Pi

is the relative abundance of ith species in a sample.
2.3 Soil physicochemical parameters

SMC was determined using the gravimetric method (oven dried

for 24 h at 105°C and weighed); NO3
–-N, and NH4

+-N content were

extracted with CaCl2 and measured with a continuous-flow

analyzer (Bran Lubbe AA3, Germany); and TN content was

determined by acid digestion and measured with a continuous-

flow analyzer (Bran Lubbe AA3, Germany) (Bao, 2000). SOC

content was determined by the K2CrO7-H2SO4 oxidation method

(Zheng et al., 2018), and SOC/TN (C/N) ratio was calculated. Soil

pH was determined in a mixture of water and soil suspension (2.5:1)

with electrode method (Chen et al., 2014). The soil MBC and MBN

were determined using the chloroform-fumigation extraction and
Frontiers in Plant Science 03
measured with a total organic carbon (TOC) analyzer (Multi C/N

3000, Analytik Jena, Germany) (Wu et al., 2006).
2.4 Soil nematode community

Nematodes were extracted using the shallow dish methodology

(Mao et al., 2004). Nematode morphological identification was

performed according to Bongers (1988) and Yin (1901). The

nematode populations were expressed as the number of

nematodes per 100 g of dry soil, with 100 nematodes randomly

selected for identification from each sample with a microscope.

Nematodes were identified to genus and assigned to four trophic

groups: bacterivores (Ba), fungivores (Fu), plant parasites (Pp), and

omnivores/predators (Op) (Yeates et al., 1993), and classified along

the colonizer-persister gradient (c-p values) according to Bongers

and Bongers (1998).

Ecological indices for nematode community were calculated as

follows: (1) The maturity index (MI) and plant–parasite index (PPI)

were calculated as ∑v(i) × f(i), where v(i) is the c-p value of free-

living (plant–parasite) taxa i and f(i) is the proportion of that taxa

from the total number of free-living (plant–parasite) nematodes in a

sample according to the c-p 1-5 scale. MI was used to assess

environmental disturbance, and a larger value reflects stable soil

conditions and complex soil food web. PPI was used to evaluate the

damage level of plant–parasite nematodes to plants (Bongers, 1990).

(2) The Wasilewska index (WI) was calculated as (Ba + Fu)/Pp,

where Ba is the abundance of bacterivorous, Fu is the fungivorous

abundance, Pp is and the abundance of plant parasites.WI was used

to indirectly describe the mineralization pathway of organic matter

(Yeates, 2003). (3) The nematode channel ratio (NCR) was used to

assess the dominant pathway of soil organic matter decomposition

and was calculated as Ba/(Ba + Fu), where Ba is the abundance of

bacterivorous and Fu is the fungivorous abundance (Neher, 2001).

(4) Enrichment index (EI) and structure index (SI) were calculated

as EI = 100 × [e/(e + b)] and SI = 100 × [s/(s + b)], respectively,

where b is the basal food web component (Ba2% and Fu2%), s is the

structure component (Ba3%–Ba5%, Fu3%–Fu5%, Om3%–Om5%,

and P2%–P5%), and e is the enrichment component (Ba1% and

Fu2%). High EI and SI indicate an enriched environment and a

complex or stable food web, respectively (Ferris et al., 2001; Zhao

et al., 2021).

The metabolic footprints of nematodes (NMF) indicating carbon

utilization in the soil food web based on nematode biomass were

computed for each sample. NMF = ∑Nt × (0.1×Wt/mt + 0.273×Wt
0.75),

where Nt,Wt, andmt represent the number, fresh weight (µg), and c-p

value of t taxa, respectively. The metabolic footprints of bacterivores,

fungivores, plant parasites, and omnivores/predators were abbreviated

as BaF, FuF, PpF, and OpF, respectively, and were summed to provide

different metrics of ecosystem functions (Ferris, 2010). The enrichment

footprint (Fe) and structure footprint (Fs) were calculated according to

the life history strategy of nematode. Fe reflects the metabolic footprint
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of nematodes with low c-p values (1~2) and rapid response to

resources. Fs reflects the metabolic footprint of nematodes with high

c-p values (3~5). According to Fe and Fs, draw four coordinate points

for different treatments in the four quadrants A, B, C, and D, (SI, EI) is

the central point. The coordinate points are as follows: (SI − 0.5 × Fs/k,

EI), (SI + 0.5 × Fs/k, EI), (SI, EI − 0.5 × Fe/k), and (SI, EI + 0.5 × Fe/k),

where k is the conversion constant. Connect four coordinate points in

sequence, and the sum of regions delineated by enriched metabolism

and structural metabolism is the functional metabolic footprint (Ferris,

2010). The fresh weight of all nematode is obtained from http://

nemaplex.ucdavis.edu/Uppermnus/topmnu.htm.
2.5 Statistical analyses

The nematode abundances were LN (x + 1)–transformed prior

to statistical analysis for the normality of data. We analyzed data by

one-way ANOVA, to determine the effects of different cover crop

treatments (CK, C2, C4, and C8) on plant biomass and diversity,

soil properties, nematode abundance, ecological, and metabolic

footprint. Data were tested for normality and homogeneity of

variance before conducting ANOVA and were log-transformed if

they did not satisfy assumptions of normality and homogeneity. In

addition, significant differences were analyzed by Duncan’s new

multiple differences test at P < 0.05. IBM SPSS 22.0 software was

performed for these analyses. Figures were created using Origin

8.5 software.

Principal coordinates analysis (PCoA) was calculated to assess

the dissimilarities of nematode community structure among the

treatments using R. For the co-occurrence network analysis of

nematode communities at the genus level, the relative abundance

of genus was used in the analyses. A correlation matrix was analyzed

using the “psych” package in the R environment, and the co-

occurrence network visualization was achieved via Gephi (version

0.9.2). Spearman correlations between genera were performed, and

the correlations with a coefficient of more than 0.6 and a P-value of

less than 0.05 were applied. Nematode community networks were

built according to MENAP (http://ieg2.ou.edu/MENA/main.cgi)

(Wu et al., 2021). Correlations between different nematode

trophic groups and plant and soil environmental variables were

performed by Mantel tests. Redundancy analysis (RDA) was
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relationship between nematode community and plant and soil

environmental factors.
3 Results

3.1 Effects of cover crop treatments on
plant community and soil properties

The plant community composition was reconstructed through

cover crops competing with the weeds in the soil seed bank in the

orchard ecosystem. Increasing cover crop diversity changed the

plant community composition and diversity and effectively

controlled the growth of weed. Specifically, compared with CK

treatment, cover crop biomass contributed 86.63%~96.89% of the

total plant biomass and increased with the increase of cover crop

diversity. The proportion of weed biomass covered just 3.11%

~13.37% of the total plant biomass and displayed a decreased

trend with the increasing of cover crop diversity. In addition, the

weed biomass under cover crop diversity treatments was

significantly lower than that under CK (F11 = 335.300, P < 0.001;

Figure 1A; Table S2). Among cover crop treatments, weed biomass

under C8 treatment was obviously lower than that under C2 and C4

treatments, whereas cover crop biomass in C8 treatment was

significantly higher than that in C2 and C4 treatments

(F11 = 120.218, P < 0.001; Figure 1B; Table S2). In addition, plant

diversity significantly increased with the increase of cover crop

species, and C8 > C4 > C2 > CK (F11 = 161.153, P < 0.001; Figure 1C;

Table S2).

There were significant differences of cover crop treatments on

the soil properties (Figure 2). Specifically, compared with CK, SMC

(F11 = 8.397, P = 0.007; Figure 2A; Table S1), NO3
−-N (F11 = 31.833,

P < 0.001; Figure 2E; Table S2), MBC (F11 = 31.111, P < 0.001;

Figure 2H; Table S2), and MBN (F11 = 24.764, P < 0.001; Figure 2I;

Table S2) significantly increased by 3.83%~6.10%, 18.68%~24.55%,

49.02%~63.24%, and 45.19%~70.32%, respectively, but there were

no significant differences among different cover crop treatments,

except for the MBC that is higher in C4 and C8 treatments than that

in C2 treatment. SOC was also significantly increased in C4 and C8

treatments than that in C2 and CK (F11 = 21.947, P < 0.001;
A B C

FIGURE 1

The effects of cover crop treatments on weed biomass (A), cover crop biomass (B) and plant community diversity (C). C2, two cover crop species;
C4, four cover crop species; C8, eight cover crop species; CK, no cover crop. The different lowercase letter indicates significant differences among
treatments according to Duncan's test (P < 0.05). Error bars are standard deviation of means (n = 3).
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Figure 2C; Table S2). In addition, NH4
+-N (F11 = 3.109, P = 0.089;

Figure 2D; Table S2) and TN (F11 = 43.00, P < 0.001; Figure 2F;

Table S2) showed significantly higher values in C8 treatment than

that in C2 and CK. The pH was higher for cover crop treatments

(F11 = 15.498, P = 0.001; Figure 2B; Table S2) and increased

0.11~0.18 units, compared with CK; meanwhile, the pH of the C8

treatment was significantly higher than that of the C4 treatment

(Figure 2B; Table S2).
3.2 Effects of cover crop treatments
on soil nematode community
composition and abundance

Forty-six genera of nematodes were identified in total under

different treatments. Bacterivores were found to be the most

abundant group with 19 genera, followed by fungivores with 6

genera, as well as omnivores/predators and plant parasites, with 12

and 9 genera, respectively, and Aphelenchoides, Eucephalobus, and

Rhabditis were the dominant genera in all treatments (Table S3).

The total abundance of nematodes increased in cover crop

treatments by 41.48%~64.61% and was obviously higher in cover

crop treatments compared with that in CK, but no significant

differences were observed among different cover crop treatments

(F11 = 24.119, P = 0.009; Figure 3A; Table S2). Meanwhile, cover
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crop treatments had effects on different nematode trophic groups.

C4 treatment had significantly higher abundance of bacterivores

than the CK treatments, but there were no significant differences

among different cover crop treatments (F11 = 15.116, P = 0.121;

Figure 3B; Table S2). Compared with CK, the abundance of

fungivores was significantly higher in cover crop treatments, but

no significant differences were observed among different cover crop

treatments (F11 = 31.912, P = 0.003; Figure 3C; Table S2). The

abundance of plant parasites was significantly higher in C2 and C8

treatments compared with that in the CK treatment (F11 = 5.687,

P = 0.003; Figure 3D; Table S2). C4 and C8 treatment slightly

increased the abundance of omnivores/predators compared with

CK, but there were no significant differences between cover crop

and CK treatments (F11 = 13.160, P = 0.255; Figure 3E; Table S2).

The variations in the structure of soil nematode community from

different cover crops treatments were evaluated by PCoA based on

nematode relative abundance, and the structures of the nematode

communities among CK and cover crop treatments were

significantly different (Figure 4). The first two principal

coordinates for the nematode community represented 25.27%

(PC1) and 19.12% (PC2) of total variation in different cover crop

treatments. C2 and C4 were significantly different from C8 and CK

at the axis 1, and C4 and C8 was significantly separated from C2 and

CK at the axis 2. Those results indicated that the nematode

community composition was significantly affected by cover crop
A B

D E F

G IH

C

FIGURE 2

The effects of cover crop treatments on soil moisture content (A), pH (B), organic carbon (C), ammonium nitrogen (D), nitrate nitrogen (E), total
nitrogen (F), carbon/nitrogen (G), microbial biomass carbon (H) and microbial biomass nitrogen (I). C2, two cover crop species; C4, four cover crop
species; C8, eight cover crop species; CK, no cover crop. The different lowercase letter indicates significant differences among treatments according
to Duncan's test (P < 0.05). Error bars are standard deviation of means (n = 3).
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treatments, and C8 showed a significant difference from C2 and C4

treatments. Network analysis was used to visualize the structural

complexity of the soil nematode community, which showed that the

networks were complicated by cover crop treatments compared

with CK (Figure 5). In the networks, most nodes were derived from

Ba, which showed increasing node numbers under cover crop

treatments except for C4. Total nodes in the network were higher

in C2 and C8 treatments, and the connectivity in the cover crop

treatments was 5.81%~94.19% higher than that in CK (Table S4).

Other network parameters, including average degree and network
Frontiers in Plant Science 06
density, were also higher with cover crop treatments (Table S4).

There were more positive correlations in the nematode networks of

CK and C2, whereas C4 and C8 had more negative correlations in

the nematode networks. The taxa that controlled the nematode

network were also different under cover crop treatments. At the

genus level, taxa in Ba (Eucephalobus, Plectus, and Acrobeloides), Fu

(Ditylenchus, Aphelenchoides, and Filenchus), Pp (Psilenchus), and

Op (Eudorylaimus, Oxydirus) controlled the nematode network in

the CK soils. Taxa in Ba (Chiloplacus, Acrobeloides, Acrobeles, and

Rhabditis), Fu (Aphelenchus, Aphelenchoides, Filenchus, and

Tylencholaimus), Pp (Malenchus and Helicotylenchus), and Op

(Mylonchulus, Anatonchus, Eudorylaimus, and Aporcelaimus)

controlled the nematode network in the C2 soils. The taxa that

controlled the nematode network in the C4 soils were Ba (Plectus,

Acrobeloides, Rhabditis, Protorhabditis, Eucephalobus, and

Eumonhystera), Fu (Ditylenchus), Pp (Tylenchus), and Op

(Thonus and Aporcelaimus). The taxa that controlled the

nematode network in the C8 soils were Ba (Acrobeloides,

Prochromadora , Caenorhabditis , and Eucephalobus), Fu

(Aphelenchus and Filenchus), Pp (Malenchus and Longidorus),

and Op (Thonus and Oxydirus).
3.3 Effects of cover crop treatments on
ecological indices and metabolic footprint
of nematode

C4 significantly decreased PPI (F11 = 3.160, P = 0.086; Figure 6B;

Table S2) but increased WI (F11 = 7.203, P = 0.012; Figure 6D; Table

S2) compared with CK, C2, and C8 treatments. However, there were

no significant differences in PPI and WI between C2, C8, and CK

(Figures 6B D). It showed no significant differences in MI and NCR

between cover crop treatments and CK (Figures 6A, C). Moreover,

cover crop treatments changed the metabolic footprint of soil
FIGURE 4

Principal co-ordinates analysis (PCoA) of the nematode community
under different cover crop treatments. CK, no cover crop; C2, two
cover crop species; C4, four cover crop species; C8, eight cover
crop species.
A

B

D E

C

FIGURE 3

The effects of cover crop treatments on the abundance of soil total nematode (A), bacterivores (B), fungivores (C), plant parasites (D) and
omnivores/predators (E). C2, two cover crop species; C4, four cover crop species; C8, eight cover crop species; CK, no cover crop. The different
lowercase letter indicates significant differences among treatments according to Duncan's test (P < 0.05). Error bars are standard deviation of means
(n = 3).
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nematode (Figure 7). Cover crop treatments slightly increased the

metabolic footprint of bacterivores compared with CK but showed no

significant differences compared with CK treatment (Figure 7A).

Compared with CK, cover crop treatments increased metabolic

footprint of fungivores group, and the fungivores metabolic footprint

of the C2 and C4 treatments was significantly higher than that of the

C8 treatment, but it showed no significant differences in fungivores

metabolic footprint between C2 and C4 treatments (F11 = 12.693, P =

0.002; Figure 7B; Table S2). Compared with CK, C2 and C4 slightly

decreased metabolic footprint of plant parasites and omnivores/

predators, whereas C8 slightly increased metabolic footprint of

which, but all cover crop treatments showed no significant

differences compared with CK treatment (Figures 7C, D). The Fe
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was also increased in cover crop treatments and was significant higher

in C4 and C8 treatments as compared with that in CK (F11 = 3.238, P =

0.079; Table S5), whereas there was no significant difference in Fs

between cover crop treatments and CK. Soil nematode faunal analysis

based on nematode metabolic footprints showed that the plot of C8

was situated in quadrat B, which suggested that the soil nutrient status

is better, the soil is less disturbed, and the food web is mature and

stable, whereas those of CK in quadrat C indicated that the soil nutrient

enrichment is poor and less disturbed environments (Figure 8; Table

S6). In addition, functional metabolic footprint of nematode in C8 was

larger than that in CK, whereas C2 and C4 treatments were situated in

quadrat A, which showed that the soil nutrient status is better in C2

and C4 treatments compared with CK (Figure 8; Table S6).
FIGURE 5

The complexity and interactions of soil nematode community under different cover crop treatments. The connections represented strong (R2 > 0.6)
and significant (P < 0.05) correlations. The size of each node was proportional to the number of connections (degrees). Red lines represented
significantly positive and green lines represent significantly negative correlations. Different colors of nodes represented nematode trophic groups.
CK, no cover crop; C2, two cover crop species; C4, four cover crop species; C8, eight cover crop species.
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A B

DC

FIGURE 6

The effects of cover crop treatments on the ecological indices of soil nematode communities including MI (A), PPI (B), NCR (C) and WI (D). C2, two
cover crop species; C4, four cover crop species; C8, eight cover crop species; CK, no cover crop. MI, maturity index; PPI, plant–parasite index; NCR,
nematode channel ratio; WI, Wasilewska index. The different lowercase letter indicates significant differences among treatments according to
Duncan's test (P < 0.05). Error bars are standard deviation of means (n = 3).
A B

DC

FIGURE 7

The effects of cover crop treatments on the Metabolic footprint of nematode subjected including BaF (A), FuF (B), PpF (C) and OpF (D). C2, two
cover crop species; C4, four cover crop species; C8, eight cover crop species; CK, no cover crop. BaF, Bacterivores metabolic footprint; FuF,
Fungivores metabolic footprint; PpF, plant parasites metabolic footprint; OpF, Omnivores/predators metabolic footprint. The different lowercase
letter indicates significant differences among treatments according to Duncan's test (P < 0.05). Error bars are standard deviation of means (n = 3).
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3.4 Relationships between nematode
community and plant and soil properties

The Mantel test analysis revealed that soil nematode community

was strongly associated with plant and soil environmental factors

(Figure 9A). The bacterivores community was strongly positively

correlated with MBC (Mantel’s r > 0.4, P < 0.05). The fungivorous

community was strongly positively correlated with cover crop

biomass (Mantel’s r > 0.2, P < 0.05), SMC (Mantel’s r > 0.4, P <

0.01), NO3
−-N (Mantel’s r > 0.4, P < 0.01), SOC (Mantel’s r > 0.2, P <
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0.05), MBC (Mantel’s r > 0.4, P < 0.01), and MBN (Mantel’s r > 0.4,

P < 0.01). The plant–parasite community was significantly positively

correlated with MBN (Mantel’s r > 0.2, P < 0.05). The omnivore/

predator community was strongly positively correlated with pH

(Mantel’s r > 0.4, P < 0.05). The RDA also estimated the

association between plant community, soil abiotic factors, and soil

nematode community (Figure 9B; Table S7). Soil MBN (r = 0.69, P =

0.006) was the most important parameter contributing to the changes

in soil nematode community, followed by soil MBC (r = 0.56, P =

0.027) and SMC (r = 0.61, P = 0.029). Meanwhile, SOC (r = 0.51, P =

0.038) and NO3
−-N (r = 0.51, P = 0.043) also had significant impacts

on nematode community. The above indicated that the changes in

soil nematode community were mainly driven by soil C and N

and SMC.
4 Discussion

Increasing cover crop diversity led to more plant community

diversity in orchard (Gomez et al., 2018). High plant diversity could

support multiple functions and sustain more ecosystem services by

producing multiple substrates and changing habitat conditions

(Spedding et al., 2004; Carrera et al., 2007; Isbell et al., 2011). In

this study, we found that cover crop diversity greatly increased the

plant diversity in orchard and also increased cover crop biomass

and decreased weed biomass, and C8 treatment was better for

controlling weed than C2 and C4 treatments. In addition, weed

biomass was lower in C4 than that in C2 treatment. These may be

because increasing plant diversity alters the composition of plant

communities, reducing the richness of weed species (Norton et al.,

2019). Furthermore, by selecting species with structural diversity in

the distribution of biomass on the ground, multi-layered plant

communities are formed to control the growth of weeds by cover

crop growth, which competes with weeds for niche, resources, and

light (Bjorn et al., 2019). On the basis of the findings observed by

this study, which require further confirmation, it can be considered
A B

D C

FIGURE 8

Faunal analysis of soil food web under different cover crop
treatments (based on nematode metabolic footprints). C2, two
cover crop species; C4, four cover crop species; C8, eight cover
crop species; CK, no cover crop. Quadrat A, the soil environment is
highly disturbed, and the food web is disturbed to a certain extent;
Quadrat B, the soil nutrient status is better and the soil is less
disturbed, and the food web is mature and stable; Quadrat C, the
soil nutrient enrichment is poor and the disturbance is small, and
the soil food web is in a structured state; Quadrat D, the soil
nutrient enrichment status is poor and the disturbance degree is
high, which has caused stress to the environment and the food web
is degraded.
A B

FIGURE 9

Mantel test (A) and redundancy analysis (B) between plant, soil physicochemical factors and soil nematode community. SMC, soil moisture content;
NO3-N, nitrate nitrogen; TN, total nitrogen; SOC, soil organic carbon; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen.
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that, in the kiwifruit orchard among the different cover crop

treatments, C8 treatment was the most effective in terms of weeds

control to reduce the use of herbicides and preserve soil health as

well as the sustainable development of the fruit industry.

Cover crop supported a higher nematode abundance than CK.

This is likely because the cover crops supply more food resource for

nematode. In this study, cover crop biomass was higher in cover

crop treatments than that in CK and positively associated with total

nematode abundance. Previous study found that higher plant

species richness led to higher plant biomass, which support more

abundance resources for nematode (DuPont et al., 2009). In this

study, C4 and C8 increased SOC, TN, MBC, and MBN, indicating

that cover crops enhance efficiency of soil resources, which further

affects the soil nematode community, resulting in a higher

abundance of soil nematodes under cover crop treatments than

CK. In addition, cover crop diversity favored higher plant diversity,

which increased substrates diversity that leads more diverse

resources into soil and, subsequently, increases the richness and

diversity of soil biota (Cesarz et al., 2017) Different cover crop

treatments have different effects on the nematode trophic groups.

Cover crop treatments supported a higher abundance of low trophic

groups of free-living nematodes (bacterivores and fungivores),

especially in C4 treatment. This may be related to the higher soil

fertility and effective organic matter decomposition under cover

crop diversity treatments (Housman et al., 2007; Wang et al., 2019).

Mantel test revealed that MBC was positively correlated to

bacterivores abundance. NO3
−-N, SOC, MBC, and MBN were

positively associated with fungivores abundance. Moreover, cover

crops increased the biomass of bacterial and fungi (Novara et al.,

2020) and may affect soil bacterivores and fungivores abundance

through bottom-up control. Changes of soil environment can also

affect nematode abundance. In this study, cover crop treatments

increased SMC, which showed a positive correlation with

fungivores abundance. This may be related to some fungivores,

e.g., Aphelenchoides, which are more suitable for survival in

environments with higher relative humidity (Zhao et al., 2022).

Cover crop treatments impact plant parasites abundance (Yeates

and Bongers, 1999; Verschoor et al., 2001), which is closely linked to

the vigor of their host plants (Ferris et al., 2001) and benefited from

high plant species diversity (Isbell et al., 2017). Cover crop

treatments, especially C2 and C8, increased the abundance of

plant parasites in this study. This is presumably due to the

presence of root biomass, which provides abundant food

resources for plant parasites nematodes. We also found that

omnivore/predator nematode abundance was slightly increased in

C8 treatment, implying that increasing cover crop diversity led to a

more stable and less disturbed soil ecosystem in orchard, which

provided an excellent living environment for omnivore/predator

nematode. In addition to that, C8 increased the abundance of

bacterivores, fungivores, and plant parasites, suggesting a strong

bottom-up effect of cover crop on soil omnivore/predator

nematodes (Hu et al., 2017). The soil nematode community

composition was significantly affected by cover crop treatments.

The reason for this outcome may be that different cover crop
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treatments have distinct effects on soil environmental factors

because of their different identity, biomass, function, and root

exudates, which, to some extent, alter soil properties (Pan et al.,

2016). In this study, soil NO3
−-N, MBN, MBC, SMC, and SOC were

the important parameters contributing to the changes in soil

nematode community composition. Previous study found that the

dominant groups were Rhabditis, Cephalobus persegnis, and

Aporcelaimellus in kiwifruit orchard soils (Sekhukhune et al.,

2022a), whereas in our study, Aphelenchoides, Eucephalobus, and

Rhabditis were the dominant genus. This difference may be caused

by cover crops, which improved soil properties and increased the

resource availability, subsequently affecting the composition of

nematode communities (Zhang et al., 2022). The dominant

groups of plant parasites (Pratylenchus, Tylenchorhynchus, and

Tylenchus) in our study were also different from Sekhukhune

et al. (2022b), who found that Helicotylenchus, Meloidogyne

hapla , and Scutellonema brachyurus were the prevalent

nematodes in kiwifruit orchard soil. This may be due to different

soil management measures including fertilization, tillage, planting,

and covering crops. Nematode network always varies when the

composition of the soil nematode community has been changed.

The number of nodes and edges networks can represent the size of

ecological networks (Wu et al., 2021). In this study, the numbers of

nodes and edges for nematode communities in cover crop soils were

greater than those in CK soils, indicating that cover crops exhibit a

larger network size and recruits more nematodes participating in

the nematode–nematode interactions than those in CK. Cover crop

also increased the density of nematode ecological networks,

indicating that cover crop treatments enhanced the interaction

between nematodes. The positive and negative correlations in the

network can represent the collaboration and competitive predation

relationships between nematodes, respectively (Wu et al., 2021). In

this study, cover crop treatments reduced the positive correlation

proportion and increased the proportion of negative correlation,

suggesting that a strong competitive relationship between

nematodes under the cover crop treatments. Compared with CK,

the main genera changed in the network of cover crop treatments

belonging to bacterivores (e.g., Rhabditis, Protorhabditis,

Caenorhabditis, Eumonhystera, Chiloplacus, Acrobeles, and

Prochromadora). These changes may be due to the fact that the

cover crop treatments increased the resources input, which

stimulates bacterivores to respond quickly. In addition, C2 and

C8 increased the interactions between plant parasites (e.g.,

Malenchus , Helicotylenchus, and Longidorus) and other

nematodes, probably related to the host plant and its root

biomass and exudation. The network complexity of the feeding

links was significantly correlated with the stability and stress

tolerance of the soil food web (Beckerman et al., 2006; Wang

et al., 2022), and our findings thus highlighted that cover crop

diversity profited to the stability and interactions of the soil micro-

food web.

The changes of soil nematode composition cause significant

variations in nematode metabolic footprints. The functional

metabolic footprint was higher in C4 and C8 compared with CK,
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indicating that cover crop diversity increased carbon utilization

efficiency of soil nematode communities. This result is likely due to

the fact that C4 and C8 increased the proportion of nematodes in

the cp1 group. Soil nematode with low cp value was r-strategists,

which respond quickly to external nutrient inputs, resulting in

higher resource utilization rates (Zhao et al., 2022). In addition, the

functional metabolic footprint in C8 was higher than that in C2 and

C4, suggesting that C8 may have a stronger promoting effect on the

metabolic activity of predatory omnivorous nematodes. The reason

might be that C8 causes a larger cover crop biomass, which has a

good nutrient enrichment status in the soil, and the structure of the

soil food web is mature and stable. The bottom-up effect caused by

resource input promotes the energy flow in the soil food web from

low trophic level to high trophic level and maintains the metabolic

activity of the soil food web. In this study, cover crop treatments

also increased the metabolic footprint of fungivores, indicating that

the carbon and energy flow entering the fungal decomposition

pathway are relatively higher in the cover crop treatments than in

CK. This result can be explained as cover crop treatments may be

increase the refractory organic matters. In addition, C2 and C4 led

to a higher fungivores metabolic footprint as compared with C8,

possibly because C2 and C4 increased the proportion of fungivores

compared with C8. In this study, cover crops also improved

ecological index of nematode. C4 increased the WI but decreased

the PPI, suggesting that the soil mineralization pathway under C4

treatment is mainly involved by bacterivorous and fungivores

(Bongers, 1990). Meanwhile, C4 reduced the harm of plant

parasitic nematodes in the soil food web and improved soil

health. The changes of soil nematode composition led to changes

of soil food web structure via influencing metabolic footprint. Soil

nematode faunal analysis is based on nematode metabolic

footprints, indicating that nutrient status is better, soil is less

disturbed, and the food web is mature and stable within C8 soils

compared with CK soils in the orchard ecosystem. This is likely due

to the fact that C8 improved soil carbon and nitrogen content and

created more enriched conditions (Ferris et al., 2001). Using soil

nematodes as indicator taxa, our study shows that cover crops can

maintain soil food web complexity and promote nutrients

enrichment as well as the ecosystem stability, especially under C4

and C8 treatments.
5 Conclusion

Our findings demonstrated the large effect of increasing cover

crop diversity on weed control and soil nematode community in

kiwifruit orchard. Weed biomass presented lower in cover crop

treatments and decreased as cover crop diversity increased. In

addition, cover crop treatments increased the abundances of total

nematode and fungivores, changed the structure of nematode

community composition, and enhanced the complexity and

interactions of the soil micro-food web. Moreover, C4 increased

the MI but decreased the PPI. In addition, C4 and C8 increased the

functional metabolic footprint of nematode. Thereby, this study

screened C4 and C8 treatments, which were more effective in

improving soil quality, nematode abundance, and soil food web,
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and provided theoretical basis for the scientific management of

orchards, biodiversity conservation, and ecological restoration of

degraded orchards.
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