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Biochar, as a soil conditioner, has been widely used to promote the growth of

maize, but most of the current research is short-term experiments, which limits

the research on the long-term effects of biochar, especially the physiological

mechanism of biochar on maize growth in aeolian sandy soil is still unclear. Here,

we set up two groups of pot experiments, respectively after the new biochar

application and one-time biochar application seven years ago (CK: 0 t ha-1, C1:

15.75 t ha-1, C2: 31.50 t ha-1, C3: 63.00 t ha-1, C4: 126.00 t ha-1), and planted with

maize. Subsequently, samples were collected at different periods to explore the

effect of biochar onmaize growth physiology and its after-effect. Results showed

that the plant height, biomass, and yield of maize showed the highest rates of

increase at the application rate of 31.50 t ha-1 biochar, with 22.22% increase in

biomass and 8.46% increase in yield compared with control under the new

application treatment. Meanwhile, the plant height and biomass of maize

increased gradually with the increase of biochar application under the one-

time biochar application seven years ago treatment (increased by 4.13%-14.91%

and 13.83%-58.39% compared with control). Interestingly, the changes in SPAD

value (leaf greenness), soluble sugar and soluble protein contents in maize leaves

corresponded with the trend of maize growth. Conversely, the changes of

malondialdehyde (MDA), proline (PRO), catalase (CAT), peroxidase (POD) and

superoxide dismutase (SOD) manifested an opposite trend to the growth of

maize. In conclusion, 31.50 t ha-1 biochar application can promote the growth of

maize by inducing changes in its physiological and biochemical characteristics,

but excessive biochar application rates ranging from 63.00-126.00 t ha-1

inhibited the growth of maize. After seven years of field aging, the inhibitory

effect of 63.00-126.00 t ha-1 biochar amount on maize growth disappeared and

changed to promoting effect.
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1 Introduction

Aeolian sandy soil is one of the most important reserved,

cultivated land resources in arid and semi-arid areas. But due to

its disadvantages of having low nutrient content and poor water

retention, crops planted in it face adverse environmental effects

(Baiamonte et al., 2020; Jahromi et al., 2020; Ibrahim et al., 2021),

which leads to poor crop growth and low yield. Maize (Zea mays L.),

one of the world’s most important food crops, is mainly planted in

semi-arid areas (Ul-Allah et al., 2015). But the Aeolian sandy soil

limits the growth of maize (Yan et al., 2022). Alternatively, biochar

as soil conditioner produced from organic waste under pyrolysis

process, improve aeolian sandy soil by increasing its nutrient

content and water-holding capacity (Kammann et al., 2015;

Hussain et al., 2017). Biochar has been shown to improve soil

quality by altering soil structure, increasing water-holding capacity,

etc. (Han et al., 2020; Hossain et al., 2020). Additionally, biochar can

enhance soil fertility by maintaining nutrients and stimulating

microbial activities (Minhas et al., 2020). Therefore, biochar

application in aeolian sandy soil may help solve the

underutilization of aeolian sandy soil.

At present, numerous studies reported the biochar application in

soil. For example, the prominent improvement in plant roots traits,

leaf area, plant growth, morphological and yield-related parameters

were observed with addition of biochar at 2 and 4 t ha-1, while, plant

height, number of grains per cob, grains and biological yield

decreased with biochar addition 6 t ha-1 (Minhas et al., 2020).

Some studies have also found that biochar can significantly

increase the chlorophyll content of maize, while was adverse effects

when the application rate exceeded 12 t ha-1 (Khan et al., 2022).

However, there is still a lack of research on the effects of biochar on

plant physiological and biochemical characteristics. Environmental

stress can lead to high accumulation of hydrogen peroxide and

superoxide (reactive oxygen species, ROS) in crops, which can be

harmful to important biomolecules (such as lipids, proteins, pigments

and nucleic acids), ultimately inhibiting crop growth and yield

(Ashraf, 2009; Golldack et al., 2014; Noctor et al., 2014;

Vwioko et al., 2019). However, plants can upregulate their

antioxidative defense mechanism by stimulating the activities of

key antioxidative enzymes, including superoxide SOD, CAT, and

POD, to counteract ROS (Ashraf, 2009). SOD converts superoxide

ions into hydrogen peroxide (H2O2) and oxygen (O2) (Zhang et al.,

2004; Wang et al., 2018). Subsequently, CAT and POD break down

H2O2 into H2O and O2 (Foyer and Halliwell, 1976; Wang et al.,

2018). Previous studies have found that biochar can scavenge reactive

oxygen species by activating the production of antioxidant enzymes

(Haider et al., 2022; Mahmoud et al., 2022). For instance, plants

treated with 0.75% biochar experienced less oxidative stress due to

stimulated activity of the antioxidant defense systems (Abideen et al.,

2020). Besides the scavenging effect of ROS, osmotic adjustment

(such as proline, soluble sugar, and soluble protein) is broadly

recognized as providing high-energy reactions to maintain cell

turgor, which is necessary for crop growth (Hare et al., 1998). The

application of biochar has been shown to improve the synthesis of
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stressed proteins and proline in plants, thereby maintaining the

osmotic protectant and osmotic potential of plants under

environmental stress (Haider et al., 2022; Mahmoud et al., 2022).

While it is clear that antioxidant enzymes and osmoregulators play an

important role in crop growth, there is still a lack of research on them,

which limits the in-depth study of the physiological and biochemical

characteristics of maize under biochar application. A meta-analysis of

worldwide research to evaluate the impact of biochar found that the

biochar application results vary with raw materials used, pyrolysis

temperature, soil properties, and climate (Jeffery et al., 2016).

Therefore, the impact of biochar on plant growth is still questionable.

It is worth noting that most of the current studies on the effects

of biochar on maize growth are conducted in short-term

experiments (within 1 year) (Yeboah et al., 2016; Minhas et al.,

2020). Only a few studies reported the effects of biochar on crops

after the addition of biochar for several years or more. For instance,

adding 31.5-47.25 t ha-1 biochar for five years promoted the uptake

of soil phosphorus by maize straw (38.6-71.3%) and grain (20.9-

25.5%) (Cao et al., 2020). Moreover, one-time application of

biochar can enhance the growth and yield of wheat and maize for

four years (Hu et al., 2021). However, several studies have

demonstrated that crop growth and nutrient uptake were only

promoted after many years of biochar application. For example,

when 8 or 20 t ha-1 of biochar was applied, the maize yield did not

change in the first year post-application, but increased in the next

three years (Major et al., 2010). Therefore, there is a need to

investigate the long-term effects of biochar on crops, particularly

in poor farmland soils such as aeolian sand soil, where the benefits

of biochar may be more significant. However, the effects of long-

term application of biochar on maize growth, physiological and

biochemical characteristics in poor farmland soil, especially in

aeolian sand soil, have not been adequately studied.

In conclusion, although some long-term experimental results

have reported the long-term effects of biochar, there is still a lack of

enough long-term experiments worldwide, especially considering

the wide diversity of both biochar and soil, and the results varying

with different regions and different crops. Moreover, the

physiological mechanism of maize growth under the condition of

biochar application is still unclear. Therefore, we used two groups of

pot experiments, one for the new biochar application, the other for

the one-time biochar application seven years ago, to study the effect

of biochar application on maize growth and its after-effect, which

could fill the gaps and provide data support for the biochar

application in aeolian sandy soil in arid areas of Northwest

China. Considering that aeolian sand soil is known to have poor

nutrient content (Baiamonte et al., 2020), while biochar is rich in

carbon sources and nutrients (Kammann et al., 2015; Hussain et al.,

2017) and can remain in soil for hundreds of years (Kuzyakov et al.,

2009). We hypothesized that: (1) The growth of maize will still be

promoted seven years after the application of biochar. (2) Biochar

application can improve the growing environment of maize and

reduce the activity of antioxidant enzymes. Therefore, our aims are

(a) to analyze and compare the short- and long-term effects of

biochar on maize growth and yield in aeolian sandy soil; (b) to
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identification direct or indirect soil and plant physiological

characteristics affecting maize yield; and (c) to reveal the optimal

application rate of biochar in aeolian sandy soil.

2 Materials and methods

2.1 Experimental design

In 2021, two groups of pot experiments were set up using the

pot design method in Xinjiang Agricultural University, respectively

denoted as Group 1 and Group 2. One group involved new biochar

application treatment (Group 1). In 2021, we collected the aeolian

sandy soil without biochar application and planting crops, and

brought it back to the experiment site for new application of biochar

and planting maize (Zea mays L.) (Figure 1). The second group

involved one-time biochar application seven years ago treatment

(Group 2). In 2014, we carried out a field application of biochar. In

2021 (seven years later), we collected the in-situ aeolian sandy soil

from each treatment in the field experiment, and brought it back to

the experiment site to be directly potted and planted with maize

(Zea mays L.) (Figure 1).

2.1.1 One-time biochar application seven years
ago (Group 2)

Firstly, a field in-situ experiment of biochar application was

carried out in the Soil Improvement Test Station of Paotai Town,

Shihezi City, Xinjiang Uygur Autonomous Region, China. The

experiment began in 2014 using a randomized block design with

five treatments based on the amount of straw harvested in one year

after carbonization (2.625 t ha-1): no biochar treatment (CK), one-

time application of 15.75 t ha-1 (C1), 31.50 t ha-1 (C2), 63.00 t ha-1

(C3), and 126.00 t ha-1 (C4) biochar treatment. Three replicates

were set for each treatment, resulting in a total of 15 plots with an

area of 4.6 m×7.0 m. The biochar was obtained from wheat straw

carbon, carbonized at 450°C for 5 h, crushed, and screened using
Frontiers in Plant Science 03
the 2 mm size. In 2014, before sowing, the biochar was applied in a

one-off manner, and mixed evenly with 0~20 cm soil. The basic

chemical properties of the aeolian sandy soil and biochar were

shown in Table 1. Seed sowing was scheduled in May and harvest

was arranged in every September. The planted maize variety was

“Xinyu No.53”, the irrigated via under-membrane drip irrigation,

with is one crop per year. Prior to sampling (2021), field

management practices, fertilization and irrigation remained

consistent across all treatments for seven years, as indicated in

Table S1.

Secondly, in 2021 (seven years later), before sowing, the five soil

subsamples at 0-20 cm were collected from each plot using a shovel

according to the zigzag pattern. And the 15 subsamples from each

treatment were mixed as composite samples to produce five

combination samples. Subsequently, the soil samples of five

treatments were evenly packed into pots (25 cm in diameter and

25 cm in height, without reapplication of biochar), with 15 pots for

each treatment (five stages × three replications), resulting in total of

75 pots. The five treatments were denoted as SCK, SC1, SC2, SC3

and SC4, as listed in Table 2. The basic chemical properties of the

aeolian sandy soil under SCK were as follows in Table 1. During

sowing, five seeds were planted in each pot, with the extra seedlings

removed after the emergence of the seedlings, leaving only one plant

in each pot. The planted maize variety was “Xinyu No.53”.
2.1.2 New biochar application (Group 1)
In 2021, aeolian sandy soil without biochar application and

without crops was collected in the Soil Improvement Test Station of

Paotai Town, Shihezi City, Xinjiang Uygur Autonomous Region,

China. The basic chemical properties of the aeolian sandy soil were

as follows in Table 1. The texture and chemical properties of the

sandy soil were basically consistent with those of the 2014

field experiment.

The amount of biochar used in the pots was calculated based on

the amount applied in the in situ field experiment (Group 2). Firstly,
FIGURE 1

Schematic diagram of test design.
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the amount of biochar calculated for each treatment was evenly

mixed separately with aeolian sandy soil. Secondly, the mixed

samples were put into the corresponding pots (25 cm in diameter

and 25 cm in height) according to five treatments. The 15 pots were

set up for each treatment (five stages × three replications), resulting

in total of 75 pots. The five treatments were denoted as OCK, OC1,

OC2, OC3 and OC4, as listed in Table 2. The biochar was obtained

from wheat straw carbon, carbonized at 450°C for 5 h, crushed, and

screened using the 2 mm size. The basic chemical properties of the

biochar were as follows in Table 1, and the basic chemical properties

of soil after new mixture of biochar were shown in Table S2. During

sowing, five seeds were planted in each pot, with the extra seedlings

removed after the emergence of the seedlings, leaving only one plant

in each pot. The planted maize variety was “Xinyu No.53”.

All local field management practices were followed consistently

across all treatments, including the periods and amounts of fertilizer

and irrigation. Detailed information is provided in Table S1.
Frontiers in Plant Science 04
2.2 Sampling and measurements

2.2.1 Plant height
At the second leaf (V2) stage (19 days after sowing), sixth leaf

(V6) stage (50 days after sowing), tassle (VT) stage (89 days after

sowing), blister (R2) stage (108 days after sowing) and black layer

(R6) stage (137 days after sowing), three maize plants were selected

for each treatment, and the plant height (cm) was measured with

steel tape. The height from the base of the maize stem to the highest

point of the plant is defined as plant height.

2.2.2 Biomass, nutrient uptake and yield
At the V2, V6, VT, R2, R6 stage, the roots, leaves and stems of

three maize were harvested, and their dry weight (DW) was

recorded after drying at 75°C until reaching constant weight,

which was biomass (g plant-1 DW). After that, the roots, stems

and leaves were thoroughly ground for nutrient content
TABLE 2 Application amount of biochar.

Experiment Treatment Application amount
(t ha-1)

New biochar application treatment

OCK 0

OC1 15.75

OC2 31.50

OC3 63.00

OC4 126.00

One-time biochar application seven years ago treatment

SCK 0

SC1 15.75

SC2 31.50

SC3 63.00

SC4 126.00
TABLE 1 Chemical properties of soil and biochar in the two experiments before sowing.

Treatment pH Electrical conductivity
(mS cm-1)

Organic
Carbon
(g kg-1)

Available nitrogen
(mg kg-1)

Available phosphorus
(mg kg-1)

Available potassium
(mg kg-1)

Soil

Field experiment in
2014

8.21 — 1.38 7.40 4.60 97.00

Field experiment in
2021

8.19 0.11 6.70 8.21 15.41 92.92

Pot experiment in 2021 8.22 0.12 1.28 7.63 4.96 96.31

Biochar

Field experiment in
2014

9.7 7.21 660 74.27 80.13 1157

Pot experiment in 2021 9.9 7.22 670 70.44 82.2 1590
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determination. The roots, stems and leaves were digested with

H2SO4-H2O2, and the nitrogen content (mg kg-1) was determined

by Nessler’s reagent (K2HgI4) colorimetric method, the phosphorus

content (mg kg-1) was determined by vanadium-molybdenum-

yellow colorimetry, and then determined by spectrophotometry

(Shimadzu UV-1780, Japan). The potassium content (mg kg-1) by

flame photometer (Shanghaiyuefeng FP6400, China) (Bao, 2000).

Nutrient uptake amount (mg plant-1 DW) is the product of nutrient

content and biomass. At the R6 stage, three maize seeds in each

treatment were collected, dried at 75°C to constant weight, and the

weight was recorded. Hundred-kernel weight, spike length (cm), the

number of rows per ear and number of grains or kernels per row

were also determined.

2.2.3 Leaf greenness, physiological parameters
and biochemical parameters

At the V2, V6, VT, R2 stage, the leaf greenness (SPAD readings)

of each maize plant leaf (the first leaf in the uppermost part was

fully expanded in V2 and V6 stage, and ear-leaf were selected in VT

and R2 stage) was measured using the SPAD502 Chlorophyll meter

(TOP Cloud- Agri SpAD-502, China).

At the same time, each maize plant leaf (the first leaf in the

uppermost part was fully expanded in V2 and V6 stage, and ear-leaf

were selected in VT and R2 stage) were destructively collected. After

that, it was wrapped in tin foil and placed in a liquid nitrogen tank

at -80°C for measuring biochemical parameters.

The content of fresh leaves (FW) soluble protein (mg g-1 FW)

was estimated following Spector (1978) using Coomassie bright

blue G-250 reagent, and the absorbance was recorded at 595 nm

using bovine serum albumin as standard. Meanwhile, the anthrone

reagent was used to determine the soluble sugar (%) of fresh leaves,

and absorbance was measured at 625 nm as described by the

method of Irigoyen et al. (1992).

The content of fresh leaves proline (PRO, mg g-1 FW) was

determined based on the method by Bates et al. (1973). In brief,

0.5 g of the fresh leaf sample was mixed with 3% sulfosalicylic acid.

Then, the 2 mL mixture was reacted with glacial acetic acid (2 mL)

and acid ninhydrin (2 mL) in a test tube, and the mixture was

incubated for 30 min at 100°C in a water bath. After incubation, 5

mL of toluene was added to the reaction combination, and

maintained in the dark at room temperature for 20 min to permit

separation of the toluene layer from the aqueous solution. The

absorbance of toluene later was measured at 520 nm using a

spectrophotometry (Shimadzu UV-1780, Japan).

The content of fresh leaves malondialdehyde (MDA, mg g-1 FW)

in terms of thiobarbituric acid reactive substances (TBARS) was

assessed based on the method illustrated by Du and Bramlage

(1992). In brief, the MDA was extracted from 0.5 g of the fresh leaf

sample with 0.1% trichloroacetic acid (TCA), and the homogenate

was centrifuged for 15 min. Subsequently, the resulting supernatant

was combined with 20% TCA (4 mL) containing 0.5% TBA, and the

mixture was incubated at 95°C for 30 min. After centrifugation for

15 min, the absorbance of mixture was measured at 532 and 600 nm

using a spectrophotometry (Shimadzu UV-1780, Japan).
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The fresh leaves were first crushed and homogenized in

phosphate buffer (5 mL, 50 mmol L-1 phosphate buffer,

containing 1 mmol L-1 EDTA, 1 mmol L-1 phenylmethylsulfonyl

fluoride, and 1% polyvinylpolypirrolidone). The resulting

homogenized sample was then centrifuged for 30 min to obtain

an enzyme extract. Subsequently, the activity of superoxide

dismutase (SOD, Unit mg-1 protein) was determined based on the

method by Beauchamp and Fridovich (1971). For this, the enzyme

extract was mixed with a reaction mixture (containing 150 mmol L-1

K-phosphate, 13 mmol L-1 methionine, 75 µmol L-1 p-

nitrobluetetrazolium chloride, 2 µmol L-1 riboflavin, and 0.1 mmol

L-1 EDTA), and the SOD was measured at 560 nm using a

spectrophotometry (Shimadzu UV-1780, Japan).

The activity of Catalase (CAT, Unit mg-1 protein) was

anticipated by assessing the prime speed of H2O2 defeat. Briefly,

100 µL of enzyme extract was added to K phosphate buffer (1.5 ml,

50 mmol L-1) and H2O2 (1.5 ml, 10 mmol L-1), and the enzyme

activity was measured at 240 nm for 2 min using the method of

Yang et al. (2011).

The activity of Peroxidase (POD, Unit mg-1 protein) was

determined using o-phenylenediamine as a chromogenic indicator

in the presence of H2O2 and enzyme extract, and the absorbance

was measured at 417 nm using the method of Vetter et al. (1958).

2.2.4 Soil parameters
Soil pH was measured at a water/soil ratio of 2.5:1 using a pH

meter (Mettler Toledo FE28-Standard, Switzerland). Soil electric

conductivity (mS cm-1) measured by electric conductivity meter

(Keruiyongxing DDS-11A, China). Soil organic carbon content (g

kg-1) was determined by the H2SO4–K2Cr2O7 external heating

method (Bao, 2000). Available N (mg kg-1) was determined by

the alkali diffusion method. Soil available phosphorus (mg kg-1) was

extracted by NaHCO3 and then determined by spectrophotometry

(Shimadzu UV-1780, Japan) (Bao, 2000). Available potassium (mg

kg-1) was extracted by CH3COONH4 and then determined by flame

photometer (Shanghaiyuefeng FP6400, China) (Bao, 2000).
2.3 Statistical analysis

The data was collected in Excel 2018. One-way ANOVA was

performed using SPSS 22.0. LSD was used to test the significance

(P<0.05). Structural equation model (SEM) was used to revealed the

direct and indirect effects of biochar on maize yield. In brief, a Z-

score transformation was used to standardize all data (Maestre et al.,

2012), and take the average of these transformed values as the

variables in SEM, where osmoregulators contained soluble sugars

and soluble proteins; the soil properties contained pH, organic

carbon, available nitrogen, available phosphorus and available

potassium; and the ROS contain SOD, POD, and CAT. The

structural equation modeling (SEM) analysis was performed using

SPSS Amos 24 (IBM, United States). Origin 2018 was used to draw

point-and-line figures and bar figures, and R software was used to

draw correlation matrix figures.
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3 Results

3.1 Effects of biochar application on
plant height, biomass and nutrient
uptake of maize

In the new biochar application treatment, the OC1 treatment

significantly increased plant height of maize by 7.09% compared

with OCK, while the OC3 and OC4 treatments significantly

decreased by 13.31% and 30.14% (Figure 2A). The OC1 and OC2

treatments significantly increased biomass of roots, stems and

leaves compared with OCK, while the OC3 and OC4 treatments

significantly decreased (Figure 3A). In the one-time biochar

application seven years ago treatment, plant height of maize was

significantly increased by 4.13~14.91% in all treatments with

biochar application (SC1, SC2, SC3, and SC4) compared with

SCK (Figure 2B). Moreover, the biomass of roots, stems and

leaves showed a significantly increase with the increasing biochar

application (Figure 3B).

In the new biochar application treatment, the OC2 treatment

significantly increased uptake amounts of nitrogen and phosphorus

(20.81% and 36.34%, respectively) compared with OCK. However, the

uptake amounts of nitrogen and phosphorus in OC4 treatment was

significantly decreased by 19.99% and 19.64% compared with OCK.

Meanwhile, the uptake amounts of potassium in OC1, OC2 and OC3

treatments was increased by 16.14~52.42% compared with OCK

(Table 3). In the one-time biochar application seven years ago

treatment, the SC1, SC2, SC3 and SC4 significantly increased uptake

amounts of nitrogen, phosphorus and potassium (nitrogen increased

by 14.08~59.23%, phosphorus increased by 59.06~117.81%,

potassium increased by 30.30~90.93%) compared with SCK (Table 3).
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3.2 Effects of biochar application on
physiological characteristics of maize

In the new biochar application treatment, the OC4 treatment

significantly decreased SPAD readings of maize leaves at the 50, 89

and 108 days after sowing (decreased by 11.08~30.58%) compared

with OCK (Figure S1A). Conversely, in the one-time biochar

application seven years ago treatment, the SC4 treatment

significantly increased SPAD readings of maize leaves at the 89

and 108 days after sowing (increased by 6.78~12.25%) compared

with SCK (Figure S1B).

In the new biochar application treatment, the OC3 and OC4

treatments significantly increased MDA content at the 19 days after

sowing (increased by 10.42~27.33%) compared with OCK, and the

OC1, OC2, OC3, and OC4 treatments significantly decreased at the

89 and 108 days after sowing (decreased by 18.11~64.52%)

(Figure 4A). In the one-time biochar application seven years ago

treatment, the SC2, SC3, and SC4 treatments significantly decreased

MDA content at the 19, 50, 89 and 108 days after sowing (decreased

by 5.67~14.04%) compared with SCK (Figure 4B).

For ROS activity (Figure 5), in the new biochar application

treatment, the OC2 treatment increased SOD activity at the 50 and

108 days after sowing (13.05~38.44%) compared with OCK

(Figure 5A). However, the same treatment significantly decreased

CAT and POD activity at the 19 and 50 days after sowing

(9.60~26.22%), and also significantly decreased POD activity at

the 89 and 108 days (16.58%~21.10%) compared with OCK

(Figures 5B, C). In the one-time biochar application seven years

ago treatment, the SC3 and SC4 decreased SOD activity at the 19

days after sowing (3.69~4.33%) compared with SCK. However, the

SC4 treatment significantly increased SOD activity at the 89 days
A

B

FIGURE 2

Effect of biochar application on maize plant height. (A) New biochar application treatment. (B) One-time biochar application seven years ago of
treatment. The bar graph in the line chart shows the average plant height of five stages. Same small letter indicates no significance within same
experiment at P=0.05.
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after sowing (12.73%) compared with SCK (Figure 5A).

Furthermore, the SC2, SC3, and SC4 treatments significantly

decreased CAT and POD activities at the 19, 50, 89, and 108 days

after sowing (15.50~40.97%) compared with SCK (Figures 5B, C).

For osmoregulators, in the new biochar application treatment,

the OC2 treatment significantly decreased PRO content

(2.73~10.60%) compared with OCK, while OC3 and OC4

treatments increased at the 19, 50, 89 and 108 days after sowing

(7.66~23.75%) (Figure 6A). Furthermore, the OC2, OC3 and OC4

treatments significantly increased soluble sugar content at the 19

and 108 days after sowing (0.84~26.03%) compared with OCK

(Figure 6B). Additionally, the OC3 and OC4 treatment significantly

increased soluble protein content at the 19 and 50 days after sowing

(24.17~33.40%) compared with OCK (Figure 6C). Regarding the

one-time biochar application seven years ago treatment, the SC2,
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SC3 and SC4 treatment significantly decreased PRO content at the

19, 50, 89 and 108 days after sowing (3.48~11.41%) compared with

SCK (Figure 6A). Moreover, the SC4 treatment increased soluble

sugar content at the 19 and 108 days after sowing (5.56~12.50%)

(Figure 6B), and SC2 and SC3 treatment increased soluble protein

content at the 60 and 108 days after sowing (9.79~13.74%)

compared with SCK (Figure 6C).
3.3 Effects of biochar application on maize
yield and its components

In the new biochar application treatment, the OC2 treatment

significantly increased maize seed yield and spike length (increased

by 8.46% and 9.52%, respectively) compared with OCK, while the
A B

FIGURE 3

Effect of biochar application on the biomass of roots, stems and leaves. (A) New biochar application treatment. (B) One-time biochar application
seven years ago of treatment. Same small letter indicates no significance within same experiment at P=0.05.
TABLE 3 Effects of biochar application on maize nutrient uptake amounts.

Experiment Treatment
Nitrogen uptake

amounts
(mg plant-1 DW)

Phosphorus uptake
amounts

(mg plant-1 DW)

Potassium uptake
amounts

(mg plant-1 DW)

New biochar application treatment

OCK 1081.96 ± 56.01b 287.12 ± 24.15b 1506.43 ± 101.21c

OC1 1127.75 ± 121.00ab 330.53 ± 21.66b 1749.63 ± 126.32b

OC2 1307.12 ± 91.25a 391.45 ± 18.15a 2296.17 ± 335.80a

OC3 1188.11 ± 35.6ab 325.92 ± 23.74b 2016.03 ± 305.14ab

OC4 865.68 ± 26.15c 230.73 ± 4.44c 1573.17 ± 73.83c

One-time biochar application seven years ago
treatment

SCK 902.33 ± 51.75d 194.64 ± 60.13d 1080.64 ± 47.51d

SC1 1029.37 ± 41.77c 258.58 ± 27.19cd 1408.03 ± 70.00c

SC2 1104.54 ± 55.02bc 309.59 ± 25.27c 1521.82 ± 116.65bc

SC3 1228.87 ± 62.84b 363.60 ± 20.51b 1717.24 ± 98.25b

SC4 1436.75 ± 39.83a 423.94 ± 24.85a 2063.27 ± 67.07a
Same small letter indicates no significance within same experiment at P=0.05.
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FIGURE 4

Effects of biochar application on malondialdehyde (MDA) contents in maize leaves. Same small letter indicates no significance within same
experiment at P=0.05.
B

C

A

FIGURE 5

Effect of biochar application on (A) superoxide dismutase (SOD), (B) catalase (CAT) and (C) peroxidase (POD) activities in maize. Same small letter
indicates no significance within same experiment at P=0.05.
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OC4 treatment significantly decreased (decreased by 31.29% and

10.58%, respectively) (Table 4). Both the OC1 and OC2 treatments

significantly increased the hundred-kernel weight (increased by

30.28~38.56%) compared with OCK, while the OC4 treatment

decreased (decreased by 13.78%) (Table 4). In the one-time

biochar application seven years ago treatment, all of the SC1,

SC2, SC3, and SC4 treatments significantly increased the seed

yield of maize (increased by 33.25~62.94%) compared with SCK

(Table 4). The SC1, SC3, and SC4 treatments significantly increased

hundred-kernel weight (increased by 7.83~16.05%) compared with

SCK, while the SC1, SC2, and SC3 significantly increased the

number of grains or kernels per row (increased by

11.09~15.86%). The SC4 treatment significantly increased the

spike length (increased by 21.03%) compared with SCK (Table 4).
3.4 Relationship between physiological
indexes and the growth and yield of maize

The maize seed yield is mainly significantly related to hundred-

kernel weight, ear rows number and spike length (Figure S2).

Among the constituent factors, the hundred-kernel weight was

significantly correlated with spike length, and the number of ear

rows was significantly correlated with the number of grains or

kernels per row. Furthermore, there is a significant relationship

between maize seed yield, growth index, and leaf physiological

characteristics (Figure 7). Among them, the maize seed yield was

significantly correlated with the contents of SPAD readings, MDA,
Frontiers in Plant Science 09
PRO, soluble protein, and activities of CAT and SOD in leaves.

Additionally, there is also a certain correlation between the

physiological indexes of maize (Figure 7).

SEM revealed direct and indirect effects of biochar on maize

yield, showing that application of biochar had a significant positive

effect on maize yield directly, and also indirectly through soil

properties, osmoregulators and ROS (Figure 8A). The highest

standardized effect of biochar application and soil properties on

yield was observed (Figure 8B).
4 Discussion

Biochar is mainly composed of carbon and ash, with carbon

accounting for the highest proportion (70~80%), and the ash

comprises some mineral components like K, Ca, Na, Mg, etc.

(Lehmann and Joseph, 2009). By returning biochar to the field,

we can return most of the nutrients like Ca, Mg, K, and P to the soil,

thereby making it consistent with the sustainable utilization of crop

waste (Liang et al., 2006; Cheng et al., 2008). A meta-analysis found

that the combined utilization of low-carbon biochar and sandy or

acidic soil showed greater potential to improve plant productivity

(Dai et al., 2020). This is expected to solve the problem of aeolian

sandy soil application. In this study, we found that the biochar

application of 31.50 t ha-1 significantly promoted the growth of

maize (Figures 2A, 3A), making it consistent with numerous

reports. E.g., The biochar application significantly promoted the

maize seed yield, with the application rate of 5 t ha-1 being better
B

C

A

FIGURE 6

Effects of biochar application on (A) proline, (B) soluble sugar and (C) soluble protein contents in maize leaves. Same small letter indicates no
significance within same experiment at P=0.05.
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than that of 2.5 t ha-1 (Yeboah et al., 2016). This is due to: (i) While

biochar may reduce the soil bulk density and increase the soil’s total

porosity due to its porous structure and large specific surface area, it

also improved the root system development, enhanced the plant

nutrient uptake ability, and promoted the growth and yield of maize

(Oguntunde et al., 2008; Ibrahim et al., 2021). The application of

biochar in soil can also improve soil structure, promote the

agglomeration of soil mineral particles, and enhance the stability

of aggregates (Liu et al., 2014; Dong et al., 2016). (ii) Most biochar is

made from crop stalks, so it contains a lot of nutrients. A large

number of studies have confirmed that the application of biochar

can significantly increase the content of nutrients in the soil, thus

affecting the growth of crops (Liang et al., 2006; Cheng et al., 2008;

Lehmann and Joseph, 2009; Rogovska et al., 2016; Amin, 2018). Our

results also confirmed that the application of biochar significantly

increased soil nutrient content (Tables S2, S3). At the same time,

biochar can (a) reduce the leaching of soil nitrate-nitrogen, (b)
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improve the soil’s nitrate carrying capacity, and (c) reduce the soil

nitrate reductase activity, soil denitrification intensity, and soil

nitrogen oxide flux, so as to slow down the loss of soil nitrate-

nitrogen, thereby maintaining the nitrogen use efficiency of crops,

and promoting the increase of plant biomass (Steiner et al., 2008;

Zhou et al., 2011; Cao et al., 2019; Liu et al., 2021). (iii) Biochar can

also affect microbes, on the one hand, biochar can be a habitat for

microorganisms due to its porous structure (Quilliam et al., 2013).

On the other hand, biochar application can also affect soil microbial

activity and reshape microbial community structure (Ahmad et al.,

2016). Thirdly, biochar application also significantly affected the

relationship between microorganisms, enhanced the connection

between bacteria-fungal communities (Ma et al., 2019). However,

microbial changes can affect soil characteristics, such as

decomposition of organic matter and regulation of soil carbon

dynamics and nutrient cycling, which further affect plant growth

(Zheng et al., 2019). These results contribute to our understanding
FIGURE 7

The relationship among yield, growth, and physiological characteristics of maize.
TABLE 4 Effects of biochar application on maize yield and its components.

Experiment Treatment Seed
yield

(g plant-1)

Hundred-kernel
weight
(g)

The number of
rows per ear

The number of grains
or kernels per row

Spike length
(cm)

New biochar application
treatment

OCK 45.41±1.25b 15.82±1.70c 13.67±0.58a 21.33±0.58a 16.07±0.06b

OC1 45.96±4.46ab 20.61±0.79ab 12.67±0.58ab 22.67±0.58a 18.57±1.37a

OC2 49.25±0.65a 21.92±0.12a 12.00±1.00b 22.67±2.89a 17.60±0.36a

OC3 46.89±0.61ab 19.60±1.11bc 12.33±0.58ab 22.67±1.15a 15.63±0.55bc

OC4 31.20±0.72c 13.64±0.71d 12.00±1.00b 23.00±1.00a 14.37±0.78c

One-time biochar application
seven years ago treatment

SCK 39.15±3.48d 20.94±1.44c 12.67±0.58ab 21.00±1.00c 16.17±1.26b

SC1 52.17±1.60c 23.42±1.06ab 11.33±0.58b 24.00±1.00ab 17.67±0.58b

SC2 54.96±0.28bc 21.68±0.74bc 13.33±1.15a 23.33±1.15ab 17.20±1.11b

SC3 57.08±0.16b 24.30±1.03a 12.67±0.58ab 24.33±2.08a 17.10±0.90b

SC4 63.79±1.89a 22.58±0.64ab 14.00±2.00a 22.00±1.00bc 19.57±0.74a
Same small letter indicates no significance within same experiment at P=0.05.
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of the ecological effects of biochar application in soil, and further

demonstrate that biochar can change the physical, chemical and

biological properties of soil and affect crop growth. Our study

confirms that biochar significantly affects maize yield by affecting

soil chemical properties (Figure 8). However, the current researches

on the effects of biochar on maize growth and physiology are still

limited. The change of crop physiological characteristics is very

important in the process of crop growth (Gupta et al., 2020).

Therefore, it is necessary to further study the physiological

characteristics of maize by biochar, especially in the widely

distributed aeolian sand soil.

Aeolian sandy soil forms an unfavorable environment for plant

growth due to its low nutrient content and poor water retention

ability. Analyzing the plant responses post biochar improvement of

soil is necessary for understanding the physiological basis for

improving yield and physiological stability (Afshar et al., 2016).

Osmoregulation is an important plant physiological mechanism for

resisting stress. Organisms can regulate their cellular osmotic

balance via accumulation and synthesis of osmoregulators

(soluble sugar, proline, and soluble protein) during their normal

metabolic process, so as to alleviate the stress-induced damage in

plants (Hare et al., 1998). In this study, the contents of soluble sugar

and soluble protein in maize leaves increased significantly post

biochar application, but the contents of proline decreased

significantly (Figure 6). Therefore, these results indicated that

biochar application changed the osmoregulators in maize leaves

to adapt to the soil environmental changes. This is consistent with

the results of previous studies. For example, Yildirim et al. (2021)

found that the proline content of plants increased significantly

under drought stress, but decreased significantly after the

application of biochar. Moreover, our previous study at the same

sites showed that the application of biochar to aeolian sandy soil

significantly increased the soil moisture content, field capacity, and

saturated water content due to the unique structure of biochar (Yan

et al., 2022), which is supported by a large number of other studies

(Busscher et al., 2010; Laird et al., 2010; Ajayi and Horn, 2016; Ajayi
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et al., 2016). Proline accumulation is considered to be one of the

responses of plants to reduce damage under water shortage

conditions (Anjum et al., 2011). This suggests that the application

of biochar may decreases the proline content of maize leaves by

improving soil moisture content and helping plants adapt to

environmental changes. Previous studies found that biochar

application decreased proline content and increased the relative

water content of plants (Nehela et al., 2021). Thus, the positive effect

of biochar on plants may be attributed to maintaining water uptake

(Naeem et al., 2017) and significantly increasing the relative water

content of leaves (Tanure et al., 2019; Ran et al., 2020; Nehela et al.,

2021). We believe that the application of biochar in this study affects

the water absorption in maize by changing the osmoregulators in

maize leaves, indirectly increasing the yield of maize, and also

indirectly affecting osmoregulators through changes in soil

properties, ultimately impacting maize yield (Figure 8).

When plants are under stress, the amount of internal ROS

increases sharply. If these ROS cannot be removed in time, they

cause serious damage to plants (Shoukat et al., 2019). ROS affects

many cellular functions by damaging nucleic acids, oxidizing

proteins, and causing lipid peroxidation (Foyer and Noctor,

2005). Plants have a series of coping mechanisms under stress.

SOD, POD, and CAT are the main ROS-scavenging enzymes in

plants. Their synergistic effect can prevent the ROS-induced

damage of plant cell membranes (Foyer et al., 1994; Jithesh et al.,

2006). As the final end-product of membrane lipid peroxidation,

the MDA content represents the degree of membrane peroxidation

and is often used to evaluate the degree of cell membrane damage

(Yildirim et al., 2021). In this study, the activities of SOD, POD, and

CAT enzymes in maize leaves decreased significantly after

application of biochar (Figure 5). This is consistent with our

second hypothesis. Therefore, this shows that the biochar

application alleviates the inhibitory effect of aeolian sandy soil on

maize. This is consistent with previous research results. For

example, it has been reported that the activities of CAT, POD,

and SOD and MDA content of plants in biochar-treated soil have
BA

FIGURE 8

The direct and indirect effects of biochar on maize yield. (A) Structural equation model (SEM) revealed the direct and indirect effects of biochar on
maize yield. c2 = 10.81, DF=9, P=0.289. Among them, width of the arrow head indicates the strength of the relationship, Black arrows indicate a
significant positive relationship, and red arrows indicate a significant negative relationship (P < 0.05), Non-significant paths have been deleted,
* indicates P <0.05, ** indicates P < 0.01. *** indicates P < 0.001. (B) Standardized effects of biochar addition, physiological characteristics and soil
property on maize yield. Osmoregulators contain soluble sugars and soluble proteins, Soil properties contain pH, organic carbon, available nitrogen,
available phosphorus and available potassium. ROS contain SOD, POD, and CAT.
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decreased (Farhangi-Abriz and Torabian, 2017). Biochar

application can improve the biomass of Paragonimus carinii in

arid habitats by improving its water status, photosynthesis and

antioxidant enzyme activities (Abideen et al., 2020). Under

drought conditions, ROS production increases in plants, and

increased ROS levels damage plants by causing lipid peroxidation,

protein oxidation, enzyme inhibition, chlorophyll degradation,

and cell death (Sahin et al., 2018). Biochar application reduces

ROS content (Figure 5), which has a positive impact on crops.

This is consistent with our analysis that the negative effect of

biochar application on ROS significantly increased maize

yield (Figure 8).

In addition, it is important to reveal the long-term effects of

biochar. The aging of biochar changes its surface functional groups,

physical structure, and even elemental composition, and with the

destruction of the microstructure of biochar, the adsorption of trace

elements in the soil is also weakened (Naisse et al., 2015). Since the

effects of biochar gradually disappear with soil leaching, biochar

should be repeatedly applied at certain intervals to maintain its

repair effect (Chen et al., 2016). However, the aging of biochar in

different soil types needs to be determined. During the initial stage,

biochar itself can be used as fertilizer for providing nutrients to

plants. However, this effect gradually disappeared over time due to

subsequent plant uptake and leaching. Since, biochar can exist in

soil for thousands of years (Kuzyakov et al., 2014), a single

application of biochar may achieve long-term effects.

Additionally, the aging of biochar in soil helps to improve plant

nutrient utilization and thereby promote plant growth. While aging

in soil, the surface modification of biochar can improve its potential

to retain nutrients, making it easily absorbable by plants (Cheng

et al., 2006), which can further improve crop yield over time

(Crane-Droesch et al., 2013). Our study results also found that

biochar still promoted maize growth and yield, even seven years

after being applied in the soil (Figures 2B, 3B). This is consistent

with our first hypothesis. Some studies have found that the biochar

application significantly increased the maize yield (increased by

9.4~35.5%) within eight years (Zhang et al., 2021). This helps us

explain the long-term effects of biochar on maize growth and yield.

It is worth noting that in our study, the maize growth

was inhibited by a high amount of new biochar application

(126.00 t ha-1) in aeolian sandy soil. This inhibition could be due

to multiple reasons. Firstly, the aeolian sandy soil in this study

belongs to the alkaline soil, and the pH and electrical conductivity of

biochar is also high. Therefore, the application of a large amount of

biochar will significantly increase the pH and electrical conductivity

of soil and inhibit the uptake to nutrients and growth of crops

(Yuan and Xu, 2011; Jin et al., 2022). This was also confirmed by

our results, which showed that high application significantly

increased soil pH (Table S2). Secondly, since biochar is produced

by high-temperature pyrolysis under oxygen limiting conditions, it

may contain pollutants that can induce phytotoxicity and

cytotoxicity (Hu et al., 2021). And biochar may negatively impact

the beneficial soil microbial communities (Mukherjee and Lal,

2014). And, fresh biochar due to its negatively charged surface

can adsorb cationic nutrients (Yao et al., 2012), leading to their

incomplete utilization by plants, which may negatively impact plant
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growth (Kammann et al., 2015). Our results also found that the

application of biochar indirectly reduced maize yield through a

positive effect on soil (Figure 8).

But after seven years of biochar application, the same amount

promoted the growth and yield of maize, thus showing that the

toxic effect of biochar dissipates with increasing time. First, this may

be due to the decrease in pH of biochar during the natural aging

process, which alleviates the phenomenon of high soil pH caused by

large amounts of alkaline biochar application (Wang et al., 2020).

Second, it may be that during natural aging, soil minerals

accumulate on the surface of biochar, forming an organic-mineral

complex, blocking cracks and channels on the surface of biochar,

reducing its adsorption capacity and enabling plants to effectively

absorb nutrients (Wang et al., 2021). It is also worth noting that the

biochar amended soil may have suffered a dilution effect due to

tillage and field management practices during the seven years.

Consequently, the actual application rates of biochar in the new

biochar application treatment may have been higher than that in the

one-time biochar application seven years ago treatment, which

could have contributed to the differences observed between the

short-term and long-term experiments.

Multiple studies conducted in different regions of the world

have found that the biochar application may produce different

results, which are closely related to raw materials, pyrolysis

temperature, soil properties, and climate (Jeffery et al., 2016).

Therefore, further research is needed to verify and optimize the

technology of biochar application, to achieve its potential benefits

on plant growth and yield.
5 Conclusion

In summary, the application of biochar was found to have a

significant impact on maize yield by altering soil properties and

maize physiological characteristics, both directly and indirectly.

Specifically, moderate biochar application (15.75~31.50 t ha-1)

promoted maize yield by increasing SPAD, soluble sugar and

protein content and decreasing malondialdehyde, PRO and ROS,

while single application of the high amount of biochar

(63.00~126.00 t ha-1) would have a negative impact on maize

growth. Furthermore, the inhibitory effect of high amount of

biochar application on maize growth changed to a promotive

effect after seven years of aging in the field. However, this is

closely related to the raw materials of biochar and the properties

of the soil where it is applied. The long-term effects of different

biochar in different soil types need to be further studied.

Furthermore, comparing field-aged biochar with fresh biochar

will help understand the potential mechanism behind its

potential benefits.
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