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for sets of genotype-
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combinations: a model library
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Introduction: Dynamic crop growth models are an important tool to predict

complex traits, like crop yield, for modern and future genotypes in their current

and evolving environments, as those occurring under climate change.

Phenotypic traits are the result of interactions between genetic, environmental,

and management factors, and dynamic models are designed to generate the

interactions producing phenotypic changes over the growing season. Crop

phenotype data are becoming increasingly available at various levels of

granularity, both spatially (landscape) and temporally (longitudinal, time-series)

from proximal and remote sensing technologies.

Methods: Here we propose four phenomenological process models of limited

complexity based on differential equations for a coarse description of focal crop

traits and environmental conditions during the growing season. Each of these

models defines interactions between environmental drivers and crop growth

(logistic growth, with implicit growth restriction, or explicit restriction by

irradiance, temperature, or water availability) as a minimal set of constraints

without resorting to strongly mechanistic interpretations of the parameters.

Differences between individual genotypes are conceptualized as differences in

crop growth parameter values.

Results: We demonstrate the utility of such low-complexity models with few

parameters by fitting them to longitudinal datasets from the simulation platform

APSIM-Wheat involving in silico biomass development of 199 genotypes and

data of environmental variables over the course of the growing season at four

Australian locations over 31 years. While each of the four models fits well to

particular combinations of genotype and trial, none of them provides the best fit
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across the full set of genotypes by trials because different environmental drivers

will limit crop growth in different trials and genotypes in any specific trial will not

necessarily experience the same environmental limitation.

Discussion: A combination of low-complexity phenomenological models

covering a small set of major limiting environmental factors may be a useful

forecasting tool for crop growth under genotypic and environmental variation.
KEYWORDS

crop growth model, ordinary differential equation, dynamic model, genotype by
environment by management interactions, model selection, phenomenological
model, phenotyping, process-based model
1 Introduction

The prediction of crop yield remains a critical challenge (Peng

et al., 2020). Yield is a complex trait, resulting from the interplay

between many genes with relatively small contributions,

environmental inputs, and management regimes (GxExM)

integrated over the growing season (Van Eeuwijk et al., 2019).

Crudely speaking, two major methodological approaches can be

distinguished to decompose yield into genetic and environmental

factors. The first approach is mainly statistical, where the underlying

goal is yield improvement by the identification of superior genotypes

through the use of relatively simple models in which genotypes differ

from each other in mean performance across the range of included

conditions and in sensitivities to either a small (Millet et al., 2019) or

large number of environmental drivers (Jarquıń et al., 2014; Van

Eeuwijk et al., 2016). The second approach involves the use of

process-based models, which typically relate yield to underlying

processes that are affected by the environment and that are

governed by genotype-dependent parameters that are expected to

vary little across environments. The use of such models is more

common in integrated assessments, such as implemented in AgMIP

(Ruane et al., 2017), where the goal is to assess the effects of

management and stress factors on yield, such as those resulting

from climate change. Yield can also be disentangled following a prior

dissection of yield into ‘lower-level’ yield components that are

physiologically simpler than yield and that can be measured at

multiple moments during the growing season, for example, with

High Throughput Phenotyping platforms. Static yield dissection

models may be applied that can better address equifinality issues,

i.e., the same yield end point is achieved via different development

paths, by allowing for the possible improvement of yield along

multiple paths via different underlying components (Tsutsumi-

Morita et al., 2021). Longitudinal data series of yield components

allow dynamic modelling in the form of smoothed growth curves on

P-spline bases in combination with extraction of growth

characteristics that can be used to predict end point traits like yield

(Roth et al., 2021; Pérez-Valencia et al., 2022). The disadvantage of

such models is that they do not explicitly couple mechanistic

descriptions of the underlying dynamic processes driving crop
02
growth to genetic effects. Vice versa, crop simulation platforms

integrate environmental factors over the growing season to forecast

yield as an emergent end point. While mechanistic in nature, these

models do not usually involve genetic differences, and the inclusion of

such effects is far from trivial, as it is not obvious which crop growth

parameters to choose to be genotype dependent and how to account

for stochasticity in genetic effects. Moreover, despite the increasing

availability of spatio-temporal information from non-destructive,

cost-effective, and time-efficient methods (Shammi & Meng, 2021),

such as longitudinal drone imagery (Panday et al., 2020) and earth

observations freely available at relevant scales (Kasampalis et al.,

2018; Huang et al., 2019), considerable limitations exist with

respect to the availability of data, models, and algorithms to

adequately handle GxExM in crop growth descriptions (Stöckle &

Kemanian, 2020).

The generalization of crop growth models to contain genotype-

dependent parameters is relevant for increasing the accuracy of

predictions regarding the performance of genotypes in new

environments (Technow et al., 2015). With thousands of

genotype-by-environment combinations involved in modern

breeding, there is a need for crop models that can cover the

broad spectrum of GxExM interactions and make optimal use of

the data that are becoming available. On the other hand, these

models should also be sufficiently simple and parsimonious to aid

human interpretation (Hammer et al., 2019). While many current

crop simulation platforms are physically consistent (e.g., containing

conservation of mass and energy) and are capable of simulating

crop growth and development in great detail, crop model results are

sensitive to calibration, i.e. estimation of crop growth parameters in

the light of empirical data is cumbersome (Grassini et al., 2015). The

number of parameters in a model can quickly outpace the ability to

fully identify and/or estimate all parameters well from available data

when considering a single calibration objective only (Wagener et al.,

2003). Crop models currently may be too complex for proper

calibration so that many uncertainties remain regarding their

parameterization (Dokoohaki et al., 2021). Parameters are

commonly correlated in such a way that their effects on the

model output are indistinguishable, leading to what is termed

unidentifiability (Cole et al., 2010). Modelling efforts also suffer
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from the existence of multiple candidate model parameterizations

and model structures that can describe or explain the data equally

well (Beven & Freer, 2001), yet suggest contradictory assessments

when focused on practical problems such as yield gap estimates

(Schils et al., 2022). High parameter correlations and equifinality are

issues that can easily disrupt attempts at an accurate estimation of

parameters and thus should be addressed to avoid a reduction in the

utility of crop models (Lamsal et al., 2018). Given the right tools, the

availability of high-resolution time series data can help in

addressing these issues.

The burden of complexity in data-driven modeling calls for the

periodic reassessment of simpler approaches to identify necessary

and sufficient levels of detail, or granularity, to capture the essential

GxExM interactions and utilize increasingly available data streams,

while also being sufficiently realistic in the sense of trying to

minimize issues around model structure identification and model

calibration. In this paper and a follow-up paper the over-arching

aim is the development of a modelling framework for describing the

essential dynamical growth patterns of genotypes that lead to

GxExM interactions, which should allow for the prediction of

yield for existing and new genotypes across a wide range of

management and environmental conditions, i.e. it is minimalistic

yet sufficiently capable of allowing for genotype-dependent

parameterizations. Model complexity should be balanced in terms

of what is required by the application, the important characteristics

of the system – those addressing essential GxExM interactions –

and the support following from data (Wagener et al., 2001).

We present a small library consisting of four crop growth

models based on differential equations for the dynamical

description of biomass growth during the growing season and the

interaction of biomass with important environmental drivers. For

simplicity, we assume that biomass is proportional to the whole

crop biomass, though only above-ground biomass is measured.

Furthermore we assume that the end-of-season biomass is an

approximation to yield. The proposed models each focus on one

particular crop growth limitation. They omit phenological stages

and thereby avoid the need for stage-specific parameterization.

Differential equations typically have no closed-form solutions,

which prohibits the use of regular statistical methods for data

fitting or model analysis. In the current paper, we demonstrate

the utility of the different models from the library by fitting them to

longitudinal data of individual genotypes in individual

environments, using established fitting procedures for ordinary

differential equations. In a follow-up paper we will develop a

hierarchical Bayesian framework to fit the models within our

library to longitudinal data for populations or panels of genotypes

with the hope of identifying genotype-dependent parameters that

do show variation across genotypes while varying little across

environments. Various options exist for combining the different

models in our library to arrive at a prediction model for yield, an

attractive one consisting in an ensemble model (Hoeting et al., 1999;

McCormick et al., 2021) that encloses the fits of the member models

of the library for the time series data of individual genotypes.

In this paper, we will fit our models to simulated, i.e., in silico

generated and noise-free longitudinal data of daily biomass

measurements for different wheat genotypes in different
Frontiers in Plant Science 03
Australian environments. The advantage of using simulated data

is that we have practically unlimited data available for model

testing, and we can – for now – ignore uncertainty resulting from

noise and poor temporal coverage. Genetic effects will occur as

differences in the estimated values for the parameters. We

acknowledge that parameters that show genetic variation in our

model fits are not necessarily immediately useful for prediction of

yield under all conditions. It is obvious that we will need to verify

that parameters with genetic variation are not subject to genotype-

by-environment interaction themselves (Lamsal et al., 2018).

Hammer et al. (2006) state that fundamental physiological

parameters should have fixed values. For our low-complexity

models we do not necessarily expect that parameters are stable,

because the modelled processes are high-level, and parameter values

may be the net result of multiple underlying processes. Still, we

believe that even when our dynamic parameters show some

sensitivity to the environmental conditions, our models can be

useful for yield prediction as long as this sensitivity can be modelled

itself as a simple function of the environmental conditions.
2 Materials and methods

2.1 Proposed phenomenological models

Below we introduce four dynamic models, all containing some

essential first principles of crop growth. The models we develop are

extensions of general continuous model frameworks presented in the

literature suitable for describing the growth of plants in an ecological

context (Paine et al., 2012) or the within-season accumulation of crop

biomass (Poudel et al., 2022). Though simple and largely

phenomenological, the models are dynamic and therefore offer a

biological interpretation of the parameters as well as the ability to

produce varied output depending on environmental or management

inputs. Variations in genotypic background can be conceptualized as

differences in the values of these parameters, where we do not exclude

that the values of these parameters may still be subject to some

genotype by environment interaction, especially in situations where

multiple limiting factors influence our phenotype biomass. The

models we present are smooth in that they lack pre-determined

non-linearities, such as imposed jumps, switches, and thresholds, that

are often encountered in crop simulation platforms that contain

connected sub-modules for different crop processes. As such,

differential equation-based models can capture the dynamic nature

of crop growth in explicit descriptions. An additional advantage of

this smoothness is the access to higher-order derivatives with respect

to time that can be used to calculate genotype-dependent sensitivities

of growth to environmental inputs as function of time as well as the

timing of critical developmental events. This also conceptually

facilitates the extrapolation to other genotypes and environments,

assuming that the base model is valid. In addition, smoothmodels are

easier to fit.

2.1.1 Model #1: The logistic model
Model #1 – commonly referred to as the logistic model – is

often used for the coupling of growth rate to biomass (Richards,
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1959). For example, this model was already used more than a

century ago to describe sunflower (Helianthus) growth (Reed and

Holland, 1919). The model description is as follows:

dM(t)
dt

= r  M(t)   1 −
M(t)
Mmax

� �
Eq: (1)

With explicit solution:

M(t) =
Mmax

1 + Mmax
M0

− 1
� �

expð�rtÞ

The model symbols are given in Table 1. HereM(t) indicates the

total biomass at time t. The parameter r is an intrinsic growth rate

(with a positive value), and Mmax is an intrinsic (implicit) growth

limitation (also with a positive value), i.e., the crop cannot grow

larger than a maximum size. The initial condition M0 (with a

positive value) can be interpreted as seed weight or the biomass at

the starting day of measurement (depending on the context); in the

data we use, it is the biomass at the first day at which biomass can

clearly be observed. Genotypic variation can be represented as

variation in the parameters r, Mmax, and possibly the initial

condition M0 – in which case it would represent genotypic

differences in seed size and reserve content, and hence all three

parameters/initial conditions are candidates for genotype-

dependent parameters that require estimation for each included

genotype. The logistic model has an explicit solution (given in Eq. 1)

that can be used to verify the numerical implementation of the

model. An important ramification of this property is that the

biomass development for the growing season is fixed by the initial

biomassM0 together with the parameter values, in other words, the

explicit solution means that no modifications of the growth rate

during the growing season are accounted for in the forecasting by

the model, and thus the end-of-season biomass is ‘fixed’. This is

likely unrealistic, as in reality the crop growth rate may be modified

by externally imposed limitations occurring during the growing

season. The logistic model cannot reproduce mid-season biomass

loss that can occur, for instance, when resource acquisition falls

short of maintenance respiration needs (Cannell and Thornley,

2000). Additionally, logistic growth has also been shown to violate

mass balance assumptions (Kooi et al., 1998).

2.1.2 Model #2: The irradiance model
Model #2 – the irradiance model – assumes sunlight is the

limiting factor during the growing season. The model description is
Frontiers in Plant Science 04
as follows:

dM(t)
dt

= r + A   sin
2p
365

t + jð Þ
� �� �

 M(t) 1 −
M(t)
Mmax

� �
Eq: (2)

The newly introduced symbols in this model are given in Table

2. The base intrinsic growth rate r is now modified by the sinusoidal

driver function with amplitude A and phase shift j. This function
links the level of irradiance to the yearly earth’s orbit around the

sun. This implies that the parameters A and j may vary across

environments but also may be genotype-dependent, as different

genotypes may respond differently to the same environmental

input. The advantage of this formulation is that no input is

needed and hence no additional equations are needed for

translating such input. This comes at the cost of ignoring day-to-

day variations in the irradiance, e.g., resulting from clouds. Instead

it assumes the generic seasonal pattern of increasing and decreasing

day length and changing angle of sunlight reception. In principle

one could opt for the inclusion of day-to-day irradiance

measurements, in which case a data smoothing and translation

function is needed similar to what we use for smoothing and

translating temperature (see model #3). By selecting the correct

phase shift, the growth rate can increase and decrease following

seasonal effects. Parameters A and j can both have positive and

negative values, depending on location and timing; care should be

taken that the total term does not become smaller than r to avoid

negative growth, though a negative growth can occur for a small

amount of time as long as biomass remains positive. In case A=0,

the model collapses to the logistic model. The other parameters

have the same meaning as in the logistic model (Eq. 1).

2.1.3 Model #3: The temperature model
Model #3 – the temperature model – includes an explicit effect

of temperature on the growth rate. The model description is as

follows:

dM(t)
dt

= rfT (t)M(t) 1 −
M(t)
Mmax

� �
Eq: (3a)

fT (t) = 1 + exp
TAL

T(t)
−
TAL

TL

� �
+ exp

TAH

TH
−
TAH

T(t)

� �� �−1

Eq: (3b)

The base growth rate r in Eq. (3a) is modified by a function fT
that depends on the actual ambient temperature T(t), which is a

variable given by the data. The temperature response description
TABLE 1 Symbols introduced in the logistic model (Eq. 1), alphabetically ordered.

Symbol Meaning Units Type of parameter

t Time day Autonomous state variable

M(t) Crop biomass kg m-2 Non-negative state variable

M(0) Initial crop biomass kg m-2 Non-negative initial condition
M(t)=M0 at t=0

Mmax Natural crop biomass limitation kg m-2 Non-negative parameter

r Crop intrinsic growth rate day-1 Non-negative parameter
Parameters and initial conditions are included in the fitting procedure, unless stated otherwise.
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has been identified as a major source of uncertainty in simulation

models used for crop growth predictions (Wang et al., 2017; Roth

et al., 2022). The temperature response curve is often included in

crop models as either a linear increase in the development rate from

a given base temperature (usually zero degrees Celsius), and a linear

decline in biomass growth beyond a certain maximum temperature,

without assuming any optimal growth temperature, or a function

that includes a minimum and an optimal temperature but without a

maximum temperature, thus ignoring any effects of heat stress and

senescence (Wang et al., 2017; see their Figure 1 for the different

types of temperature response curves). Both response curves are

unlikely, as crops have three cardinal temperatures. Wheat, for

example, is sensitive to high temperatures during several

developmental phases, while optimal temperatures for anthesis

and grain filling are given around 12 to 22°C (Djanaguiraman

et al., 2018) or up to 25°C for optimal growth in general, and with

minimum and maximum growth temperatures of 3–4°C and 30–

32°C, respectively (Porter and Gawith, 1999; Curtis, 2002).

The exact formulation of the temperature response is debatable.

Different models with unimodal temperature dependence are reviewed

by DeLong et al. (2017), who alternatively consider enzyme-assisted

Arrhenius temperature responses. Arroyo et al. (2022) propose a general

theory for temperature dependence based on Eyring-Evans-Polanyi’s

theory for chemical reaction rates. Here, we use the temperature response

curve Eq. (3b) proposed by Sharpe and DeMichele (1977) and later

Kooijman (2010). This formulation is based on the concept that enzymes

become inactive at temperatures that are too high or too low. The

reaction rate is multiplied by the active enzyme fraction, which is

assumed to be in equilibrium. This formulation gives a smooth,

nonlinear function that is based on three cardinal temperatures. Its

parameters are given in Table 3. TL and TH represent the lower and

upper boundary of the tolerance range, respectively, while TAL and TAH
give the Arrhenius temperatures for the rate of decrease at these

respective boundaries. The parameters for temperature response in Eq.

(3b) were kept fixed at TL=292K, TH=303K, TAL=20,000K, and
Frontiers in Plant Science 05
TAH=60,000K to generate a response curve that approximates the

reported cardinal temperatures for wheat (Parent and Tardieu, 2012).

2.1.4 Model #4: The soil water model
Model #4 – the water model – involves water limitation, taking

into account that many crop-growing environments are water-

limited. The model description is as follows:

dW(t)
dt

= p
M(t) + Kq
M(t) + K

� �
P tð Þ − c

W(t)
W(t) + n

� �
M(t)v

− RW(t) Eq: (4a)

dM(t)
dt

= gc
W(t)

W(t) + n

� �
M(t)v −mM(t) Eq: (4b)

The symbols used in this model are given in Table 4. Contrary

to temperature and irradiance, which are exogenous inputs for crop

growth, there is a feedback between soil water and the crop, as one

affects the other. The water model therefore includes a second

differential equation that describes a soil water variable, W(t), as

well as a function that couples soil water to crop biomass growth.

The water model is based on a formulation proposed for simulating

plant growth in semi-arid areas (Van de Koppel and Rietkerk, 2004)

with some modifications.

The first nonlinear term in Eq. (4a) represents the uptake of

precipitation by the soil, which has limited uptake capability. The

uptake increases with biomass, representing an increasing

infiltration because of larger root structures. However, the uptake

fraction remains small and under zero biomass, this term reduces to

pqP(t), representing the infiltration of precipitation in barren soil.

Parameters p and q depend on environmental conditions and are

expected to vary across environments but not across genotypes.

Parameter K represents infiltration of water into the soil, which is

affected by the root structure of the crop, and this parameter is

therefore expected to depend on genotype and environment.
TABLE 2 Symbols introduced in the irradiance model (Eq. 2), alphabetically ordered.

Symbol Meaning Units Type of parameter

A Amplitude of time-dependent driver day-1 Parameter, genotype and environment-dependent

j Phase shift of driver day Parameter, genotype and environment-dependent
TABLE 3 Symbols introduced in the temperature model (Eq. 3), alphabetically ordered.

Symbol Meaning Units Type of parameter

T(t) Ambient temperature K Spline-smoothened input from daily
measurements

TAH Arrhenius temperature for the rate of decrease at the upper boundary of the temperature
tolerance range

K Kept constant at 6·104

TAL Arrhenius temperature for the rate of decrease at the lower boundary of the temperature
tolerance range

K Kept constant at 2·104

TH Upper boundary of the temperature tolerance range K Kept constant at 303

TL Lower boundary of the temperature tolerance range K Kept constant at 292
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The second nonlinear term in Eq. (4a) represents the uptake of

water from the soil by the crop, which is limited by aquaporin

(enzyme) activity and diffusion rates and thus described by a

Michaelis-Menten function, with a half-rate parameter, n. This

function mimics satiation, as the response is near-linear for small

values of W(t), but gradually approaches 1 as W(t) continues to

increase. Parameter v represents a scaling between the uptake

surface of the crop and the volume over which maintenance is

paid (Kooijman, 2010, Figure 4.14), where v is typically smaller than

1. Parameters c, n and v are involved in the uptake of soil water by

the crop and are hence expected to be genotype-dependent.

Conceptually, in this model the crop ‘competes’ with the soil for

water, and water is taken up from the soil either by the crop, or

water disappears via the third term in Eq. (4a), RW(t). This is a

generic term that conceptually considers the soil to be a ‘leaky

bucket’, where the drying out rate depends on soil water content. If

unused, water will also disappear from the soil. Parameter R is

therefore assumed to be environment-dependent. The de facto

standard for evapotranspiration in crops for the EU and US is the

Penman-Monteith method, covered by the FAO56 method (Pereira

et al., 2015), which includes effects of temperature and wind speed

on how fast water disappears from the soil. Evaporation from

barren soil is the largest contributing factor for water loss from

the soil early in the growth season. If biomass M(t)=0 and under

constant precipitation – and implicitly assuming a constant

temperature, wind speed, etc. – Eq. (4a) will eventually reach a

steady state, i.e. the same amount of water will enter and leave the

soil in a given time interval. If there is no precipitation, the leaky

bucket formulation ensures the model will eventually approach the

limit W(t)=0. In reality, the soil will never fully dry out because

some water is retained through gravitational and capillary forces,

but this water would also not be available to crops, so we ignore this

feature. Moreover, the drying and re-wetting curves of soil moisture
Frontiers in Plant Science 06
content as functions of water pressure differ (Shein & Mady, 2018)

which is also ignored in the water model. Finally, we assume there is

no measurable effect of temperature, wind speed, etc. on the rates at

which water leaves the soil. Note, that in our fitting procedure we

not only compare the predicted biomass M(t) to the APSIM

simulated biomass, but we also compare the variable W(t) to the

soil water output of the APSIM SoilWat module (Holzworth et al.,

2018). This makes use of real-life environmental data like rainfall

and temperature, but simulates soil water in time. Hence, this

implies we have a considerable reduction in model complexity.

The first term in Eq. (4b) gives the conversion from taken up

water from to soil to crop biomass, i.e. water is used in the creation

of carbohydrates (photosynthesis). We consider this conversion to

follow a fixed ratio, and hence the parameter g is also fixed. Part of

the taken up water will also disappear again through

evapotranspiration, but we assume this ratio now to be fixed as

well. The negative density-term in the second term of Eq. (4b)

represents maintenance respiration, which is considered to be

proportional to biomass volume (Kooijman, 2010). This term

allows for a temporary decrease in biomass (rate).
2.2 Data description and software
implementation

To assess the suitability of our four minimalistic crop growth

models in capturing biomass growth in real-life situations, we used

simulated longitudinal biomass data for an Australian diversity

panel with 199 genotypes in wheat (Bustos-Korts et al., 2019a;

Bustos-Korts et al., 2019b). These data were generated with the crop

growth simulation platform APSIM-Wheat (Keating et al., 2003;

Holzworth et al., 2018). Environmental inputs were observed soil

and meteorological data for 31 years (1993 through 2013) at four
TABLE 4 Symbols introduced in the water model (Eq. 4), alphabetically ordered.

Symbol Meaning Units Type of parameter

c Soil water uptake capacity of crop (cmax in KR2004) kg-1 ml m-1

day-1
Non-negative genotype-dependent parameter

g Soil water to crop biomass conversion factor (comparable to gmax in KR2004, but
note the difference to our gc)

kg ml-1 m Non-negative genotype-dependent parameter

K Infiltration constant related to crop (k in KR2004) kg m-2 Non-negative parameter that depends on genotype
and environment

n Half-rate parameter of Michaelis-Menten function (k1 in KR2004) ml m-3 Non-negative genotype-dependent parameter

m Density-dependent maintenance rate (comparable but not similar to (d+dP) in
KR2004)

day-1 Non-negative genotype-dependent parameter

P(t) Precipitation (observed) (PPT in KR2004) ml m-2 day-1 Spline-smoothed input from daily measurements

p Conversion constant from precipitation P(t) to soil water W(t) (missing in KR2004) m-1 Estimated environment-dependent parameter

q Fraction of precipitation that infiltrates in soil (W0 in KR2004) – Estimated environment-dependent parameter

R Soil drying rate (rw in KR2004) day-1 Estimated environment-dependent parameter

v Parameter relating uptake volume to biomass (missing in KR2004) – Genotype-dependent parameter with range 0 < v ≤ 1

W(t) Soil water ml m-3 Non-negative state variable
For easy comparison, we also list the symbols used in the original model by Van de Koppel & Rietkerk (2004) – abbreviated as KR2004 – but note there is not a one-to-one match to the model in
that paper.
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different locations in Australia – Emerald (–23.53 lat, 148.16 long),

Merredin (–31.50 lat, 118.22 long), Narrabri (–30.32 lat, 149.78

long), and Yanco (–34.61 lat, 146.42 long) (Bustos-Korts et al.,

2019b). The overall data set consisted of 23,880 output series of

daily observations on simulated biomass and other traits. Genotypic

specifications of crop growth parameters were chosen to mimic

realistic genetic variation for Australian environmental conditions

(Bustos-Korts et al., 2019a; Bustos-Korts et al., 2019b). We

preferred to use simulated wheat data over data from field trials,

because for our simulated data we could infer to a certain extent

what the major stress had been to which the wheat genotypes were

exposed in a particular simulated experiment. The latter

information helped us to assess the appropriateness of our

candidate minimalistic models when fitted to the simulated

longitudinal biomass data for an individual genotype in a

simulated experiment. We did not add noise to the APSIM

simulated data because we wanted to establish the performance of

our minimalistic models under the most discriminatory conditions.

The simulated data covered multiple types of environments with

different limitations (Bustos-Korts et al., 2019a; Bustos-Korts

et al., 2019b).

Typically observations on biomass consist of measurements of

the state variable biomass at specific time points, and not the rate

parameters that determine biomass change. We therefore need to fit

solutions of our candidate minimalistic crop growth models to the

simulated wheat data to obtain estimates for the rate parameters

and predictions for the state variables by numerical integration. The

models were implemented in R version 4.1.0 (R Core Team, 2021).

Parameter estimation methods for differential equations are

discussed, for instance, by Ashyraliyev et al. (2009). For model

fitting we used the R package ‘FME’ (Soetaert and Petzoldt, 2010), in

combination with the R package ‘deSolve’ (Soetaert et al., 2010).

This combination is tailored at fitting differential equations. The

default solving option we used is ‘Marq’ (short for Levenberg-

Marquardt), which is a gradient-based method that minimizes the

sum of squared residuals. This method is fast, but it is known to be

sensitive to the initial parameter vector, because by following the

steepest descending gradient it can easily end up in a local

minimum. We also used the alternative methods ‘Nelder-Mead’

and ‘Pseudo’ for crude-but-fast convergence to approximate

solutions in cases where ‘Marq’ did not immediately provide

satisfactory solutions. Other alternatives in the FME package

include SANN (simulated annealing) and bobyqa; alternative

fitting packages in R include Particle Swarm Optimization

(Bendtsen, 2022) and Differential Evolution (Ardia et al., 2010;

Mullen et al., 2011). As the focus in this paper is not on the

parameter estimation per se, we selected the default option in FME,

which is Marq (but note that we will focus on parameter estimation

in the next paper). To enhance estimation procedures, biomass was

rescaled by division by 1000.

The quality of the fits was evaluated by the inspection of the

plots of the weighted residuals against time, which are defined as

ri = f (xi) − yi Eq: (5)
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Here yi is the observation at index i, and f(xi) is the model

predicted value. To compare the quality of the fits between models

to the APSIM data, we heuristically looked at Akaike’s Information

Criterion, AIC (Akaike, 1974)

AIC = −2(LL) + 2   #(q) Eq: (6)

Here LL is the log-likelihood, taken as the sum of squared errors

which is given by the FME package, and #(q) is the total number of

parameters. Note, that the models are not nested – with the

exception of model #2 that can be collapsed into model #1 under

the conditions stated earlier. The calculated AICs should therefore

be interpreted as an assessment of the ability of the models to

capture the crude patterns in the data rather than a quantitative

model selection criterion. For real dynamic data, residuals will show

various forms of autocorrelation. Such autocorrelations can be

inspected by plots of partial autocorrelation functions, or PACFs

(Hyndman and Khandakar, 2008; Hyndman et al., 2023) and tested

by Durbin-Watson statistics (Fox & Weisberg, 2019). For our

APSIM wheat data we did not add independent errors, and

therefore the utility of inspections of residuals on autocorrelation

is limited. In our follow-up paper, these issues will be revisited in the

context of a hierarchical Bayesian framework for fitting the

dynamics of a collection of genotypes across a series of trials and

environmental conditions.

The parameters for temperature response in Eq. (3b) were kept

constant across genotypes implying there is no genetic variation for

these parameters. The fitting of the temperature model involved the

use of penalized splines (R package ‘pspline’; Ramsay and Ripley,

2022) to smooth and interpolate daily temperatures for input to Eq.

(3b). Daily rainfall was similarly smoothed before fitting Eq. (4a).
3 Results

We report some selected results of fits of the four models to the

data for demonstrative purposes, that is, we select biomass time

series of specific genotypes in specific trials to demonstrate the

fitting of our minimalistic crop growth models. In all Figures, black

indicates the noise-free APSIM biomass data, and green indicates

the fit of our minimalistic crop growth model to the biomass data.

Figure 1 shows two examples of a fit of the logistic model

(model #1). The top row shows the fit for one genotype (g006), and

this particular fit is visually satisfactory. It will be no surprise that

the weighted residuals (see top middle panel) are judged as not

being i.d.d. according to the Durbin-Watson statistic, and they are

clearly autocorrelated, as can be seen from the PACF (see top right

panel). However, the autocorrelation is not an obvious reason to

reject this model, and the fit suggests that a logistic model would be

adequate for prediction purposes. At this point, one may argue the

need for the inclusion of any additional explanatory factor.

However, repeating an earlier point, the logistic model is fixed by

the initial condition and does not allow for modifications in the

growth rate by external inputs during the growing season. This

would present a more pressing reason for any rejection of the
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model. In the bottom row, we fit the same model to the

same environment but for a different genotype (g001); note that

this genotype also takes fewer days to get to end-of-season. This fit

is less satisfactory and the residuals plotted in time make

larger excursions.

Figure 2 gives an example of how the fit to the data may be

improved by the irradiance model (model #2). The fit for g001 with

the irradiance model is considerably better than that with the

logistic model: the AIC score is much lower, the residuals are

smaller and even close to zero in the early and late parts of the

growing season, and the initial condition M(0) is much smaller.

This suggests that the addition of two parameters for the seasonality

is an improvement, and also suggests that the inclusion of day

length as approximation of irradiance is worthwhile.
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The temperature model exhibited more dynamic changes to

within-season conditions for growth because it involves an

exogenous variable (temperature). For comparison, Figure 3

shows a fit for genotype g001 in the same environment as the

previous two models (upper left panel). It captures modifications to

biomass growth rate that are relatively small and that took place on

the scale of a couple of days (see Figure 3, upper right panel),

producing realistic end-of-season biomass predictions. Figure 3,

lower left panel shows the temperature response curve using Eq.

(3b) and the parameter values given in Table 3. For many of our

genotype by environment combinations, this model did not

improve the fit in comparison to the fits by the logistic model or

irradiance model, e.g., consider the plot of the residuals (Figure 3,

lower right panel). Note, that the parameters in Eq. (3b) were kept
FIGURE 2

Left panel: A fit with the irradiance model to the same data set used to fit the logistic model in Figure 1, lower row. Middle panel: The residuals and
AIC suggest that the irradiance model is a considerable improvement over the logistic model in this particular case. Right panel: Day length, taken
from the APSIM model.
FIGURE 1

Top row: An example fit of the logistic model, with Emerald, 1985, g006. Fitted parameter values are displayed. Visually, the fit (in green) matches
nicely with the daily biomass series (in black). Bottom row: An example of the same model and same environment, but genotype g001. The fit is
visually less satisfactory than the fit for genotype g006.
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constant across genotypes and environments, and that different

results may be obtained when the temperature response is adjusted.

Also, in most of our simulated data, temperatures varied mildly

within the (sub) optimal range for wheat growth, so it is perhaps not

surprising that the temperature model did not translate to a

considerable improvement in describing biomass development

compared to the fits of the logistic model and the irradiance model.

None of the three models above, logistic, irradiance, or

temperature, produced adequate fits for the biomass longitudinal

data of genotype by environment combinations in which a ‘bump’

occurred near the end of the growing season (Figure 4, the top three

rows, for an example involving g007, growing in Emerald, 2002). In

this subset of genotype by environment combinations, there was a

considerable biomass increase before the usual levelling-off at the

end of the growing season, which seemed to coincide with changes

in water availability. Figure 4, fourth row gives the biomass fit of the

water model (Eq. 4b), including the (PACF of the) residuals of the

biomass, while the bottom row gives the fit of the soil water (Eq. 4a),

including residuals. In this set, the ‘bump’ started around day 92.

The temperature remained approximately stationary for several

days around day 92, while soil water levels were increased by

precipitation around days 90-95 (Figure 4, lower left panel),

suggesting that a depletion of soil water was the main driver
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responsible for the levelling off of the growth rate, at least

towards the second half of the growing season. The water model

qualitatively shows the same development in biomass and soil water

as the data, though the residuals indicate that the fit is not perfect.

This could be the result of an overestimated maintenance, the main

term for biomass loss in the model, which was assumed to be scaling

linearly with biomass. Also, growth in the first half of the growing

season may have been limited not by soil water but by

another factor.
4 Discussion

In this paper we considered parsimonious crop growth models

consisting of differential equations with few parameters and

variables that couple the rate of change in biomass to its own

state. The aim was to present a modelling framework of limited

complexity for genotype-dependent trait prediction involving

essential GxExM interactions and that can respond to changes

during the growing season as measured by proximal and remote

sensing. The four presented models each had a different limiting

environmental factor: a generic limitation described by logistic

growth, irradiance via day length, temperature response, or soil
FIGURE 3

Upper left panel: A fit with the temperature model for Emerald, 1985, g001. Upper right panel: Red indicates maximum daily temperature, blue
minimum, green the average temperature, and black the smoothened curve. Lower left panel: The temperature response curve, which was fixed in
all simulations with the temperature model. Lower right panel: The fit mostly follows the biomass data during the growing season, but in particular in
the period between day 25 through 50 the residuals are far off. This may be an indication that the temperature response curve should be adjusted,
or that temperature is not the main factor that affects growth at this stage of the growing season.].
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water availability, respectively. The models were fitted to in silico

longitudinal data of 199 genotypes generated with APSIM-Wheat to

demonstrate their performance. In many cases the logistic model

gave already quite an adequate fit, but for many genotype by

environment combinations there was at least one alternative

model that matched the data convincingly better. This implies

that for such genotype by environment combinations a

specifically identified environmental limitation was dominant.

Depending on the specific combination of genotype and

environment, where an environment refers to a trial simulated for

a combination of year and location, one model may fit better than

another. The calibration procedure may be limiting as well. In those

situations in which we judged the logistic model to be adequate, we

found that fitting this model by FME – deSolve was unproblematic,

and often a single attempt at fitting this model sufficed. Fitting of the

temperature model was more problematic and required the

temperature response parameters in Eq. (3b) to be fixed, as

leaving one or more of these parameters free in fitting in many

cases led to temperature response curves that were unrealistic, as

assessed by visual inspection. The water model proved most
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challenging in fitting and usually required several fitting attempts.

The first term in Eq. (4a) involving the infiltration of precipitation

in the soil turned out to be an essential part, as replacing the term

with a linear response function of precipitation resulted in suspect

and unrealistic fits (not shown). Note, that when we are fitting each

combination of genotype and environment separately – like we did

in this paper – then there are nine parameters and two initial

conditions to fit. This makes it likely there are multiple local fitting

optima, which may lead to spurious results. The use of alternative

fitting approaches may produce better results. In a hierarchical

approach to fitting we can divide the parameters into two groups

that can be fitted separately: one group of parameters that vary

across environments – and that hence should be approximately

constant across genotypes grown in the same environment – and

one group of parameters that mainly vary across genotypes.

While there is a decades-long history of developing crop

simulation platforms (Jin et al., 2018), it remains challenging to

balance a broad application range with model parsimony. The

limited complexity of the proposed models in this paper hampers

a more general application. In these models only one limitation is
FIGURE 4

Fits to data set Emerald, 2002, g007. The biomass data (in black) shows a ‘bump’ around days 90-95. Left panels: Optimized fit of the model to the
data. Middle panels: Residuals of the optimized fit. Right panels: PACF. Top row: A fit with the logistic model. Second row: The irradiance model.
Third row: The temperature model. None of the models show a satisfactory fit. Fourth row: A fit of biomass with the water model, using Nelder-
Mead, with resulting parameter values p=1.061, K=3.618·102, q=5.521·10–2, c=7.824·10–2, n=1.095, v=5.318·10–1, R=1.320·10–3, g=1.108,
m=1.150·10–2, W(0)=1.880, and M(0)=5.584·10–3. Lower row: The fit of the soil water (in blue). Precipitation is plotted in yellow. Note the decrease
in biomass near the end of the growing season in the water model fit, which is likely the result of an overestimated maintenance, the main term in
the model that can lead to biomass reduction.
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included. In reality, it is likely that two or more limitations occur

during a growing season, and the particular limiting factor may

change during the growing season: important limiting factors like

irradiance, atmospheric carbon dioxide, soil water, and nutrients

may operate at different moments and scales. Also, multiple

limitations may occur at the same time. As an example of this

phenomenon, Zhao et al. (2022) attributed considerable losses of

winter wheat to the co-occurring extreme events of high

temperatures, dryness and hard winds compared to events in

which a single limiting factor occurred. Additionally, what

parsimony offers in terms of elegance and statistical ease may

come at the cost of fewer points of entry for discriminating

among genotypes. In particular, the models proposed in this

paper ignore phenology. Yet, the examples shown in this paper

suggest one can already explain much of the crop growth in some

situations with low-complexity models that ignore phenology.

Some dynamic crop models have been proposed that include

essential processes and that try to balance limited model complexity

with a broad application range. For example, the SIMPLE model

consists of 13 parameters, involving cumulative temperature for

phenological development and a multiplicative function including

daily temperature, heat stress, drought stress, atmospheric carbon

dioxide concentration, radiation use efficiency, and irradiance

interception, and has been parameterized for 14 different crop

species (Zhao et al., 2019).

A second step in modelling involves the introduction of functions

that can smoothly and dynamically describe multiple resource

limitations that occur during the growing season, i.e., that involve

multiple co-limitations at different points in time and space. Arguably

the best known multiple limitation description is Liebig’s law of the

minimum, where it is assumed there is only a single resource

limitation at any given time, while any switch to another limitation

is instantaneous (Cossani and Sadras, 2018). Functions that allow for

a smoother transition to another limiting factor or that allow for

multiple co-limiting factors have also been proposed in ecological

models (Dutta et al., 2014). One example is the Synthesizing Unit

(SU; Kooijman, 2010), which is a functional response comparable to

the Michaelis-Menten (MM) functional response. Like the MM

functional response, the SU is derived from law of mass action

kinetics and includes multiple factors that are unique or mutually

exchangeable in a smooth and continuous model formulation (Dutta

et al., 2014). The SU has, for instance, been used to capture the co-

limitation of light and nitrogen in the growth of heather shrubs and

wavy hair-grass (Van Voorn et al., 2016). Another example is the

description of the co-limitation of light, carbon dioxide, nitrogen, and

phosphorus in the growth of cyanobacteria that were grown in a set of

experiments across which these environmental factors were

simultaneously varied in different combinations of higher and

lower concentrations (Grossowicz et al., 2017).

With the inclusion of multiple limitations for the description of

GxExM interactions comes the need for stronger data requirements

for model fitting and reduction of uncertainties. In particular, the

water model consisted of several parameters, initial conditions, and

one explicit exogeneous input (precipitation). This model turned

out to be more difficult to fit, even to the noise free data we had

available. Furthermore, despite increasing data availability,
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proximal sensing data are still relatively rare and expensive. The

fitting of the water model was further complicated by a conceptual

mismatch between the soil water variable in our crop growth model

(where it is an independent state variable interacting with the crop

biomass) and the soil water supply variable in the APSIM simulated

data (where it is calculated based on precipitation and available soil

water following a submodule). Also, uncertainties remain that

negatively affect forecasting. For instance, imprecision in soil,

canopy state, and meteorological data propagate to uncertainty in

model predictions (Hansen & Jones, 2000; Grassini et al., 2015),

while various random events occur during the growing season, such

as changes in irradiance due to clouds, irregular precipitation, or

temperature changes.

In the current paper, we fitted dynamic models to longitudinal

biomass data consisting of time series data corresponding to a single

genotype in a single environment (year by location). We used an

approach especially developed for fitting differential equations,

focussing on the estimation of rates of change and initial

conditions (Soetaert and Petzoldt, 2010; Soetaert et al., 2010). We

concluded that the four minimalistic models may be useful to

describe biomass dynamics in wheat. However, our ultimate aim

goes far beyond the fitting of dynamical models for individual

genotypes in individual environments. In the end, the goal is to

develop a modelling framework for describing dynamical

phenotypic behaviour of genotypes as functions of genetic (QTLs,

SNPs in genomic prediction), management and environmental

inputs. Such a modelling framework should allow us to predict

yield and other traits for existing and new genotypes across a wide

range of management and environmental conditions, and produce

GxExM interactions in an emergent way. Leading contributions to

the creation of such a modelling and prediction framework include

papers by Technow et al. (2015), Cooper et al. (2016), and Messina

et al. (2018). The starting point for these papers were existing crop

growth models in which a small number of crop growth parameters

were made genotype-dependent by regressing them on marker

profiles inside a hierarchical Bayesian model. In the current

paper, we intend to simplify the extensive dynamical crop growth

model that was used in the papers mentioned above and reduce it to

a small number of differential equations with a limited number of

parameters. The challenge that we need to address is to identify a

suitable dynamic model for each combination of genotype and

environment and estimate genotype-dependent dynamic

parameters, with little or no genotype by environment

interaction, that can be made functions of marker profiles. Our

hope is firstly that we will be able to model the dynamic behaviour

of longitudinal traits as produced by especially proximal sensing

devices by simple differential equations in a data driven way.

Secondly, because the proposed differential equations have a

limited number of parameters, we should be able to estimate

genetic variation in the rate parameters. Of course, when explicit

solutions exist to the differential equation system, a statistical

approach to our problem could be found in the application of

non-linear mixed models (Pinheiro and Bates, 2000). Without such

explicit solutions, Bayesian hierarchical approaches may offer the

best perspectives (Poudel et al., 2022), which is the route we will

explore in a follow-up paper.
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With dynamic models that incorporate data assimilation, the

forecasting solution by the model may be adapted during the

growing season. Remote and proximal sensing methodologies can

provide actual state estimations at different scales, that can be used

to update the state estimations by the crop model and thus steer

forecasting by the model. Different assimilation approaches,

including Particle Filter and Hierarchical Bayesian Method, have

been proposed (Jin et al., 2018). For example, an Ensemble Kalman

filter (EnKF) was used to assimilate sensor data of soil moisture to

correct errors in the water balance of the WOFOST crop model (De

Wit & Van Diepen, 2007). A similar approach was followed for

constraining uncertainty in an upstream process in the model

APSIM, with the goal of reducing uncertainty in the downstream

processes (Kivi et al., 2022). Data assimilation for prediction

updating also is a method for including exogenous input changes

in ‘static’ models, such as the logistic growth.

Crop modelling has a critical role in forecasting crop growth of

existing and new genotypes in existing and new environments.

Future efforts for crop growth prediction should aim at a strategy of

balancing crop model complexity: on the one hand, these models

need to be process-based and describe multiple essential GxExM

interactions to predict crop growth across a large genetic spectrum

and multiple environments, while on the other hand they have to

remain parsimonious to constrict issues around parameter fitting

and uncertainty. This requires large-scale longitudinal data, that

may become available with the increased remote and proximal

sensing. More advanced fitting approaches should be tailored to

support this strategy, while data assimilation can be used to reduce

prediction uncertainty.
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