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Transcriptome-wide expression
analysis of MYB gene family
leads to functional
characterization of flavonoid
biosynthesis in fruit coloration
of Ziziphus Mill

Noor Muhammad1,2†, Zhi Luo1,2†, Xin Zhao1,2, Meng Yang1,2,
Zhiguo Liu1,2* and Mengjun Liu1,2*

1College of Horticulture, Hebei Agricultural University, Baoding, China, 2Research Center of Chinese
Jujube, College of Horticulture, Hebei Agricultural University, Baoding, China
The Ziziphus mauritiana Lam. and Z. jujuba Mill. are the two most economically

important members of the genus Ziziphus. The fruit color of Z. mauritiana

remains green throughout fruit development in the majority of commercial

cultivars, whereas its close relative, Z. jujuba Mill. turns from green to red in all

cultivars. However, the lack of transcriptomic and genomic information confines

our understanding of the molecular mechanisms underlying fruit coloration in Z.

mauritiana (Ber). In the present study, we performed the transcriptome-wide

analysis of MYB transcription factors (TFs) genes in Z. mauritiana and Z. jujuba,

and identified 56 ZmMYB and 60 ZjMYB TFs in Z. mauritiana and Z. jujuba,

respectively. Through transcriptomic expression analysis, four similarMYB genes

(ZmMYB/ZjMYB13, ZmMYB/ZjMYB44, ZmMYB/ZjMYB50, and ZmMYB/ZjMYB56)

from Z. mauritiana and Z. jujubawere selected as candidate key genes regulating

flavonoid biosynthesis. Among these genes, the ZjMYB44 gene was transiently

highly expressed in fruit, and flavonoid content accumulation also increased,

indicating that this gene can influence flavonoid content during the period of fruit

coloration in Z. jujuba. The current study adds to our understanding of the

classification of genes, motif structure, and predicted functions of the MYB TFs,

as well as identifying MYBs that regulate flavonoid biosynthesis in Ziziphus (Z.

mauritiana and Z. jujuba). Based on this information, we concluded thatMYB44 is

involved in the flavonoids biosynthesis pathway during the fruit coloring of

Ziziphus. Our research results provide an important understanding of the

molecular mechanism of flavonoid biosynthesis resulting in fruit coloration and

laying a foundation for further genetic improvement of fruit color in Ziziphus.

KEYWORDS

Ziziphus, MYB TFs, transcriptional regulation, flavonoid biosynthesis, transient
expression, fruit coloration
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1 Introduction

Transcription factors (TFs) are important regulators of gene

expression in plants, directing a variety of physiological

mechanisms such as growth, development, cell division, stress

response, and fruit color development (Muthamilarasan et al.,

2014; Zhang et al., 2018; Qing et al., 2019; Fan et al., 2020;

Muhammad et al., 2022; Muhammad et al., 2022a; Muhammad

et al., 2023). As a result, interpreting the molecular and

physiological functions of these TFs is now a major research

focus. Furthermore, TF research gained traction, and a slew of

new studies had been published. In plants, MYB (myeloblastosis)

transcription factors are ubiquitous in eukaryotic systems, and their

function in plant flavonoids like anthocyanin biosynthesis was first

discovered in maize (Paz-Ares et al., 1987).

After the initial identification of MYB in Zea mays, numerous

MYB TFs genes were gradually discovered in a variety of different

plants, including the Arabidopsis thaliana (Stracke et al., 2001).

These MYBs are recognized by the family-specific function of a

highly conserved MYB domain at the N-terminus (Yanhui et al.,

2006; Stracke et al., 2007). Plant MYB proteins have an MYB DNA-

binding domain that is extremely conserved, the MYB domain is a

50-53 amino acid segment or region that interacts with DNA in a

sequence-specific fashion (Zhang et al., 2018; Qing et al., 2019). The

MYB TFs are divided into four subfamilies depending on the

number of highly conserved imperfect repeats in the DNA-

binding domain: R3 MYB (MYB1R) has one repeat, R2R3 MYB

has 2 repeats, R1R2R3 MYB (MYB3R) has 3 repeats, and 4R MYB

has 4 repeats (Lin-Wang et al., 2010; Muhammad et al., 2022).

Similarly, the R2R3-MYB is the biggest TF gene family in plants,

with 126 genes discovered in A. thaliana (Stracke et al., 2001;

Yanhui et al., 2006). In strawberries, the R2R3 MYB gene FaMYB1

regulates anthocyanin and flavonol production (Aharoni et al.,

2001; Lin-Wang et al., 2010).

According to numerous reports, MYB TFs are involved in

physiological and metabolic pathways in plant species, as well as

responding to various biotic and abiotic stresses (Qing et al., 2019).

The role of these MYB TFs has already been studied in some plant

species like Physcomitrella patens (Pu et al., 2020), potato (Li et al.,

2020), Casuarina equisetifolia (Wang et al., 2021), Dendrobium

catenatum (Zhang et al., 2021), Hedychium coronarium (Abbas

et al., 2021), Woodland strawberry (Li et al., 2021), Brassica napus L

(Li et al., 2021a), Sunflower (Li et al., 2020a), Pitaya (Xie et al.,

2021), Pineapple (Liu et al., 2017), Vaccinium corymbosum (Wang

et al., 2021a), Chinese jujube (Qing et al., 2019), and so on.

Similarly, the role of MYB TFs has also been reported in color or

pigment production in the plant species like Liriodendron (Yang

et al., 2021), kiwi (Li et al., 2017), peach (Zhang et al., 2018), apple

(Jiang et al., 2019), Chinese bayberry (Cao et al., 2021), Pistacia

chinensis (Song et al., 2021), Fragaria ananassa (Liu et al., 2021a),

Populus deltoids (Zhuang et al., 2021), and pepper (Liu et al., 2021).

However, none of the comparative studies have been conducted in

Z. mauritiana and Z. jujuba that describe the role of MYBs in

flavonoid biosynthesis during fruit coloration.

The Ziziphus Mill. is a monetarily important genus of the

Rhamnaceae family with roughly one hundred and seventy
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species found all over this planet (Liu et al., 2020). Z. jujuba and

Z. mauritiana are the most economically important members of

this genus. Z. mauritiana is native to the Indian and Pakistan

Subcontinent (Muhammad et al., 2020; Muhammad et al., 2022b).

Out of the 14 native Ziziphus species in China, the jujube is thought

to have evolved straightforwardly from wild sour jujube, making it

an excellent source for the introduction of a variety of useful

attributes for the increase in jujube fruit quality (Liu et al., 2011;

Zhao et al., 2014; Liu et al., 2020; Muhammad et al., 2022c). Jujube

is also one of the oldest domesticated fruit trees, with findings of

cultivation stretching back over 7,000 years (Uddin et al., 2021;

Uddin et al., 2022a). Aside from being a major dry fruit crop, it is

also a good resource of herbal remedies and a source of income for

some 20 million Asian people (Liu and Wang, 2009; Liu et al., 2020;

Uddin et al., 2021; Uddin et al., 2022a). Because of their high

nutritive quality and assorted phytochemical composition, both

species (Z. jujuba and Z. mauritiana) have become important cash

crops (Wang et al., 2018; Muhammad et al., 2022c; Uddin et al.,

2022). The primary bioactive elements of jujube fruits, which have

been widely used as food, food additives, and flavoring, are vitamin

C, triterpenoids, amino acids, carbohydrates, phenolics, flavonoids,

or anthocyanin (Wu et al., 2012; Wang et al., 2018).

Our completion of the whole-genome sequence of Z. jujuba

Mill. in 2014 (Liu et al., 2014) for the first time provided evidence

for genome-wide profiling of the MYB superfamily. However, the

lack of whole-genome sequencing of Z. mauritiana limits our

insights in this context. MYB transcription factors play a role in

many aspects of plant growth, development, metabolism, and fruit

coloration. But the comparative study of MYB TFs in Z. jujuba, and

Z. mauritiana have not yet been completely known and

characterized, and the expression of MYB genes in different

developmental stages of the fresh fruit of these two species is

undefined. The motifs analysis and phylogenetic trees are all

reported in this article. Furthermore, the transient overexpression

of ZjMYB44 significantly increased flavonoid accumulation in the

Z. jujuba fruit. Similarly, the ZjMYB44 gene was transiently highly

expressed in fruit, and flavonoid content accumulation increased,

indicating that this gene can influence flavonoid content leading to

color regulation in Ziziphus fruit. Our findings can help characterize

ZjMYB and ZmMYB genes, and this research will aid future further

functional studies of ZjMYB and ZmMYB superfamily genes

involved in the color development of Z. jujuba and Z.

mauritina fruits.
2 Materials and methods

2.1 Identification of ZmMYB and ZjMYB
protein sequences and database searches

The transcriptome data from Z. mauritiana and Z. jujuba was

used to identify all of the presumed MYBs proteins. The Pfam

database (http://pfam.xfam.org/) was searched to obtain the hidden

Markov Model (HMM) profile for the MYB binding domain (Finn

et al., 2016; Zhang et al., 2018). The presence of an MYB domain in

the selected MYB proteins was further verified using the online
frontiersin.org
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program HMMER (https://www.ebi.ac.uk/Tools/hmmer/). The

Arabidopsis Information Resource (TAIR) database was used to

obtain Arabidopsis MYBs protein sequences and was then blasted

using Blastp. The ZmMYB and ZjMYB proteins were identified

using the Arabidopsis MYBs domain sequences as a reference. To

evade repetition, multiple alignments were accomplished among

the identified ZmMYB and ZjMYB protein sequences.
2.2 Sequence analysis and construction of
the phylogenetic tree

The MEGA version 7.0 was used to create a phylogenetic tree

employing the neighbor-joining approach (Tamura et al., 2013; Cui

et al., 2018). Furthermore, the MYB protein sequences from

Arabidopsis were obtained, and ClustalW was used to align

Arabidopsis MYB protein sequences and the deduced amino-acid

sequences of ZmMYBs and ZjMYBs (Chenna et al., 2003; Larkin

et al., 2007; Cui et al., 2018). The phylogenetic tree between ZmMYBs

and ZjMYBs and the known MYBs from Arabidopsis was then

constructed using the neighbor-joining method and the MEGA7.0

program, and bootstrap analysis was performed with 1,000 replicates

(Yang et al., 2015). The Compute pI/Mw online tool (http://

web.expasy.org/compute pi/) was used to calculate the theoretical

isoelectric point (pI) and molecular weight (Mw) of ZmMYB and

ZjMYB proteins, and Cell-PLoc 2.0 (http://www.csbio.sjtu.edu.cn/

bioinf/Cell-PLoc-2/) was used to predict their subcellular localization.
2.3 Conserved domain and motif analysis
in MYB protein sequences

The MEME Suit 5.5.0 program (http://meme-suite.org/tools/

meme) was used to recognize the motifs manifest in the MYBs

proteins, and the conserved motifs of ZmMYB and ZjMYB proteins

were identified (Bailey et al., 2009). The distribution of motifs was

set to zero or one per sequence, the maximum number of motifs to

be found was 10, and the default parameters are being used. Pfam

(http://pfam.xfam.org) was used to define the conserved domains of

ZmMYB and ZjMYB proteins. Thereafter, we used the TBTools

software (https://github.com/CJ-Chen/TBtools) to visualize the

Pfam, and MEME, results (Chen et al., 2020).
2.4 Treatment for plant materials (fruit)

The fruit samples of green-colored cultivars of Z. mauritiana

(Gaolong) at different developmental stages were collected from

Yunan Province, China. Fifteen cDNA libraries were generated

using total RNA extracted from the Z. mauritiana green cultivars

fruit peel and Z. jujuba red fruit cultivar (Jinsixiaozao) (three

replicates per tissue; Junior fruit (JF: JF1, JF2, JF3), Before white

riping fruit (BWRF: BWRF1, BWRF2, BWRF3); Half ripening fruit

(HRF: HRF1, HRF2, HRF3); White-ripening fruit (WRF: WRF1,

WRF2, WRF3), and Ripen fruit (RF: RF1, RF2, RF3). At the age of

30 (junior fruit, JF), 50 (before ripening fruit, BRF), 80 (white
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ripening fruit, WRF), 90 (half ripening fruit, HRF), 100 (full

ripening fruit, RF) days after pollination (DAP), fruit specimens

were harvested, and the samples were collected. The fruit skin

samples (at least 10 fruits per sample) were promptly frozen in

liquid nitrogen and preserved at -80°C for further investigation. Each

tissue or fruit skin sample consisted of three biological replicates.
2.5 Transient expression of ZjMYB13
ZjMYB44, ZjMYB50, and ZjMYB56 in Z.
jujuba fruit

The red fruit cultivar was used at the white ripening stage in the

transient expression assay. The ZjMYB13, ZjMYB44, ZjMYB50, and

ZjMYB56 were inserted into the pCambia1302 vector, and the

recombinant plasmids (pCambia1302 vector) of ZjMYB13,

ZjMYB44, ZjMYB50, and ZjMYB56 were constructed and

transferred to Escherichia coli, the recombinant plasmids

ZjMYB13, ZjMYB44, ZjMYB50, and ZjMYB56 were transformed

into Agrobacterium tumefaciensGV3101. Fruits of ‘Dongzao’ jujube

collected at the white ripe stage were injected with transformed A.

tumefaciens containing ZjMYB13, ZjMYB44, ZjMYB50, and

ZjMYB56 respectively. Similarly, a pCambia1302 control was also

set, and 20 ‘Dongzao’ fruits of the same (size, color value, hardness,

etc.) and 1 mL of resuspended bacteria were injected along the

shoulder, and one fruit was injected on two sides. The injection

ended the dark treatment for 24h and was sampled after every 24h

intervals, then after, fruits were ground and stored at -80˚C for

subsequent flavonoids test and real-time quantitative assay.
2.6 Measurement of flavonoids

The total flavonoid content was determined by using the

procedure as follows.

2.6.1 Standard preparation of rutin solution
0.2 mg/ml of rutin solution was prepared. 0 mL, 1 mL, 2 mL, 3 mL,

4mL, and 5mL of rutin solution were taken and added to 0.6mL of 5%

sodium nitrite (NaNO2) solution. After allowing the solution to stand

for 6 minutes mixed well, 0.4 mL 10% aluminum nitrate solution [10%

Al(NO3)3] was added, andmixed properly, and after 6min, 2mL of 4%

sodium hydroxide (NaOH) was added. The absolute ethanol was

adjusted to 10 mL, then mixed, and after 30 min, the absorbance

was measured using a UV-vis spectrophotometer at 511 nm.

2.6.2 Sample determination
The sample material was mixed in 50 mL centrifuge tubes at 1:30

(g sample: mmL ethanol) and sonicated at 50°C for 40 min after 15

min centrifugation 1mL supernatant was removed. Poured 1 mL of

sample (supernatant) into the tube, 0.6 mL of 5% sodium nitrite

solution was added and was allowed to stand for 6 min. the 0.4 mL of

10% aluminum nitrate solution was added and mixed well. After 6

min 2 mL of 4% sodium hydroxide was added. The absolute ethanol

was adjusted to 10 mL, then mixed, and after 30 min, the absorbance

was measured using a UV-vis spectrophotometer at 511 nm.
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2.7 Real-time quantitative detection

RNA was extracted from fruit peel at five developmental

stages of fruit. Real-time quantitative primers were designed

with the NCBI website. Three pairs were designed to screen the

best primers and were used for subsequent real-time quantitative

detection as shown in Table S1. qRT-PCR analysis was performed

on a Bio-Rad real-time quantitative instrument. A real-time

quantification kit (Tiangen Biotechnology, China) was used. The

20 µL reaction system contained 10 µL of 2 SYBR Premix, 10 µM

of primers 0.4 µL each, 1 µL of diluted cDNA, and 8.2 µL ddH2O.

They were incubated at 94°C for 15 min, followed by 15 s at 94°C,

55 to 63°C, and 15 s at 72°C. The 2−DDCT method (Livak and

Schmittgen, 2001) was used to analyze gene expression levels, and

ZjActin was used as an internal control (Zhang et al., 2015; Shi

et al., 2020; Zhang et al., 2020). All qRT-PCR primers are

presented the Table S1.
3 Results

3.1 Phylogenetic analyses and function
predictions of ZmMYBs and ZjMYBs

In the present study, we performed the transcriptome-wide

analysis of MYB TFs genes in Ziziphus and identified 56 ZmMYB

(ZmMYB1 through ZmMYB56) and 60 ZjMYB (ZjMYB1 through

ZjMYB60) transcription factors (TFs) in Z. mauritiana and Z.

jujuba, respectively. To assess the evolutionary pattern among

Ziziphus species (Z. mauritiana and Z. jujuba) and Arabidopsis

MYB proteins, the deduced amino acid sequences of the MYB

proteins identified from Arabidopsis and Ziziphus transcriptomes

were completely aligned. After that, a combined phylogenetic tree

was constructed using the neighbor-joining method and bootstrap

analysis (1,000 reiterations) (Figure S1).

By aligning the entire set of predicted MYB protein sequences

from A. thaliana (171), Chinese jujube (60), and Z. mauritiana

(56), a phylogenetic tree of AtMYB, ZjMYB, ZmMYBs protein

was constructed (Figure S1). Furthermore, in a combined

phylogenetic tree of Z. jujuba and Z. mauritiana, 13 pairs of

putative orthologous proteins (ZmMYB12 and ZjMYB13,

ZmMYB11 and ZjMYB39, ZmMYB42 and ZjMYB48, ZmMYB9

and ZjMYB9, ZmMYB7 and ZjMYB6, ZmMYB22 and ZjMYB32,

ZmMYB2 and ZjMYB2, ZmMYB21 and ZjMYB26, ZmMYB23

and ZjMYB24, ZmMYB8 and ZjMYB41, ZmMYB44 and

ZjMYB44, ZmMYB26 and ZjMYB21, ZmMYB50 and ZjMYB50)

were identified. In contrast, 2 pairs of paralogous MYB family

proteins were identified in Z. mauritiana: ZmMYB53 and

ZmMYB51, ZmMYB25 and ZmMYB20. Similarly, 10 pairs of

paralogous MYB family proteins were identified in Z. jujuba,

i.e., ZjMYB51 and ZjMYB36, ZjMYB57 and ZjMYB40, ZjMYB52

and ZjMYB37, ZjMYB55 and ZjMYB38, ZjMYB46 and ZjMYB31,

ZjMYB47 and ZjMYB35, ZjMYB20 and ZjMYB19, ZjMYB43 and

ZjMYB28, ZjMYB45 and ZjMYB30, ZjMYB35 and ZjMYB49 as

shown in Figure 1.
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3.2 Conserved sequences in Ziziphus MYB
proteins

The MEME and TBtool were used to find the conserved motifs.

The findings demonstrated that the majority of R2R3-MYB

proteins belonging to the same subfamily shared similar motifs,

further demonstrating how closely related these proteins’

evolutionary relationships are to those of the phylogenetic tree

(Figure 2). MYB TFs contain the MYB DNA-binding domain,

which is usually found near the protein’s N-terminus. Based on

MEME analysis, and hidden Markov Model (HMM) profile for the

MYB binding domain, the MYB domains were found in all of the

deduced MYB protein sequences in Ziziphus (Z. mauritiana and Z.

jujuba), and each domain sequence contained 50-53 amino acid

residues (Figure 3). Further, the sequence logos showed the

presence of conserved sequences at specific positions. A to J

depicted the repeats of Z. mauritiana MYB protein sequences,

and M to V presented Z. jujuba MYB protein sequences. These

findings indicated that the majority of amino acids are

conservatively represented in each repeat of two Ziziphus species

(Figure S2).

Furthermore, the MYB domain is the core motif of MYB

transcription factors, and it is intimately associated with binding

to the promoters of their target genes. Multiple sequence alignment

analyses of 116 MYBs from Ziziphus (56 from Z. mauritiana and 60

from Z. jujuba) were used to generate sequence logos to investigate

conservation at specific positions in the MYB domain. The R2 and

R3 repeats contain many conserved amino acids, including the

distinctive Trp (W) residues that are regarded landmarks of the

MYB domain, as shown in Figure S2. The R2 repeat contains three

conserved Trp residues as sown in Figure S2.
FIGURE 1

Comparative phylogenetic analysis of Z. mauritiana and Z. jujuba
MYB proteins and are labeled by two different colors. The ZmMYB
and ZjMYB represent Z.mauritiana and Z. jujuba MYB proteins
respectively. ZmMYBs are in yellow-green and ZjMYBs are
represented in red-violet color.
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3.3 Subcellular localization prediction
analysis

The 60 Z. jujuba and 56 Z. mauritiana isolated MYB protein

sequences from the transcriptome were designated as ZjMYB1

through ZjMYB60 and ZmMYB1 through ZmMYB56,

respectively. The 60 ZjMYB and 56 ZmMYB proteins were all

predicted to be localized in the nucleus as shown in Table 1.
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3.4 Expression patterns of MYB genes from
transcriptome of Z. mauritiana and Z.
jujuba involved in flavonoid biosynthesis/
fruit coloration

The concentration levels of plant flavonoid pigments play a

significant role in fruit color change. Our present transcriptomic

study of MYB unveiled the important potential ZmMYB/ZjMYB
A B

FIGURE 2

Phylogenetic relationships, the architecture of conserved protein motifs in R2R3-MYB proteins from Z. mauritiana and Z. jujuba. (A) The phylogenetic
tree was constructed with 56 and 60 R2R3-MYB proteins from Z. mauritiana and Z. jujuba, respectively. The ZjMYBs are represented by red color
while ZmMYBs are represented by green color. (B) Architecture of conserved protein motifs in different subfamilies. The colored boxes designated
the different motifs as listed at the bottom of the figure.
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genes, i.e., ZmMYB/ZjMYB13, ZmMYB/ZjMYB44, ZmMYB/

ZjMYB50, and ZmMYB/ZjMYB56, involved in the flavonoid

biosynthesis during the fruit developmental stages or during the

period of fruit color change in Z. mauritiana (green color fruit) and Z.

jujuba (red color fruit). The four important potential MYB genes

(ZmMYB/ZjMYB13, ZmMYB/ZjMYB44, ZmMYB/ZjMYB50, and

ZmMYB/ZjMYB56) were dramatically down-regulated or with low

expression in Z. mauritiana, which is probably concomitant with the

lack of flavonoid color pigments content in green fruit cultivars of Z.

mauritiana. The ZmMYB44 was significantly downregulated in fruit

developmental stages of Z. mauritiana while this gene (ZjMYB44)
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was upregulated in fruit developmental stages of Z. jujuba as shown

in Figure 4. Moreover, in Z. mauritiana, the expression level of this

gene was highest in the junior fruit (JF) developmental stage

(Figure 4), whereas in Z. jujuba, the high expression level was

observed in the full ripening fruit (RF) stage (Figure 4). Similarly,

the high expression of ZmMYB56 was found in JF (Junior fruit) and

BWRF (Before white ripening fruit) stages and then decreased the

expression in WRF (White ripening fruit), HRF (Half ripening fruit),

and RF (Ripen fruit) stages of fruit development in Z. mauritiana.

Further, the expression of ZmMYB/ZjMYB13 and ZmMYB/ZjMYB50

genes were downregulated in Z. mauritiana fruit developmental

stages and was upregulated in Z. jujuba fruit as shown in Figure 4.

The rest of the genes showed no significant expression in the fruit

developmental stages of both Z. mauritiana and Z. jujuba. Thus these

four ZmMYB/ZjMYB genes of Z. mauritiana and Z. jujuba may be

the possible key genes for the fruit color change in Ziziphus Mill.
3.5 qRT-PCR expression analysis

To validate the possible role of the 4 key MYB genes obtained

from transcriptome data of Z. mauritiana and Z. jujuba, we

conducted the qRT-PCR expression analysis. The expression of

ZmMYB13 was high at the junior fruit developmental stage of Z.

mauritania but gradually decreased its expression at BWRF (before

white ripening), WRF (white ripening), HRF (half ripening), RF

(ripe fruit) stages of fruit development. While the expression of this

gene (ZjMYB13) was high and upregulated in the fruit

developmental stages of Z. jujuba except for WRF (white

ripening) stage. Similarly, the expression of ZmMYB44 was

significantly downregulated in the fruit developmental stages of Z.

mauritiana while the same gene ZjMYB44 was significantly

upregulated in the fruit developmental stages of Z. jujuba,

confirming its expression level presented by the transcriptomic

data. Similarly, ZmMYB/ZjMYB56 presented downregulated trend

in Z. mauritiana and upregulated trend in Z. jujuba. Moreover, the

expression pattern of ZmMYB/ZjMYB50 was not significant at all as

shown in Figure 5.
3.6 Transient expression assay and
flavonoid determination

To further validate the transcriptome and qRT-PCR-based

expression analysis results of the selected MYB genes (ZmMYB13,

ZmMYB44, ZmMYB50, and ZmMYB56 and ZjMYB13, ZjMYB44,

ZjMYB50, and ZjMYB56), we performed in vivo transient

Agrobacterium infiltration assays on jujube fruit. We injected the

plasmids ZjMYB44-pCambia1302, ZjMYB50-pCambia1302,

ZjMYB56-pCambia1302, and ZjMYB13- pCambia1302 into the

pericarps of jujube fruits. Compare to the control, the high

transient expression of ZjMYB44 significantly increased flavonoid

accumulation in the fruit around the injection site (Figure 6A).

Flavonoid biosynthetic ZjMYB44 gene was consistently up-

regulated in the fruit near the injection site. Thus, high transient

expression of the ZjMYB44 gene in fruit increased flavonoid
A B

FIGURE 3

Phylogenetic relationships, the architecture of conserved MYBs
domains in R2R3-MYB proteins from Z. mauritiana and Z. jujuba.
(A) The phylogenetic tree was constructed with 56 and 60 R2R3-
MYB proteins from Z. mauritiana and Z. jujuba respectively. (B) The
architecture of conserved MYBs domains in different subfamilies.
The colored boxes designated the different MYBs domains as shown
in the figure.
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TABLE 1 Prediction of subcellular localization of MYB proteins through Cell-PLoc 2.0.

Gene pI Mw (Da) Subcellular localization Gene pI Mw (Da) Subcellular localization

Ziziphus jujuba Z. mauritiana

ZjMYB1 5.6 116390.3 Nuclear ZmMYB1 8.58 138572.9 Nuclear

ZjMYB2 6.75 64872.75 Nuclear ZmMYB2 6.69 57289.19 Nuclear

ZjMYB3 5.4 103638.8 Nuclear ZmMYB3 9.72 59500.99 Nuclear

ZjMYB4 8.84 75568.77 Nuclear ZmMYB4 5.9 127347.4 Nuclear

ZjMYB5 9.26 123766.2 Nuclear ZmMYB5 5.42 103072.1 Nuclear

ZjMYB6 9.28 63143.98 Nuclear ZmMYB6 6.6 26384.45 Nuclear

ZjMYB7 8.29 72449.58 Nuclear ZmMYB7 5.35 111835.2 Nuclear

ZjMYB8 9.09 56245.43 Nuclear ZmMYB8 9.21 34120.11 Nuclear

ZjMYB9 9.02 34881.18 Nuclear ZmMYB9 8.98 35018.44 Nuclear

ZjMYB10 6.87 49955.95 Nuclear ZmMYB10 6.64 31436.87 Nuclear

ZjMYB11 9.79 33456.57 Nuclear ZmMYB11 7.05 32374.26 Nuclear

ZjMYB12 6.61 41906.98 Nuclear ZmMYB12 6.2 199098.9 Nuclear

ZjMYB13 8.16 72375.08 Nuclear ZmMYB13 5.76 44385.53 Nuclear

ZjMYB14 8.9 75829.62 Nuclear ZmMYB14 8.03 118632.1 Nuclear

ZjMYB15 8.53 33345.95 Nuclear ZmMYB15 7.65 50187.87 Nuclear

ZjMYB16 8.87 38752.64 Nuclear ZmMYB16 5.8 72078.03 Nuclear

ZjMYB17 9.61 22611.91 Nuclear ZmMYB17 5.89 41295.71 Nuclear

ZjMYB18 7.73 38204.93 Nuclear ZmMYB18 6.01 31016.8 Nuclear

ZjMYB19 9.04 136044.2 Nuclear ZmMYB19 6.22 73712.99 Nuclear

ZjMYB20 8.98 127842.5 Nuclear ZmMYB20 5.58 66782.53 Nuclear

ZjMYB21 8.55 40101.51 Nuclear ZmMYB21 8.39 42202.53 Nuclear

ZjMYB22 6.43 36630.78 Nuclear ZmMYB22 7.21 41854.28 Nuclear

ZjMYB23 6.35 34846.39 Nuclear ZmMYB23 6.43 45212.61 Nuclear

ZjMYB24 6.43 45141.53 Nuclear ZmMYB24 8.6 96585.31 Nuclear

ZjMYB25 5.18 51108.22 Nuclear ZmMYB25 5.89 76208.73 Nuclear

ZjMYB26 8.38 42195.62 Nuclear ZmMYB26 8.55 40101.51 Nuclear

ZjMYB27 6.46 26893.04 Nuclear ZmMYB27 8.81 33263.27 Nuclear

ZjMYB28 9.74 29736.33 Nuclear ZmMYB28 4.63 59524.86 Nuclear

ZjMYB29 7.86 29554.97 Nuclear ZmMYB29 8.92 31921.08 Nuclear

ZjMYB30 5.87 44338.48 Nuclear ZmMYB30 6.1 38280.65 Nuclear

ZjMYB31 7.18 38027.64 Nuclear ZmMYB31 4.16 12866.33 Nuclear

ZjMYB32 7.23 41832.24 Nuclear ZmMYB32 5.3 106604.1 Nuclear

ZjMYB33 8.68 46866.62 Nuclear ZmMYB33 8.94 40620.42 Nuclear

ZjMYB34 8.11 49997.36 Nuclear ZmMYB34 4.28 53787.95 Nuclear

ZjMYB35 9.42 15711.76 Nuclear ZmMYB35 6.05 11224.54 Nuclear

ZjMYB36 6.82 50324.06 Nuclear ZmMYB36 8.11 50031.38 Nuclear

ZjMYB37 5.65 50507.13 Nuclear ZmMYB37 8.93 11494.79 Nuclear

ZjMYB38 6.6 26384.45 Nuclear ZmMYB38 9.02 38175.4 Nuclear

(Continued)
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accumulation, indicating that this gene is a key influencer of

flavonoid content during the period of fruit color change in Z.

jujuba as shown in Figure 6A. On the other hand, ZjMYB50 gene

was transiently expressed in fruit only at 96h after the injection with

a constant decrease of flavonoid content, indicating that this gene

cannot improve the flavonoid content accumulation (Figure 6B).

Furthermore, ZjMYB56 was transiently expressed in fruit, but the

gene was not highly expressed in fruit and the flavonoid content was

decreased, thus indicating that this gene cannot affect the flavonoid

accumulation in the fruit peel (Figure 6C). Moreover, the ZjMYB13

gene was transiently expressed in the fruit, the expression of

ZjMYB13 gene was high in the fruit, and the flavonoid content

first decreased and then rose after 72h, demonstrating that this gene

might indirectly induce the flavonoid content in the fruit peel of

jujube (Figure 6D).
4 Discussion

The MYB TFs are engaged in physiological and biochemical

mechanisms in plants, as well as responses to abiotic and biotic
Frontiers in Plant Science 08
stresses (Raffaele et al., 2008; Qing et al., 2019), and the function of

MYB has been extensively studied. MYB TFs are also engaged in

flavonoid biosynthesis. For example, overexpression of the

Arabidopsis AtMYB12 gene increased flavonoid content

accumulation under low temperatures in a light-dependent

fashion (Bhatia et al., 2018). The MYB10 gene in Fragaria

ananassa plays a general regulatory role in the flavonoid/

phenylpropanoid pathway during fruit ripening (Medina-Puche

et al., 2014; Qing et al., 2019).

The MYB is the largest TF gene family in plants that is divided

into four subfamilies based on the number of MYB imperfect

tandem repeats (Rs) in the proteins: R3 MYB (MYB1R) has one

repeat, R2R3 MYB has 2 repeats, R1R2R3 MYB (MYB3R) has 3

repeats, and 4R MYB has 4 repeats (Lin-Wang et al., 2010). Only

R2R3-MYB plays a role in flavonoid or anthocyanin biosynthesis,

with 126 genes discovered in A. thaliana (Stracke et al., 2001;

Yanhui et al., 2006). In a genome-wide characterization and

expression analysis of the MYB superfamily genes in jujube

Qing et al. (2019) discovered 99 R2R3-MYB genes and 171

MYB genes in total. Due to the lack of genomic information on

Z. mauritiana, we used transcriptome-wide analysis of the fruit
TABLE 1 Continued

Gene pI Mw (Da) Subcellular localization Gene pI Mw (Da) Subcellular localization

Ziziphus jujuba Z. mauritiana

ZjMYB39 7.05 32374.26 Nuclear ZmMYB39 5.41 30988.75 Nuclear

ZjMYB40 6.64 31406.8 Nuclear ZmMYB40 8.65 52166.68 Nuclear

ZjMYB41 9.21 34120.11 Nuclear ZmMYB41 7.81 26959.36 Nuclear

ZjMYB42 6.05 49602.36 Nuclear ZmMYB42 8.68 47138.88 Nuclear

ZjMYB43 9.74 29736.33 Nuclear ZmMYB43 5.89 33354.26 Nuclear

ZjMYB44 7.86 29554.97 Nuclear ZmMYB44 8.52 79170.26 Nuclear

ZjMYB45 5.87 44338.48 Nuclear ZmMYB45 9.19 10886.16 Nuclear

ZjMYB46 7.18 38027.64 Nuclear ZmMYB46 8.66 75647.83 Nuclear

ZjMYB47 7.18 38027.64 Nuclear ZmMYB47 9.47 11566.09 Nuclear

ZjMYB48 8.68 46866.62 Nuclear ZmMYB48 4.39 58702.69 Nuclear

ZjMYB49 8.11 49997.36 Nuclear ZmMYB49 9.22 148117.2 Nuclear

ZjMYB50 9.42 15711.76 Nuclear ZmMYB50 6.05 110860.8 Nuclear

ZjMYB51 6.82 50324.06 Nuclear ZmMYB51 5.79 34936.19 Nuclear

ZjMYB52 5.65 50507.13 Nuclear ZmMYB52 7.52 256800.6 Nuclear

ZjMYB53 7.71 24529.58 Nuclear ZmMYB53 9.76 41846.95 Nuclear

ZjMYB54 6.77 38645.42 Nuclear ZmMYB54 9.66 40911.17 Nuclear

ZjMYB55 6.6 26384.45 Nuclear ZmMYB55 5.81 34015.09 Nuclear

ZjMYB56 7.05 32374.26 Nuclear ZmMYB56 6.4 57914.89 Nuclear

ZjMYB57 6.64 31406.8 Nuclear

ZjMYB58 9.21 34120.11 Nuclear

ZjMYB59 9.1 35040.49 Nuclear

ZjMYB60 6.73 68806.91 Nuclear
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peel and identified 60 MYBs in jujube (Z. jujuba) and 56 MYBs in

Ber (Z. msuritiana). The number of MYBs decreased in jujube,

this may be due to the fact that the genome contains all of the

genes in a cell’s DNA (Hamilton and Robin Buell, 2012; Chen

et al., 2019), whereas the transcriptome only contains those that

are expressed within a specific tissue of the plant species (Ward

et al., 2012).
Frontiers in Plant Science 09
The evolution of common ancestors for plant species and

subsequent biological evolution research showed that orthologous

genes could have contributed to the evolutionary developments of

inert, and novel active genes (Fan et al., 2020). Orthologs are genes

in different genomes that originated from the splitting of taxonomic

lineages, whereas paralogs are genes in the same genome that

originated from gene duplication (Thornton and DeSalle, 2000;
FIGURE 4

Differential expression of ZmMYB and ZjMYB genes in different developmental stages of Ziziphus mauritiana and Z. jujuba fruit. The Non-significance
is blue and the Significant is shown as red in color. The ZmMYB gene that has been up-regulated is red, while the down-regulated is shown as blue
in this figure. JF, BWRF, WRF, HRF, and RF represent junior fruit, before white ripening, white ripening, half ripening, and ripen fruit developmental
stages, respectively.
A B

FIGURE 5

Validation of differential expression of the MYB genes (ZmMYB13, ZmMYB44, ZmMYB50, and ZmMYB56 and ZjMYB13, ZjMYB44, ZjMYB50, and
ZjMYB56) among five stages of fruit development of Z. mauritiana and Z. jujuba using qRT-PCR. The red color represents the high expression of the
MYB genes and the blue color represents the low-level expression in corresponding fruit developmental stages. The (A) represents the expression
level of MYB (ZmMYB13, ZmMYB44, ZmMYB50, and ZmMYB56) genes in Z. mauritiana while (B) represents the expression level of the same MYB
(ZjMYB13, ZjMYB44, ZjMYB50, and ZjMYB56) genes in Z. jujuba. The JF stands for (Junior fruit), BWRF stands for (Before white ripening stage), WRF
represents (White ripening stage), HRF stands for (Half ripening stage), and RF represents (ripen stage) of fruit development.
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Song et al., 2016). Paralogs typically have different functions, whilst

orthologs may have the same function (Tatusov et al., 1997; Song

et al., 2016). Our current comparative and phylogenetic analysis

revealed 13 pairs of putative orthologous proteins between Z. jujuba

(ZjMYBs) and Z. mauritiana (ZmMYBs). In contrast, 10 pairs of

paralogous MYB family proteins were identified in Z. jujuba.

Similarly, 2 pairs of paralogous MYB family proteins were also

identified in Z. mauritiana (Figure 1). MEME was used to identify

conserved motifs in both species’ MYB proteins.

A number of flavonoid-related MYB TFs have already been

discovered in plants that regulate secondary metabolism in the plant

species (Chezem et al., 2016; Wang et al., 2017). For example, the TT2,

the first PA-related MYB TF discovered, activatesDFR, ANS, and ANR,

causing proanthocyanidin biosynthesis in the seed coats of A. thaliana

(Nesi et al., 2001). The unique regulators (VvMYBA1 and VvMYBA2),

activate the UFGT genes of the anthocyanin pathway in grapevines

(Kobayashi et al., 2002). Moreover, in grapevines, VvMYBPA2 was

discovered to be a direct regulator of numerous structural flavonoid

pathway genes (Terrier et al., 2009). The MdMYB10 is an important

regulator during apple fruit coloring (Espley et al., 2007). In apple fruits,

MdMYB3 triggers flavonoid biosynthesis-related genes such as CHI,

CHS, FLS, and UFGT (Wang et al., 2017). Similarly, the FaMYB10

controls anthocyanin pathway-related genes in strawberries, such as the

majority of EBGs and LBGs in matured fruit receptacles during

ripening (Medina-Puche et al., 2014). The MYB genes found in H.

brasiliensis, HbMYB1 overexpression in tobacco reduces stress-induced

cell death (Peng et al., 2011; Wang et al., 2017). Furthermore, PeMYB2,

PeMYB11, and PeMYB12 have all been found to be involved in the

development of red color in Phalaenopsis spp. flowers (Hsu et al., 2015).

The flavonoids like anthocyanin structural genes control plant

pigmentation both temporally and spatially. The transcriptional
Frontiers in Plant Science 10
level is primarily responsible for the regulation of structural genes

(Li et al., 2017; Li et al., 2017a). R2R3-MYBs regulate anthocyanin

transcription by influencing the transcripts of anthocyanin

structural genes. Numerous anthocyanin R2R3-MYB TFs in

various fruit plants have been isolated and categorized (Feng

et al., 2015). A homolog of PyMYB10, PyMYB10.1, was cloned

from ‘Aoguan’ (Feng et al., 2015). The transcriptome analysis on

‘Hongyang’ kiwifruit, revealed 9 R2R3 MYBs to be involved in

anthocyanin synthesis during fruit development (Li et al., 2015).

The MYB5 and MYBA have been shown to be positive potent

inducers in the early stages of development of ‘Hongyang’ fruit (7

days after anthesis, DAA), where kiwifruit undergo a temporary

anthocyanin formation, as well as later during fruit ripening (Li

et al., 2015; Li et al., 2017; Li et al., 2017a). Some findings suggested

that VvMYB5a and VvMYB5b in grapes, as well as MdMYBA in

apples, could be stimulated by low temperatures, which then

stimulated the expression of ANS, resulting in flavonoids like

anthocyanin formation in fruit (Li et al., 2017).

The recognition of key MYB TFs associated with flavonoid

accumulation during the period of fruit coloration in various

species has greatly improved our understanding of the control

mechanism of flavonoid biosynthesis in fruits. Based on our

present transcriptome expression analysis four MYB genes

(ZmMYB/ZjMYB13, ZmMYB/ZjMYB44, ZmMYB/ZjMYB50, and

ZmMYB/ZjMYB56), were dramatically down-regulated or with low

expression in Z. mauritiana green color fruit cultivar, which is

probably concomitant with the lack of flavonoid color pigments

content in green fruit cultivars of Z. mauritiana. For example, the

ZmMYB44 was significantly downregulated in Z. mauritiana fruit

developmental stages while this gene (ZjMYB44) was upregulated in

fruit developmental stages of Z. jujuba as shown in Figure 4.
A B

DC

FIGURE 6

The transient expression of 4 MYB genes (ZjMYB13, ZjMYB44, ZjMYB50, and ZjMYB56) in jujube fruit. pCambia1302 was used as an empty vector.
(A) The phenotype of pCambia1302, pCambia1302-MYB44, expression and flavonoid content of pCambia1302, pCambia1302-MYB44 of Z. jujuba
fruits. (B) The phenotype of pCambia1302, pCambia1302-MYB50, expression and flavonoid content of pCambia1302, pCambia1302 MYB50 of Z.
jujuba fruits. (C) The phenotype of pCambia-1302, pCambia1302-MYB56, expression and flavonoid content of pCambia-1302, pCambia1302-MYB56
of Z. jujuba fruits. (D) The phenotype of pCambia-1302, pCambia1302-MYB13, relative expression level and flavonoid content of pCambia1302,
pCambia1302-MYB13 of Z. jujuba fruits.
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Furthermore, the expression of this gene was high in the junior fruit

(JF) developmental stage in Z. mauritiana (Figure 4) while the

highest expression was found in the full ripening fruit (RF) stage in

Z. jujuba (Figure 4). Similarly, the high expression of ZmMYB56 was

found in JF (Junior fruit) and BWRF (Before white ripening fruit)

stages and then decreased the expression in WRF (White ripening

fruit), HRF (Half ripening fruit), and RF (Ripe fruit) stages of fruit

development in Z. mauritiana. Further, the expression of ZmMYB/

ZjMYB13 and ZmMYB/ZjMYB50 genes were downregulated in Z.

mauritiana fruit developmental stages and was upregulated in Z.

jujuba fruit as presented earlier in Figure 4. Moreover, the transient

overexpression of AcMYB5-1/5-2/A1-1 in N. benthamiana leaves

increased expression patterns of NtANS and NtDFR, suggesting

that those MYB TFs may be involved in the flavonoid synthesis

pathway (Li et al., 2017). Furthermore, the total flavonoid content of

jujube decreased as the fruit ripened (Wu et al., 2012), indicating the

low expression of corresponding genes. Since the transient expression

assay in Z. jujuba fruit, ZjMYB44 significantly increased flavonoid

accumulation indicating that this gene can stimulate the flavonoid

content accumulation in the jujube fruit as described in Figure 6A.
5 Conclusion

In this study, we conducted the first transcriptome-wide analysis of

Z. mauritiana and Z. jujubaMYB superfamily genes, which included 56

ZmMYB and 60 ZjMYB transcription factors (TFs) genes, in Z.

mauritiana and Z. jujuba, respectively. The phylogenetic analysis

revealed 13 pairs of putative orthologous proteins between Z. jujuba

(ZjMYBs) and Z. mauritiana (ZmMYBs). In contrast, 10 pairs of

paralogous MYB family proteins were identified in Z. jujuba. Similarly,

2 pairs of paralogous MYB family proteins were identified in Z.

mauritiana. Four similar MYB genes (ZmMYB/ZjMYB13, ZmMYB/

ZjMYB44, ZmMYB/ZjMYB50, and ZmMYB/ZjMYB56) from Z.

mauritiana and Z. jujuba were identified as candidate key regulating

flavonoid biosynthesis genes through transcriptomic expression

analysis. Moreover, in vivo transient expression of ZjMYB44

significantly increased flavonoid accumulation around the injection

site, and the ZjMYB44 gene was also transiently highly expressed in

fruit, indicating that this gene can influence flavonoid content and lead

to coloration in Ziziphus fruit. Our research results provide an

important understanding of the molecular mechanism of flavonoid

biosynthesis resulting in fruit coloration in Ziziphus, laying the

groundwork for further functional characterization and genetic

improvement of Ziziphus (Z. mauritiana and Z. jujuba) fruit coloration.
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