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Systems-level proteomics
and metabolomics reveals
the diel molecular landscape
of diverse kale cultivars

Sabine Scandola, Devang Mehta, Brigo Castillo,
Nicholas Boyce and R. Glen Uhrig*

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
Kale is a group of diverse Brassicaceae species that are nutritious leafy greens

consumed for their abundance of vitamins and micronutrients. Typified by their

curly, serrated and/or wavy leaves, kale varieties have been primarily defined

based on their leaf morphology and geographic origin, despite having complex

genetic backgrounds. Kale is a very promising crop for vertical farming due to its

high nutritional content; however, being a non-model organism, foundational,

systems-level analyses of kale are lacking. Previous studies in kale have shown

that time-of-day harvesting can affect its nutritional composition. Therefore, to

gain a systems-level diel understanding of kale across its wide-ranging and

diverse genetic landscape, we selected nine publicly available and commercially

grown kale cultivars for growth under near-sunlight LED light conditions ideal for

vertical farming. We then analyzed changes in morphology, growth and nutrition

using a combination of plant phenotyping, proteomics andmetabolomics. As the

diel molecular activities of plants drive their daily growth and development,

ultimately determining their productivity as a crop, we harvested kale leaf tissue

at both end-of-day (ED) and end-of-night (EN) time-points for all molecular

analyses. Our results reveal that diel proteome and metabolome signatures

divide the selected kale cultivars into two groups defined by their amino acid

and sugar content, along with significant proteome differences involving carbon

and nitrogenmetabolism, mRNA splicing, protein translation and light harvesting.

Together, our multi-cultivar, multi-omic analysis provides new insights into the

molecular underpinnings of the diel growth and development landscape of kale,

advancing our fundamental understanding of this nutritious leafy green super-

food for horticulture/vertical farming applications.
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Introduction

Brassica oleracea and its diverse cultivar groups represent an

important food crop for multiple populations across the globe.

These include seven major cultivar groups: cauliflower, collard

greens, broccoli, kohlrabi, cabbage, brussels sprouts and kale.

Together, these crops represented 70.1 million metric tonnes of

production in 2019 (https://www.fao.org/faostat/en/#data/QCL).

Kale, which encompass several leafy Brassicaceae species (B.

oleracea and B. napus) (Reda et al., 2021), is often referred to as a

‘super-food’ (Samec et al., 2019) as it is rich in numerous

antioxidants (carotenoids, flavonoids, glucosinolates) and

essentials vitamins (A, K and C), minerals (calcium and iron),

dietary fibers (Becerra-Moreno et al., 2014) and low molecular

weight carbohydrates (Megias-Perez et al., 2020). Additionally, kale

has notable cultivation advantages, including a wide-ranging

temperature tolerance that guarantees year-round availability in

most climates (Samec et al., 2019). Given these characteristics, kale

represents a horticultural crop with the potential to be a source of

essential nutrients for multiple global populations (Migliozzi

et al., 2015).

To maximize growth and to execute developmental programs,

plants require the precise timing of diel (daily) events.

Correspondingly, diel events are coordinated by a combination of

circadian and light responsive mechanisms, which play a major role

in modulating the plant cell environment at all molecular levels

(Mehta et al., 2021). For example, in the model plant and related

Brassicaceae, Arabidopsis thaliana (Arabidopsis), it is estimated that

the circadian clock controls the diel expression of 1/3 of all genes

(Covington et al., 2008). Further, the importance of the circadian

clock and diel biology in plants is emphasized by its central role in

governing critical agronomic traits such as biomass, flowering time

and disease resistance (Creux and Harmer, 2019), suggesting diel

biology should be a central facet of next-generation cropping

systems (Hotta, 2021; Steed et al., 2021). This is particularly key

for kale, which has shown that time-of-day harvesting can affect its

nutritional composition (Casajus et al., 2021; Francisco and

Rodriguez, 2021), indicating that time-of-day harvesting and

postharvest storage is central to enhanced kale nutrition and shelf

life when going to market (Reda et al., 2021). Currently, our

understanding of kale rests at the production-level, with the diel

molecular mechanisms underpinning unique and beneficial

morphological and nutritional differences between kale cultivars

remaining largely unknown (Megias-Perez et al., 2020).

To date, systemic molecular analyses of kale cultivars convar.

acephala (Jin et al., 2018; Liu et al., 2020; Liu et al., 2021) var.

sabellica (Pongrac et al., 2019) and B. napus var. pabularia (Chiu

et al., 2018) have been limited, with no studies examining multiple

cultivars or quantifying diel molecular changes. In one

transcriptomic study of B. oleracea convar. acephala cultivars,

glucosinolate, carotenoid and phenylpropanoid biosynthetic

pathways were highlighted as critical in defining the differences

between green ‘manchoo collar’ and red ‘jeok seol’ cultivars (Jeon

et al., 2018). To date however, no investigations of B. oleracea var.

palmifolia have been performed, limiting our molecular knowledge
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of these widely produced and consumed kale cultivars. This set of

molecular studies has however demonstrated that kale is a highly

dynamic and diverse set of species that requires a systemic, multi-

omics investigation of multiple kale cultivars in order to elucidate

diel molecular landscape features that can be harnessed for

increased production and nutrition.

Light spectra, intensity and photoperiod have each been shown

to be important in kale cultivation as modulators of the kale

metabolome (Carvalho and Folta, 2014). Light is also essential for

plant growth and development as it is a primary entrainment

mechanism of the circadian rhythm of plants (Xu et al., 2022).

With the circadian clock and diel plant cell regulation governing

numerous agronomic traits of interest, including: flowering time,

growth and plant defense (Steed et al., 2021), elucidating where

changes in the molecular landscape of diverse kale genetics

manifests through a diel/circadian lens using quantitative,

systems-level omics technologies, represents a critical endeavour

for optimizing the growth and nutrient content of kale grown in

controlled growth environments.

Therefore, using a combination of gas-chromatography mass

spectrometry (GC-MS) and the latest data independent acquisition

(DIA) quantitative proteomics workflow called BoxCarDIA (Mehta

et al., 2022), we establish the diel metabolome and proteome

landscapes of nine widely available, commercial produced kale

cultivars grown in controlled growth environments under a

natural photoperiod. These growth conditions, combined with

multi-omics analyses obtained at end-of-day (ED)/zeitgeber 11

(ZT11), and end-of-night (EN)/zeitgeber 23 (ZT23) time-points,

provides critical new insights into how diverse kale cultivars

coordinate diel molecular events, while simultaneously generating

a proteome resource for further targeted experimentation. Through

the development of this resource we create a foundation for

uncovering the key proteins and cell processes underpinning

critically important growth and development traits in kale, while

also revealing the nutritional content and diel metabolic landscape

of nine diverse kale cultivars.
Results

Diversity in kale growth and morphology
under horticultural LED light conditions

To compare the growth of nine publicly available and

commercially grown kale cultivars (Table 1), we utilized spectral

LED lighting conditions that can be implemented in LED driven

horticultural growth systems (Supplemental Figure 1A). In

addition, we further implemented twilight conditions at ED and

EN to mimic a more natural growth environment (Figure 1A;

Supplemental Figure 1B). We employed these parameters in order

to comparatively evaluate the growth of all nine cultivars in a

controlled growth environment setting that represents conditions

comparable to those in future-forward vertical farming and

horticultural facilities (Figure 1A; Supplemental Figure 1B). These

conditions successfully grew all nine kale cultivars, with each
frontiersin.org
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TABLE 1 Name and classification of kale cultivars used in the study.

Species Convariety Variety Cultivars Types Paper
Abbreviation

Brassica oleracea
convar.
Acephala var. sabellica

var. palmifolia

cv. Winterbor
cv. Dwarf curled
Scotch
cv. Darkibor
cv. Starbor
cv. Scarlet
cv. Lacinato

Curly Kale

Italian Kale

K2

K3
K7
K8
K9
K4

var. palmifolia x
var. sabellica
(Lacinato x
Redbor)

cv. Rainbow
Lacinato Hybrids K6

Brassica napus
(oleracea x rapa)

convar.
Pabularia var. pabularia

var. pabularia
(Siberian x RedRussian)

cv. Red Russian
(Note: possibility =
Siberian Kale x
Brassica nigra)

cv. Red Ursa

Russian and Siberian
Kale

Hybrids

K5

K10
F
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FIGURE 1

Experimental design and kale genetics phenotype. (A) Experimental workflow schematic. (B) Classification of kale cultivars based on leaf morphology
and species.
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cultivar presenting unique patterns of leaf size, shape and lobation

consistent with previously observed morphologies. However, the

leaf reddening typically observed in B. napus var. pabularia

cultivars and the red B. oleracea var. sabellica ‘Scarlet’ (Figure 1B;

Carvalho and Folta, 2014; Waterland et al., 2019) was not observed.

The B. oleracea var. sabellica cultivars Starbor (K8), Darkibor (K7),

Winterbor (K2), Dwarf Curled Scotch (K3) and Scarlet (K9)

presented an oval shaped, curly leaf phenotype, while B. napus

var. pabularia cultivars (Red Russian (K5) and Red Ursa (K10) have

a notably pronounced, serrated leaf morphology. Alternatively, the

Italian cultivars B. oleracea var. palmifolia (Lacinato and Rainbow

Lacinato) present a spear-like leaf phenotype (long and narrow),

with a rough surface and darker green coloration relative to the

other kale cultivars (Figure 1B). These leaf traits along with leaf size

are correlated with each cultivar’s origins in Northern Europe,

Russia and Italy, respectively (Table 1; Supplemental Figure 2).

Lastly, we monitored leaf area over-time using a combination of

t ime - c ou r s e RGB imag i n g and P l an tCV ( h t t p s : / /

plantcv.readthedocs.io/), which revealed kale cultivars to differ in

their growth rates (Supplemental Figure 2). K10 and K2 varieties

demonstrated the largest overall plant area, reaching an area of 13.4

to 12.6 cm2 at 24 days post-imbibition, while K8 and K5 exhibited

the slowest growth rate reaching both a plant area of 8 cm2 at 24

days post-imbibition (Supplemental Figure 2). We also found that

fresh weight (FW) is correlated with leaf area results, with K10 and

K2 having the highest weight average of ~ 4 g and K8 and K5 the

lowest, with an average of 1 g and 0.8 g, respectively.

To better characterize each cultivars physiological responses, we

next measured relative chlorophyll content or Special Products

Analysis Division (SPAD) and a variety of photosynthetic

parameters (Phi2, PhiNO, PhiNPQ, LEF, ECSt, gH+ and vH+)

using the PhotosynQ platform and the handheld MultispeQ device

(Kuhlgert et al., 2016). Across the cultivars, relative chlorophyll

amount was not significantly different except for the var. palmifolia

cultivars K4 and K6, where SPAD was significantly higher

(Supplemental Figure 2). This is consistent with the darker

phenotype of the two var. palmifolia cultivars (Figure 1). Phi2,

which measures photosystem II quantum yield, was only

significantly higher in K5 compared to K10, while exhibiting no

significant differences amongst other cultivars. Alternatively,

PhiNO, which is a measurement of the electrons lost to non-

regulated processes that can result in cellular damage, was

significantly higher in K10, demonstrating that while K10

possesses one of the largest leaf areas, it is less effective at

harvesting light energy. Interestingly, we find that linear electron

flow (LEF), which estimates photosynthesis, exhibits a trend

inversely proportional to FW, with large area cultivars possessing

lower LEF and small cultivars possessing higher LEF. However,

significant differences were only observed between cultivars K6

and K2.

Lastly, we estimated the energy generating capacity of each

cultivar by measuring a series of parameters relating to ATP

generation (Supplemental Figure 2). This included: ECSt, gH+

and vH+. ECSt, which describes the magnitude of the

electrochromic shift, was higher in the K2 cultivar compared to
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K4, K8 and K9, suggesting better ATP production for increased

growth outcomes while also aligning with their increased growth

rate relative to other kale cultivars. Conversely, thylakoid proton

conductivity (gH+), which describes steady state proton flux, was

highest in the smallest cultivar K9, suggesting more efficient energy

generation. However, despite differences in the ECSt and gH+, the

initial rate of proton flux through ATP synthase (vH+) was constant

across the cultivars. Taken together, these results indicate that

photosynthetic parameters LEF and ECSt define important

physiological differences in kale cultivars that likely contribute to

observed differences in morphology and biomass.
Diel metabolome analysis

As previous research in the related Brassicaceae Arabidopsis has

demonstrated the importance of the ED and EN photoperiod

transitions (Zeitgeber; ZT11-12 and ZT23-0; respectively) at the

molecular-level (Uhrig et al., 2019; Krahmer et al., 2022), we next

analyzed the metabolite content of each cultivar at ED (ZT11) and

EN (ZT23). Aligning with other diel metabolite studies from the

related species Arabidopsis (Flis et al., 2019; Cervela-Cardona et al.,

2021) we quantified diel changes in 40 key metabolites across all

nine cultivars, which can be grouped into 8 molecule classes: amino

acids (12), organic acids (7), sugars (6), fatty acids (4), sterols (1),

phenylpropanoid pathway metabolites (4) and vitamins (3)

(Figure 2; Supplemental Figure 3; Supplemental Data 1).

Hierarchical clustering using Euclidian distance further revealed

that based on these 40 metabolites, the kale cultivars analyzed form

2 distinct groups based on their patterns of diel metabolite level

fluctuations (Figure 2; Supplemental Data 1). This included a group

consisting of

Darkibor (K7), Starbor (K8), Red Russian (K5) and Red Ursa

(10), which form Group I and Winterbor (K2), Dwarf Curled

Scotch (K3), Scarlet (K9), Rainbow Lacinato (K6) and Lacinato

(K4), which form Group II. This grouping now allows us to

establish additional kale relationships at the molecular-level

(Supplemental Figure 3). Interestingly, Group I kale demonstrate

more extensive leaf lobation and serration relative to their Group II

counterparts, suggesting a correlation between leaf phenotype and

diel metabolite changes. Further, hierarchical clustering analysis

revealed two clusters of metabolites, whose relative change in diel

abundance seem to be core to the differences between Group I and

Group II (Figure 2). This includes: carbohydrates xylose, glucose

and fructose; and amino acids aspartic acid, serine and iso-leucine,

along with shikimate and a-linolenic acid (Figure 2). Of the

compounds that kale produces in larger quantities that are of

direct nutritional importance, we detected vitamins niacin

(vitamin B3), ascorbic acid (vitamin C) and phytol (vitamin E

precursor) in addition to a-linolenic acid (omega-3 fatty acid),

with the majority of the kale cultivars possessing increased

amounts of these vitamins at EN (Figure 2). Within Group II

kale, we also see a sub-cluster consisting of K6 and K9 cultivars,

which is largely defined by increased abundance of glyceric acid

and glycine at ED.
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Diel proteome analysis

To further contextualize Group I and Group II kale, we next

performed quantitative proteomic analysis using an advanced data

independent acquisition (DIA) workflow called BoxCarDIA which

is aimed at better analyzing high complexity, high dynamic range

plant samples (Mehta et al., 2022). With the kale analyzed in this

study representing a diverse assemblage of cultivars without

specifically sequenced genomes, we performed our quantitative

proteomic searches using the B. oleracea var oleracea proteome.

Here, we were able to quantify a total of 2124 protein groups across

all nine cultivars (Supplemental Data 2). Of these, a total of 1734

protein groups exhibited a significant change in diel abundance

(Bonferonni corrected p-value ≤ 0.05 and Log2FC ≥ 0.58) in at least

one of the nine kale cultivars examined (Supplemental Data 2).

Comparative quantification of the significantly changing proteins at

ED and EN supported our metabolite-defined Group I and Group II

clusters, with Group I kale possessing more proteins with a

significant change in abundance at EN and Group II kale

generally possessing more proteins changing at ED (Figure 3A).

Next, we analyzed all significantly changing proteins for

enrichment of Gene Ontology (GO) terms relating to biological

processes and molecular functions (BH corrected p-value ≤ 0.05).

Here we found a significant enrichment of biological processes core

to plant growth and development. These include significant

enrichment of protein translation (GO0006412; GO:0006414),

photosynthesis (GO:0009765; GO:0015979), cell redox

homeostasis (GO:0045454), glycine metabolism (GO:0019464),

lipid transport (GO:0006869) and primary metabolism

(GO:0006096), amongst others (Figure 3B). Underpinning these

biological processes was the significant enrichment of molecular

functions related to translation initiation (GO:0003743) and

elongation (GO:0003746), ribosome composition (GO:0003735),

chlorophyll binding (GO:0016168) and oxidoreductase activity
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(GO:0016620), amongst other terms, which relate to protein

translation, photosynthesis and cell redox homeostasis,

respectively (Figure 3C).

To further elucidate when and where these protein-level

changes differentially occur between Group I and II kale, and to

increase our resolution of enriched biological processes, we

performed an association network analysis using the knowledge

database STRING-DB (https://string-db.org/). With B. oleracea var

oleracea not possessing a STRING-DB dataset, we first identified

orthologs from Arabidopsis for all significantly changing proteins

using UniProt (https://www.uniprot.org/). Correspondingly, we

identified orthologous Arabidopsis gene identifiers for 80.4%

(1395/1734) of the significantly changing proteins originally

quantified (Supplemental Data 3). Using a highly stringent

STRING-DB score of ≥ 0.9, we then mapped an association

network for Group I and Group II kale. This revealed diel

abundance changes in proteins related to RNA splicing, both

cytosolic and plastidial translation, chlorophyll biosynthesis,

chaperones, mitochondrial respiration and elements of carbon

metabolism, with Group I exhibiting specific changes in the

proteasome, protein secretion, fatty acid biosynthesis and

methionine metabolism, while Group II maintained specific

changes in the phagosome (Figure 4). STRING-DB analyses were

further contextualized by subcellular localization data to elucidate

where ED and EN changes manifest within the subcellular

landscape (Figure 5). Group I predominantly exhibited changes at

EN relating to proteins localized to the plastid, cytosol,

mitochondria and extracellular compartments, while Group II

exhibited most changes in similar compartments (plastid, cytosol

and mitochondria), but at ED (Figure 5).

Lastly, using orthologous Arabidopsis gene identifiers for the

significantly changing proteomes of Group I and II kale, we

performed a metabolic pathway enrichment analysis using the

Plant Metabolic Network (PMN; https://plantcyc.org/;
ED

EN

K7

GGroup I Group II

K10
K8 K5 K2 K3 K4 K9 K6

Campesterol
Myo−Inositol
Succinic acid
Chlorogenic acid
3−O−Coumaroyl−D−quinicacid
Myristic acid
Palmitic acid
Stearic acid
Citric acid
Sinapinic acid
Ascorbic acid
Phytol
L−Glutamine
Malic acid
Glyceric acid
L−Threonine
Sucrose
Beta−D−(+)−Talopyranose
D−Xylose
Valine
L−Proline
Fumaric acid
d−Galactose
L−Lysine
Quininic acid
L−Cysteine
Timonacic
Niacin
L−5−Oxoproline
Glycerol
Ethanolamine
alpha−linolenic acid
Glycine
Maleic acid
D−Glucose
Shikimic acid
L−Isoleucine
Serine
L−Aspartic acid
D−Fructose

−2

−1

0

1

2

3

4

FIGURE 2

Diel changes in the kale metabolic landscape. Eucledian distance clustered heatmap of relative diel metabolite changes with each kale cultivar
reveals two clusters of kale based on diel metabolic changes. Scale represents Log2 fold-change (FC); n=4 biological replicates.
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Supplemental Data 6). This revealed the enrichment of several

pathways (Fisher’s Exact Test < 0.01) directly related to the

metabolites measured by our GC-MS analyses that differ between

Group I and II kale, such as multiple pathways related to amino acid

and sugar metabolism (Supplemental Data 6). In Group I kale we find

an enrichment of serine biosynthesis, which is consistent with our

metabolite findings (Figure 2). Specifically, we see serine pathway

enzymes (e.g. SERINE HYDROXYMETHYLTRANSFERASE 1;

SHM1) exhibiting an average Log2FC change in abundance of 1.45

at ED (Supplemental Data 2, 6). Amongst Group II kale, we see an

enrichment of carbohydrate/sugar degradation, which aligns with our

observed increase in glucose, fructose and xylose at ED. Here, we find

significant increases in the abundance of STARCH-EXCESS 4 (SEX4;

Log2FC = 0.68), which degrades starch to affect glucose-levels and

FRUCTOKINASE-LIKE 2 (FLN2; Log2FC = 1.22), which

phosphorylates fructose to create fructose 6-phosphate, at EN,

likely contributing to increased pools of glucose and fructose

during the day. We also see an increase of xylan degrading

enzymes BETA-XYLOSIDASE 6 (BXL6; Avg Log2FC = 0.162) and

ALPHA-XYLOSIDASE 1 (XYL1; Log2FC =0.70) that likely

contribute the observed increase in Group II xylose at ED. Lastly,

we also find an enrichment of multiple overlapping pathways
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between Group I and II kale, suggesting that while the timing of

amino acid and core carbohydrate metabolism at our sampled ED

and EN time-points may differ, there may be additional pathways

that have group-specific diel changes at alternative time-points.
Discussion

Diverse kale cultivars form two
groups based on phenotypic
and metabolic signatures

As the functional components of all biological systems and the

defining elements of nutrition, the proteome and metabolome

represent a reliable means by which to elucidate differences

between diverse, but related plant genetics. In the case of kale, it

is the underlying molecular differences between cultivars that offer

unique opportunities for targeted breeding and growth

manipulation to enhance nutrition and biomass production. To
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FIGURE 4

Association network analysis of the diel kale proteome. Proteins
exhibiting significant diel changes in abundance within Group I (A)
and Group II (B) kale, respectively, were subjected to association
network analysis (https://string-db.org/). To maximize the analysis,
Brassica oleracea var. oleracea gene identifiers were converted to
Arabidopsis thaliana ortholog gene identifiers using UniProt (https://
www.uniprot.org/). Proteins exhibiting significant changes in
abundance are defined by a Bonferonni corrected q-value ≤ 0.05
and a Log2FC ≥ 0.58 or 5 -0.58). Up- (red) and down- (blue)
regulated proteins are shown, with node size related to magnitude
of Log2FC.
A

B

C

FIGURE 3

Diel changes in the kale proteome. Sampling diverse kale genetics
provides a robust depiction of diel plant cell regulation in kale (n=4).
(A) Number of proteins exhibiting diel changes in protein abundance
within each kale cultivar examined at ED and EN. (B) Gene Ontology
(GO) enrichment analysis of biological processes and (C) molecular
function among all significantly changing proteins (Bonferonni
corrected q-value ≤ 0.05; Log2FC ≥ 0.58 or ≤ -0.58).
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date, differences between kale cultivars has been largely defined

phenotypically through leaf morphologies such as coloration, size,

shape, lobation and serration (Arias et al., 2021). A few studies have

complemented this with transcriptomic analyses of individual

cultivars (Chiu et al., 2018; Jeon et al., 2018; Jin et al., 2018; Arias

et al., 2021), while others have undertaken metabolomics analyses

(Chiu et al., 2018; Jeon et al., 2018). This has predominantly

involved targeted metabolomics, examining single kale cultivars

for changes in pigmentation (Redbor; var. sabellica; (Klopsch et al.,

2019), flavonols (Winterbor; var. sabellica; (Neugart et al., 2014;

Neugart et al., 2016; Neugart and Bumke-Vogt, 2021) and fatty

acids (Black Cabbage; convar. acephala; (Ayaz et al., 2006), with few

studies having pursued global metabolite profiling of an individual

kale cultivar (Nemzer et al., 2021). Correspondingly, our systems-

level analysis of the leaf proteome and metabolome from nine kale

cultivars in the same study using non-targeted GC-metabolomic

and LC-proteomic mass spectrometry (MS), respectively, represents

a substantial advancement in resolving the broader molecular

landscape of kale for future targeted investigations.

Under our growth conditions no red/purple pigmentation in

any kale cultivar was observed despite some of the cultivars

examined (K9, K5 and K10) being known to have elevated

anthocyanin production (Waterland et al., 2019). As a goal of our

study was to define the diel molecular landscape of kale across

diverse kale cultivars using near-sunlight conditions, our finding of

no observable anthocyanin production was very informative
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(Figure 1; Supplemental Figure 2). It suggests that LED light

recipes deployed in controlled growth environments can be

utilized to drive substantially different growth outcomes in the

same kale variety. This aligns with previous studies, which revealed

the application of UV light enhances the profile offlavonoids in kale

(Neugart et al., 2014; Neugart and Bumke-Vogt, 2021). Flavonoids

are important molecule class in kale, as they represent the molecular

precursors for the red/purple coloration some kale cultivars exhibit

via anthocyanin (Liu et al., 2021).

Unexpectedly, our analysis of the diel metabolome landscape

across nine kale cultivars revealed two groups based on their

metabolite signatures. Group I is comprised of both B. oleracea

(K7 and K8) and B. napus (K5 and K10) cultivars, despite notable

differences in ploidy between B. oleracea (diploid) and B. napus

(polyploidy) (Gao et al., 2022). This suggests that higher level

differences in genomic architecture do not seem to determine

baseline growth traits in kale. Group I kale also maintained

similarities in leaf lobation architecture, exhibiting a jagged and

pronounced lobation morphology relative to the kale cultivars of

Group II. Conversely, Group II kale consisted entirely of B. oleracea

cultivars, which have substantially different and more variable

lobation morphologies. The var. palmifolia cultivars K6 and K4,

have a narrow leaf shape and almost no leaf lobation, while the var.

sabellica cultivars K2, K3 and K9 have a round and wavy leaf shape

with more leaf lobation. No specific photosynthesis or ATP

production measurements were found to correlate with these

metabolite-based groupings, likely due to the higher order nature

of those processes relative to diel metabolite changes; however,

Group II kale did possess more light harvesting/photosynthesis and

mitochondrial respiration proteins exhibiting a diel change in their

abundance relative to Group I. Using un-targeted metabolomics to

define groups within a complex species has also proven successful

with other crops (Cucumis melo; (Moing et al., 2020). Here, a

variable alignment between phylogeny and the metabolome was

found that parallels our findings in kale. Taken together, our

combined phenotypic and diel-metabolomic definition of nine

kale cultivars suggests that metabolomic fingerprinting provides a

more contextualized understanding of kale cultivars, however,

future studies could consider more wide-ranging, untargeted LC-

based metabolomics analyses. Overall, our findings provide an

initial resource for future research of this leafy-green super food,

in addition to offering actionable information for vertical farming

and horticultural kale producers.
Underlying metabolic differences
between kale cultivars offers opportunities
for production systems

Upon comparing the diel metabolite profiles of our nine kale

cultivars, we found a series of core compounds that are critical pre-

requisites for the production of nutritionally valued specialized

metabolites. Further, many of these metabolomic differences

seemed to define Group I and II kale. These compounds include:

carbohydrates (xylose, glucose and fructose), amino acids (serine,

glycine, aspartic acid and iso-leucine) as well as shikimic acid and
A

B

FIGURE 5

Subcellular localization analysis of the kale diel proteome. Subcellular
localization analysis of Group I (A) and II (B) kale proteins exhibiting a
significant change in diel abundance, respectively (https://suba.live/).
To maximize this analysis, B oleracea var. oleracea gene identifiers
were converted to Arabidopsis ortholog gene identifiers using UniProt
(https://www.uniprot.org/). Proteins exhibiting significant changes in
abundance are defined by a Bonferonni corrected q-value ≤ 0.05 and
a Log2FC ≥ 0.58 or ≤ -0.58).
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a-linolenic acid (Figure 2; Supplemental Data 1). This analysis

successfully defined the molecular potential of each kale cultivar,

while also providing information for time-of-day kale harvesting in

order to maximize its nutritional content. With the circadian clock

and diel plant cell regulation highlighted as a critical consideration

for next-generation agriculture [e.g. chronoculture (Steed et al.,

2021)], it is important that researchers and vertical farming/

horticulture producers have reliable data resources generated

using precision LED light systems.

Carbohydrates – Carbohydrates represent an important energy

source for both plants and humans. Sugars, such as glucose and

fructose, are a particularly important component of kale taste,

which plays an important role in cultivar attractiveness, as kale is

generally characterized as having a bitter and earthy flavor profile

(Barker et al., 2022). Like other plants, kale possesses peak sucrose

levels at ED, which in combination with transient leaf starch

degradation, is vital for driving plant growth at night. At night,

leaf starch is degraded to produce glucose, while sucrose is degraded

to produce both glucose and fructose (Kim et al., 2017). Despite

relatively consistent diel sucrose levels observed across both kale

groups, we find a distinct diel pattern of glucose and fructose

abundance between Group I and II kale (Figure 2; Supplemental

Figure 3; Supplemental Data 1). Group I kale possess more fructose

at EN, suggesting they may have better cold-temperature tolerance

as fructose enhances cold-induced oxidative stress adaptation by

preserving homeostasis under low temperatures (Bogdanovic et al.,

2008). This diel difference could also be explained by cultivars

originating from northern latitudes (e.g. K5 and K10). Further,

fructose can be involved in vitamin C biosynthesis through its

conversion to fructose-6-phosphate by fructokinase, which can also

aid in cold tolerance (Akram et al., 2017), while also being an

essential vitamin for human consumption. Diel changes in vitamin

C leading to an accumulation at EN may offer to ease the transition

to a high light environment come morning given its antioxidant

properties (Paciolla et al., 2019). There is also a positive relationship

between sucrose metabolism and anthocyanin production (Shi

et al., 2014), which aligns with typically red cultivars K5 and K10

and their enhanced diel accumulation of fructose and glucose at EN.

Alternatively, typically green cultivars K4 and K6 of Group II kale

possess maximal fructose levels at ED, which aligns with our

pathway enrichment analysis and peak abundance changes in key

metabolic enzymes related to carbohydrate degradation

(Supplemental Data 2, 6).

Additional carbohydrates xylose, myo-inositol and galactose

were also present in different quantities across cultivars and

throughout the day. Myo-inositol is involved in an array of

biological processes such as being a precursor of inositol

phosphates (Ips), hormones (auxin), translocation of mRNA into

the cytosol, membrane biogenesis, light response germination and

abiotic stress response (Munnik et al., 1998). Alternatively, xylose is

a major component of the cell wall hemicellulose xylan, which

provides plant cell resistance against enzymatic digestion and

represents up to 35% of some wood compositions (Rennie and

Scheller, 2014). Xylose is derived from UDP-Glucose and is

transported to Golgi where xylan is produced, which aligns with

the large number of secretion related proteins (e.g. ER, Golgi and
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extracellular) we see significantly changing in both Group I and II

kale. It also specifically aligns with our pathway enrichment analysis

for Group II kale, where we find increased abundance of xylan

degrading enzymes that would increase the amount of xylose

available during the day (Supplemental Data 2, 6). Xylose

functions as a dietary fiber with prebiotic properties (Thavarajah

et al., 2016). With Group I and II kale having contrasting diel xylose

levels, the beneficial properties of xylose may offer value-added

properties to a cultivar based on time-of-day harvesting.

Amino acids – Our analysis of the diel metabolome found that

glycine, serine and aspartic acid have group specific differences in

diel abundance. Both serine and glycine predominantly

accumulated at EN and ED in Group I and II kale, respectively.

Of these amino acids, serine in particular, functions as a key

substrate for the biosynthesis of molecules critical for plant

growth, including: amino acids glycine, methionine and cysteine

(an essential amino acid for human nutrition), nitrogenous bases,

proteins, phospholipids and sphingolipids (Stein and Granot, 2019).

Specifically, our pathway analysis found an enrichment of serine

biosynthesis in Group I kale, with our proteome data indicating that

this occurs at ED (Supplemental Data 2, 6). Additionally, we find

group specific differences in aspartic acid levels, which is also a

precursor for several other amino acids, including: lysine,

methionine, threonine and isoleucine (Han et al., 2021), with

lysine representing an essential amino acid, whose content in

plants is a key nutritional trait for crop improvement (Galili and

Amir, 2013). Amongst the kale cultivars examined however, we see

lysine consistently produced at EN while we see iso-leucine

demonstrating group specific diel abundance changes. Iso-leucine

is one of three branched chain amino acids (BCAA; e.g. leucine,

isoleucine and valine), but is the only BCAA not built from pyruvate

(Joshi et al., 2010). With the BCAA isoleucine an integral to plant

defense as a conjugate of jasmonic acid (Armenta-Medina et al.,

2021) and being up-regulated in response to drought and cold

(Joshi et al., 2010), our data suggest that Group I and II kale may

have differences in their stress mitigation capacity.

Shikimic acid – Shikimic acid is a precursor of the essential

aromatic amino acids tyrosine, phenylalanine and tryptophan and

therefore is an important precursor for the phenylpropanoid

biosynthetic pathway, which is responsible for the production of a

large number of nutritionally valued specialized metabolites (Dong

and Lin, 2021). Production of shikimic acid can consume upwards

of 30% of the fixed carbon, feeding the production of vitamins K1,

B3 (folate), E (tocopherols), in addition to flavonoids, anthocyanins

and lignin (Tohge et al., 2013). The shikimic acid pathway is also

involved in the color patterning seen in ornamental kale through

modulation of anthocyanin content, which is a key trait in kale as a

source of antioxidants (Liu et al., 2021).

a-linolenic acid – Kale is known to be rich in a-linolenic acid,
however, the differences in abundance between cultivars and the

diel production landscape of a-linolenic acid have not previously

been assessed. a-linolenic acid is a polyunsaturated Omega 3 fatty

acid, which is an essential component of a healthy diet (Nemzer

et al., 2021), as omega 3 fatty acids are known to decrease the risk of

heart disease and lower the blood pressure (Shahidi and

Ambigaipalan, 2018). Importantly, a-linolenic acid also forms the
frontiersin.org

https://doi.org/10.3389/fpls.2023.1170448
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Scandola et al. 10.3389/fpls.2023.1170448
basis of cell membrane components as a precursor of

phosphoglycerolipids, cutin and waxes (He and Ding, 2020).

With a-linolenic acid contributing broadly to many of the

important nutritional properties of kale and our results

demonstrating it maintains diel changes in abundance, along with

differences in abundance between cultivars, a-linolenic acid offers

an array of opportunities for further development of cultivar

specific light recipes to maximize its production.
Differences in the diel proteomes of Group
I and II kale indicate they are defined by
core elements of plant cell regulation

Elucidating the specific molecular components that underpin

the observed metabolomic changes of Group I and II kale revealed a

number of plant cell processes that are diel regulated at the protein-

level. In particular, we find diel proteome changes across multiple

subcellular compartments related to metabolism, RNA processing,

protein translation and light harvesting. With diel biology/the

circadian clock critical for timing the transitions from day-to-

night and night-to-day, understanding where within the cellular

environment [e.g. subcellular compartment(s)] molecular changes

manifest, can help further resolve each kale cultivars potential

agronomic viability from a chronoculture perspective (Steed et al.,

2021). From a metabolic perspective, we find diel changes in:

carbon, nitrogen, glycine, methionine, BCAA and fatty acid

metabolism (Figure 2), which we also see enriched at the pathway

level (Supplemental Data 6), while for RNA processing and protein

translation, we find: mRNA splicing, cytosolic and plastidial protein

translation along with a number of chaperones to exhibit significant

diel changes. We also observed differences involving numerous light

harvesting and signaling proteins, along with differences in

chlorophyll biosynthetic enzymes, which may also be directly

related to Group specific productivity differences. At the highest

level, our quantitative proteomic analysis resolved Group I kale

cultivars to possess significant changes in their diel proteome at EN,

while Group II kale exhibit more significant proteome-level changes

ED (Figure 3). We also note that many significantly changing

metabolic proteins are directly connected to observed diel

metabolome changes, reinforcing our multi-omics approach

(Supplemental Data 6). Further, significant changes in numerous

other, non-metabolic proteins central to proper plant cell regulation

demonstrate how quantitative proteome analysis allows us to map

diel molecular landscape changes in order to identify how kale

breeders and producers can better realize each cultivars

genetic potential.

Metabolism – Significant changes in the diel proteome related to

plant metabolism were wide-ranging, aligning with the metabolite-

determined kale groupings. Enzymes involved in carbon and

nitrogen metabolism exhibiting a significant diel change in

abundance demonstrated coherent time-of-day changes between

both kale groups, consistent with their central roles in plant growth

and development. Conversely, amino acid metabolic enzymes

aligned with the metabolite-defined kale groups, specifically

BCAA-related enzymes and glycine metabolic enzymes, likely
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relating to the specialized metabolites produced by kale that are

derived from these amino acids.

From a carbon metabolism perspective, diel changes centered

around two protein clusters comprised of mitochondrial enzymes

isocitrate dehydrogenase (cICDH), ATP citrate lyase and

components of the pyruvate dehydrogenase complex, along with

key primary metabolic enzymes fructose-bisphosphate aldolase

(FBA), glyceraldehyde 3-phosphate (GAPA) and phosphoglycerate

kinase (PGK). With acetyl-CoA representing a critical metabolite

involved in multiple biosynthetic pathways, including fatty acid

biosynthesis (Xing and Poirier, 2012), it is perhaps not surprising

that cICDH and ATP citrate lyase enzymes exhibit consistent diel

abundance changes in both Group I and II kale (Figure 4;

Supplemental Data 2). Similarly, FBA, GAPA and PGK enzymes

consistently exhibited significant diel abundance changes across both

Group I and II, offering a consistent benchmark for our systems-level

proteome analysis (Supplemental Figure 4A). Intriguingly, different

isoforms of PGK and FBA were found to possess significant changes

in diel abundance between Group I and II kale, whose activity may be

directly related to diel differences in Group I and Group II fructose

levels though changes in fructose 1,6-bisphosphate. This possibility is

further reinforced by the enrichment of multiple sugar related

metabolic pathways amongst both Group I and II kale

(Supplemental Data 6). In Arabidopsis, the three encoded FBAs

were found to have essential roles in plant metabolism, but with tissue

specific expression patterns (Carrera et al., 2021). Here however, it

seems that Group I and II kale each utilize a different subset of FBA

isozymes, as we analyzed the same leaf tissues across cultivars. Unlike

Arabidopsis, the polyploid B. napus has been shown to possess

twenty-two FBAs, which possess diverse developmental expression

patterns across multiple cellular compartments (Zhao et al., 2019).

Further, it seems that despite fructose and glucose representing two of

the group defining metabolites in our study, very few protein groups

related to the generation of fructose and glucose such as starch

degradation enzymes, sucrose synthase or invertase, were found to be

significantly changing in our proteomics data (Figure 4;

Supplemental Data 2). This perhaps indicates that changes in these

enzymes, such as their activity are driven by other regulatory

mechanisms such as reversible protein phosphorylation, rather

than changes in abundance (Hardin et al., 2004).

We also quantified changes in nitrogen assimilating enzymes in

both Group I and II kale. Group I kale cultivars possess substantially

larger diel changes in nitrite reductase (NiR) levels at ED relative to

Group II, while glutamine synthetase isoform 1,4 (GLN1,4), which

converts glutamate to glutamine as part of nitrogen assimilation for

transport from roots to shoots, exhibited a consistent and significant

change in abundance at ED in both Group I and II kale. This aligns

with both our metabolite data (Figure 2; Supplemental Data 1) and

pathway enrichment analysis (Supplemental Data 6), which finds

glutamine levels to peak in nearly all nine kale cultivars at ED. In the

model Brassicaceae Arabidopsis, it is well known that nitrogen

metabolism is a diel regulated process (Flis et al., 2019), with peak

transcript and protein abundance of nitrate reductase enzymes

occurring early in the day, however here, it seems that the precise

time-of-day coordination of these events differs between kale cultivars

(Supplemental Figure 4B).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1170448
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Scandola et al. 10.3389/fpls.2023.1170448
Directly related to both carbon and nitrogen metabolism, our

proteomics data and pathway enrichment analysis also resolved

extensive amino acid metabolism changes (Figure 4; Supplemental

Data 2, 6). In particular, we find significant Group I and II

differences in the diel abundance of enzymes related to glycine,

serine and BCAA (e.g. iso-leucine) metabolism (Schulze et al.,

2016). We also find time-of-day differences in iso-leucine

production, which is produced down-stream of aspartate and

possesses group-specific time-of-day production differences. Here,

both our pathway (Supplemental Data 6) and proteomics

(Supplemental Data 2) analyses support the diel differences in

BCAA levels (e.g. isoleucine and valine) observed between Group

I and II, with BCAA super-pathway enzymes possessing average ED

(Log2FC = 0.63) and EN (Log2FC = 0.42) abundance differences,

respectively. Interestingly, despite aspartate fueling lysine and

methionine production, and our measurements of aspartate and

lysine providing no indications of group specific responses

(Figure 2; Supplemental Data 1), we find Group I kale to

specifically possess a significant change in methionine metabolic

enzymes. Collectively, these aligned diel differences in both the

proteome and metabolome relating to amino acids makes a case for

genetics-based time-of-day harvesting of kale for maximal

nutritional content.

mRNA Processing & Protein Translation – RNA splicing and

protein translation represent two cellular processes carried out by

multi-subunit protein complexes; the spliceosome and the

ribosome, respectively. However, much remains to be resolved as

to how each of these complexes are regulated in plants at the protein

level. Previous diel proteome analyses have found both the

spliceosome and ribosome to be dynamically regulated at the

protein-level by changes in both abundance and phosphorylation

(Uhrig et al., 2021). However, resolution of species-specific

differences in diel abundance has not previously been resolved.

Here we see Group I and II kale defined by smaller abundance

changes in mRNA processing and protein translation machinery at

EN in Group I kale, coupled with larger abundance changes at ED

in Group II kale. Correspondingly, a large abundance of chaperone

proteins changing in a similar pattern at the same time-points is

observed, likely aiding in effective protein production. Surprisingly,

we also see a large abundance of plastidial translational machinery

in both Group I and II kale, which parallel the diel changes in

abundance found in their cytosolic counterparts, suggesting

concerted coordination of global protein production in each kale

group. Currently our understanding of diel changes in mRNA

splicing and protein translation have largely been defined by

transcriptomic sequencing technologies. In particular, use of

polysome loading or RiboSeq as a proxy for protein translation,

which in Arabidopsis is suggested to negatively correlate with

biomass (Ishihara et al., 2017). Similarly, RNAseq profiling of

Arabidopsis over a 24 h photoperiod has found diel changes in

mRNA spliceforms (Romanowski et al., 2020), however, in both

areas of research, direct diel assessment of spliceosome or ribosome

complex composition and regulation at the protein-level has

remained undefined. In light of the work performed in the related

Brassicaceae Arabidopsis, our findings here suggest that there are

systemic differences between the kale groups in the timing of
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growth as it relates to protein translation that could be utilized to

enhance the productivity kale through the precise adjustment of

growth conditions.

Light Harvesting and Signaling – In both Group I and II kale we

see extensive diel changes in the light harvesting and photosynthetic

machinery, with no specific ED or EN changes in either group. The

largest changes observed involved the chloroplast ATP synthase

delta subunit (ATPD) at EN in Group I kale along with enzymes

ENHANCER OF SOS3-1 (ENH1) and NONPHOTOCHEMICAL

QUENCHING 4 (NPQ4) at ED in Group II kale. Chloroplast ATP

synthase is a critical driver of ATP production in plants in the light,

with Arabidopsis plants lacking ATPD presenting a lethal

phenotype due to the destabilization of the ATP synthase

complex (Maiwald et al., 2003). Alternatively, ENH1 is required

to main redox balance (Zhu et al., 2007) and NPQ1 is involved in

non-photochemical quenching in the presence of excess light

energy, which led to increased growth outcomes in tobacco when

present in higher abundance (Kromdijk et al., 2016). Interestingly,

in both Group I and II kale we also observe a small, but important

network of proteins comprised of CRYPTOCHROME 1 (CRY1),

ELONGATED HYPOCOTYL 5 HOMOLOG (HYH) and

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), with

CRY1 more abundant at EN in Group I kale. In response to blue

light, CRY1 inhibits the degradation of the HY5 transcription factor

by COP1 (Wang et al., 2018). Although there is a more limited

understanding of HYH, HY5, an HYH ortholog, is a regulator of

light-mediated transcription in plants, controlling a wide range of

plant cell processes related to growth and development that are

of importance to kale production (Xiao et al., 2022). CRY1 is also

connected to the circadian clock through detection of blue light

fluence (Somers et al., 1998; Sanchez et al., 2020), indicating

potential higher-order regulation of timed-metabolism in Group I

versus Group II kale. This has particularly intriguing chronoculture

implications for Group I kale production in controlled growth

environment settings given its larger diel abundance changes.
Summary

Our integrated, systems-level analysis of nine diverse,

commercially produced and readily consumed kale cultivars has

substantially advanced our understanding of kale from the

phenotypic-level to the underlying molecular-level. In doing this,

our dataset reveals new information about the molecular landscapes

of these kale cultivars when grown under standardized controlled

growth environment conditions, providing new opportunities for

vertical farming and/or horticultural growth of kale. Our systems-

level analysis has defined diel differences in the molecular

landscapes underpinning these diverse kale genetics, elucidating

information for time-of-day harvesting considerations to ensure

maximal nutritional content. Variations in the diel molecular

landscapes of different cultivars or plant accessions have been

previously observed in Arabidopsis (Rees et al., 2021), tomato

(Muller et al., 2016) and soybean (Greenham et al., 2017), with

explanations for these differences being related to environmental

stimuli and/or geography (seasonal impacts and latitude) (Ruts
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et al., 2012; Steppe et al., 2015; Rees et al., 2021). It is also

interesting, that many of those differences have been linked to

diel plant biology. Here, we observe differences in proteins linked to

light perception and the circadian clock (e.g. CRY1), while

simultaneously finding group-specific differences in multiple

metabolites and pathways connected to diel biology and the

circadian clock (Haydon et al., 2013; Cervela-Cardona et al., 2021;

Scandola et al., 2022). Overall, our endeavor to define the

underlying molecular landscape of diverse, commercially grown

kale cultivars opens up new opportunities for horticultural

production and targeted research activities moving forward.

Further, our results suggest that combined use of plant

phenotyping, proteomics and metabolomics represents a powerful

approach for characterizing non-model horticultural crops of

diverse genetic backgrounds.
Materials and methods

Growth conditions

Nine commercially grown cultivars of kale were purchased from

OCS Seeds (Table 1; https://www.oscseeds.com/) and West Coast

Seeds (https://www.westcoastseeds.com/) and grown for the study.

These included: B. oleracea var. sabellica cultivars Winterbor (K2),

Dwarf Curled Scotch (K3), Darkibor (K7), Starbor (K8), Scarlet

(K9), B. oleracea var. palmifolia cultivars Lacinato (K4), Rainbow

Lacinato (K6) and B. napus var. pabularia cultivars Red Russian

(K5) and Red Ursa (K10). Seeds were sterilized in 70% ethanol for

2 min followed by a 70% (v/v) bleach (Chlorox 7.5%) treatment for

7 min and 3 washes with distilled water. The seeds were then grown

on ½ MS media containing 1% (w/v) sucrose and 7 g/L of agar at

pH 5.8. The seeds were cold treated 3 days at 4°C in the dark and

exposed to a 12h light and 12h dark photoperiod consisting of 100

PPFD for a week before being transferred to soil (Sun Gro®,

Sunshine Mix® #1). At 29 days post-sterilization, entire plants

were collected for GC-MS and LC-MS analysis. Growth chambers

were equipped with a programmable Perihelion LED fixture (G2V

Optics Inc; https://g2voptics.com/) and lined with Reflectix® to

ensure a good light distribution. Kales were grown under a 12h light

and 12h dark regimen consisting of 100 PPFD and a temperature of

21°C during the day and 19°C at night. All physiological and

phenotypic assessments were performed at ZT6 (mid-day).

Physiological measurements were taken using a multispecQ

device (PhotosynQ; https://www.photosynq.com/product-page/

multispeq-v-2-0).
Metabolite extraction and GC-MS analysis

Metabolite Extraction and Data Acquisition - Metabolite

extraction and preparation were performed with modifications as

previously described (Liu et al., 2016). Leaf tissue was harvested at

ZT23 (end-of-night) and ZT11 (end-of-day) and directly flash

frozen in liquid nitrogen (n = 4; each biological replicate consists

of a pool of leaf tissue from 3 plants). Sample of 100 mg (+/- 1 mg)
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iced-cold methanol (80% v/v). In each sample, 25 µl of ribitol at 0.4

mg.ml-1 in water were added as internal standard. Samples were

incubated 2 h at 4 °C with shaking and then 15 min at 70°C at 850

rpm in a Thermomixer. Tubes were centrifuged 30 min at 12000

rpm and the supernatants were transferred in new tubes. Polar and

non-polar phases were separated by the addition of 700 µl of water

and 350 µl of chloroform, then vortexed thoroughly and centrifuged

for 15 min at 5000 rpm. The upper methanol/water phase (150 µl)

was transferred to a new tube and dry in a vacuum centrifuge at RT.

Samples were derivatized with 100 ml of methoxamine

hydrochloride-HCl (20 mg.ml-1 in pyridine) for 90 min at 30°C at

850 rpm in thermomixer and followed by incubation with 100 µL of

N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) at 80°C during

30 min with shaking at 850 rpm in thermomixer. Finally, samples

were injected in split less mode and analyzed using a 7890A gas

chromatograph coupled to a 5975C quadrupole mass detector

(Agilent Technologies, Palo Alto, CA, USA). In the same manner,

1 µl of retention time standard mixture Supelco C7–C40 saturated

alkanes (1,000 µg.ml-1 of each component in hexane) diluted 100

fold (10 µg.ml-1 final concentration) was injected and analyzed.

Alkanes were dissolved in pyridine at 0.22 mg.ml-1 final

concentration. Chromatic separation was done with a DB-5MS

capillary column (30 m × 0.25 mm × 0.25 µm; Agilent J&W

Scientific, Folsom, CA, USA). Inlet temperature was set at 280°C.

Initial GC Oven temperature was set to 80°C and held for 2 min

after injection then GC oven temperature was raised to 300°C at 7°C

min-1, and finally held at 300°C for 10 min. Injection and ion source

temperatures were adjusted to 300°C and 200°C, respectively with a

solvent delay of 5 min. The carrier gas (Helium) flow rate was set to

1 ml.min−1. The detector was operated in EI mode at 70 eV and in

full scan mode (m/z 33–600).

Metabolites Data Analysis - Compounds were identified by

mass spectral and retention time index matching to the mass

spectra of the National Institute of Standards and Technology

library (NIST20, https://www.nist.gov/) and the Golm

Metabolome Database (GMD, http://gmd.mpimp-golm.mpg.de/).

Metabolite quantification was performed using MassHunter

Software from Agilent. Peaks were deconvoluted and integrated

and were normalized to the internal standard ribitol and by the

sample weight.
Protein extraction and nanoflow
LC-MS analysis

Protein Extraction and Data Acquisition - Kale leaf tissue was

harvested at ZT23 and ZT11, flash frozen and ground to a fine

powder under liquid N2 using a mortar and pestle and aliquoted

into 400 mg fractions (n = 4; each biological replicate consists of a

pool of 3 plants). Samples were then extracted at a 1:2 (w/v) ratio

with a solution of 50 mM HEPES-KOH pH 8.0, 50 mM NaCl, and

4% (w/v) SDS. This included vortexing, followed by incubation at

95°C in an Eppendorf microtube table-top shaking incubator

shaking at 1100 RPM for 15 mins. This was then followed by an

additional 15 mins of shaking at room temperature. All samples
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were clarified at 20,000 x g for 5 min at room temperature, with the

supernatant retained in fresh Eppendorf microtubes. Sample

protein concentrations were measured by bicinchoninic acid

(BCA) assay (23225; ThermoScientific), followed by reduction

with 10 mM dithiothreitol (DTT) at 95°C for 5 mins. Samples

were then cooled and alkylated with 30 mM iodoacetamide (IA) for

30 min in the dark without shaking at room temperature.

Subsequently, 10 mM DTT was added to each sample, followed

by a quick vortex, and incubation for 10 min at room temperature

without shaking. Total proteome peptide pools were generated by

sample digestion overnight with 1:100 sequencing grade trypsin

(V5113; Promega). Generated peptide pools were quantified by

Nanodrop, followed by acidification with formic acid to a final

concentration of 5% (v/v) and then dried by vacuum centrifugation.

Peptides were then desalted using ZipTip C18 pipette tips

(ZTC18S960; Millipore) as previously described 7, dried and

dissolved in 3.0% ACN/0.1% FA prior to MS analysis. Digested

samples were then analysed using a Fusion Lumos Tribrid Orbitrap

mass spectrometer (Thermo Scientific) in a data independent

acquisition (DIA) mode using the BoxCarDIA method as

previously descried 31. Dissolved peptides (1 µg) were injected

using an Easy-nLC 1200 system (LC140; ThermoScientific) and

separated on a 50 cm Easy-Spray PepMap C18 Column (ES903;

ThermoScientific). Liquid chromatography and BoxCar DIA

acquisition was performed as previously described without

deviation (Mehta et al., 2022).

Proteomic Data Analysis – All acquired BoxCar DIA data was

analyzed in a library-free DIA approach using Spectronaut v14

(Biognosys AG) using default settings. Data were searched using the

B. oleracea var oleracea proteome (Uniprot : https ://

www.uniprot.org/containing 58,545 proteins). Default search

parameters for proteome quantification were used, with specific

search parameters including: a protein, peptide and PSM FDR of

1%, trypsin digestion with 1 missed cleavage, fixed modification

including carbamidomethylation of cysteine residues and variable

modifications including methionine oxidation. Data was Log2

transformed and globally normalized by median subtraction with

significantly changing differentially abundant proteins determined

and corrected for multiple comparisons (Bonferroni-corrected p-

value ≤ 0.05; q-value).
Bioinformatics

Gene Ontology enrichment analyses were performed using the

Database for Annotation, Visualization and Integrated Discovery

(DAVID; v 6.8; https://david.ncifcrf.gov/home.jsp). Significance

was determined using Benjamini-Hochberg (BH) corrected p-

value ≤ 0.05. Conversion of B. oleracea var oleracea gene

identifiers to Arabidopsis gene identifiers for STRING association

network analysis and SUBA4 subcellular localization information

retrieval was performed using UniProt (https://www.uniprot.org/).

STRING association network analyses were performed in Cytoscape

v3.9.0 (https://cytoscape.org/) using the String DB plugin
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stringApp, all datatypes and a minimum correlation coefficient

setting of 0.9. Predicted subcellular localization information was

obtained using SUBA4 and the consensus subcellular localization

predictor SUBAcon (https://suba.live/). The Eucledian distance

pheatmap clustered heatmap analysis of diel metabolites was

performed in R (3.6.1 R Core Team, 2019). Pathway enrichment

was performed using the Plant Metabolic Network (PMN; https://

plantcyc.org/) with enrichment determined by a Fisher’s exact test

significance threshold of p-value < 0.01. Additionally figures were

assembled using Affinity Designer software (v1.9.1.179; https://

affinity.serif.com/en-us/designer/).
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