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Introduction: Zinc (Zn) deficiency causes serious diseases in people who rely on

cereals as their main food source. However, the grain zinc concentration (GZnC) in

wheat is low. Biofortification is a sustainable strategy for reducing humanZndeficiency.

Methods: In this study, we constructed a population of 382 wheat accessions

and determined their GZnC in three field environments. Phenotype data was

used for a genome-wide association study (GWAS) using a 660K single

nucleotide polymorphism (SNP) array, and haplotype analysis identified an

important candidate gene for GZnC.

Results: We found that GZnC of the wheat accessions showed an increasing trend

with their released years, indicating that the dominant allele of GZnC was not lost

during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnCwere

identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate

gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes

of this gene showed, significant difference (P ≤ 0.05) in three environments.

Discussion: A novel QTL was first identified on chromosome 6D, this finding

enriches our understanding of the genetic basis of GZnC in wheat. This study

provides new insights into valuable markers and candidate genes for wheat

biofortification to improve GZnC.

KEYWORDS

Triticum aestivum L., grain Zn concentration, genome-wide association study,
quantitative trait loci, candidate gene
1 Introduction

Zinc (Zn) is an essential microelement for human normal metabolism. Zn deficiency

causes serious diseases, such as liver cirrhosis, dwarfism, coronary heart disease, visual

disorders, reproductive organ development disorders, and even cancer (Hambidge, 2000).

Furthermore, approximately 17% of the world population is affected by Zn deficiency,
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especially women and children in developing countries (Shah and

Sachdev, 2006; Wessells and Brown, 2012; Black et al., 2013). Bread

wheat (Triticum aestivum L.) is one of the most important cereal

crops in the world; its products provide approximately 20% of the

energy and protein in the human diet (Ludwig and Slamet-Loedin,

2019). However, the grain Zn concentration (GZnC) is below the

minimum level (38 mg/kg) required to meet human needs and

cannot satisfy the demand from the people consuming wheat as

their main staple food (Bouis et al., 2011). Therefore, increasing

wheat GZnC is an important goal in wheat breeding.

Owing to the important role of wheat in human nutrition, wheat

biofortification can be used as a cost-effective strategy to alleviate Zn

deficiency, especially in low-income countries, where most people

rely on cereal foods for a basic diet (Velu et al., 2014; Andersson

et al., 2017; Ma et al., 2022). However, owing to the ambiguity of the

genetic architecture and molecular processes regulating Zn

homeostasis in wheat, breeding outstanding varieties with high

GZnC is a difficult challenge (Gupta et al., 2021). Identification of

molecular markers that are closely linked to QTLs controlling

complex quantitative traits, such as grain iron, zinc, or protein

concentration, are a goal on their own to facilitate the development

of biofortified wheat cultivars through marker-assisted breeding,

whereby, improving our understanding of the genetic basis of GZnC

in wheat demands identifying as many causal loci as possible.

Currently, genome-wide association study (GWAS) is the most

popular method for analysing the genetic basis of complex traits

in wheat (Breseghello and Sorrells, 2006; Bradbury et al., 2007).

Recently, some studies have been conducted to identify QTLs

for wheat GZnC by GWAS to further improvement. Specifically, to

the best of our knowledge, nine GWAS studies have been conducted

to identify QTLs and marker-trait associations (MTAs) for wheat

GZnC. Thus, for example, Velu et al. identified 39 significant MTAs

for wheat GZnC located on chromosomes 1A, 2A, 2B, 2D, 5A, 6B,

6D, 7B, and 7D, explaining 5% to 10.5% of the phenotypic variation

(Velu et al., 2018). In turn, Alomari et al. detected 40 MTAs on

chromosomes 2A, 3A, 3B, 4A, 4D, 5A, 5B, 5D, 6D, 7A, 7B, and 7D

for wheat GZnC, which explained 2.5% to 5.2% of the phenotypic

variation (Alomari et al., 2018). Similarly, Cu et al. identified 72

MTAs for wheat GZnC on chromosomes 1A, 2A, 3A, 4A, 5B, and

7A, explaining 3.7% to 5.2% of the phenotypic variation (Cu et al.,

2020). Furthermore, Liu et al. detected 16 QTLs for wheat GZnC on

chromosomes 1B, 3A, 3D, 4A, 4B, 5A, 5D, 6B, 6D, and 7D,

explaining 2.7% to 6.6% of the phenotypic variation (Liu et al.,

2021). In turn, Zhou et al. detected 29 QTLs on chromosomes 1A,

1B, 1D, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 6A, 6B, 6D, and 7A,

which explained 9.75% to 24.77% of the phenotypic variation (Zhou

et al., 2020). Tong et al. identified 25 QTLs on chromosomes 1A,

2A, 3A, 3B, 5A, 5D, 6A, 6B, 6D, 7A, 7B, and 7D, which explained

7.73% to 13.57% of the phenotypic variation (Tong et al., 2022).

Rathan et al. identified two MTAs on chromosomes 1A and 7B,

explaining 6.35% to 7.60% of the phenotypic variation (Rathan

et al., 2022). Juliana et al. identified 67 MTAs on chromosomes 1A,

1B, 2A, 2D, 3B, 4A, 5A, 5B, 5D, 6B, 6D, and 7B, among which the

maximum phenotypic variation explained is 7.3% (Juliana et al.,

2022). Krishnappa et al. found five MTAs on chromosomes 2B, 5B,

6A, and 7B, contributing to 5.7% to 10.9% of the phenotypic
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variation (Krishnappa et al., 2022). However, they are insufficient

for further map-based cloning.

Using of different germplasm resources and high resolution

genotyping techniques may contribute to identify important QTLs

for wheat GZnC; therefore enriching the genetic information. In this

study, 382 wheat accessions were used to determine wheat GZnC in

three environments to analysis the changes of wheat GZnC.

Additionally, a GWAS using a 660K single nucleotide polymorphism

(SNP) array was conducted to identify significant QTLs and candidate

genes for GZnC. Thus, this study aimed to provide useful information

for further GZnC improvement for in wheat.
2 Materials and methods

2.1 Plant materials

Based on previous diversity assessments, the experimental

material used herein comprised 382 representative wheat accessions,

including 68 exotic cultivars, 43 landraces, and 271 domestic cultivars.

These accessions were planted in the cropping season from 2017 to

2018 in Nanyang (33.03°N, 112.50°E), Suqian (34.02°N, 118.33°E),

and Yangling (34.16°N, 108.40°E), where the soil Zn concentrations

were 221.38, 384.86, and 233.25 mg/kg, respectively. The field was

managed according to the local standard agronomic practices.
2.2 Determination of GZnC

Wheat grains were harvested manually in the field. Three

biological replicates were sampled from each wheat accession in

each environment. Wheat grains were washed with distilled water

and dried to avoid potential contamination. Dried wheat grains

were ground to whole wheat flour using a stainless steel grinder

(MM400, Retsch, Haan, Germany), and whole wheat flour was

subsequently oven-dried at 80 °C for 12 h. Subsequencely, 0.2 g of

whole wheat flour was digested in 8 ml of a mixture of high-purity

concentrated nitric acid and hydrogen peroxide (HNO3/H2O2, 75/

25, v/v), and then diluted with ultrapure water. After filtration, the

zinc concentration in the digestion solution was determined using

an inductively coupled plasma system (iCAP 7000, Thermo

Scientific) according to the method described by Ma et al. (2022).

And a standard curve (0.07, 0.14, 0.21, 0.28, 0.35, 0.42 mg/L) was

used for each round of determinations. Finally, the GZnC (mg/kg)

was calculated on a dried weight basis.
2.3 Statistical analysis

Analysis of variance (ANOVA) and t-test were performed using

SPSS 26.0. The following formula was used for estimating

generalised heritability (H2):

H2 =
s 2
G

s 2
G + s 2

GE=n + s 2
e =nr
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Where s2
G represents the phenotypic variation due to the

genotype, s 2
GE represents the phenotypic variation due to the

environment × genotype interaction, s 2
e represents error variance,

n represents the number of environments, and r represents the

number of replicates. The best linear unbiased predictions (BLUPs)

of GZnC for each accession across the three environments were

calculated using the mixed linear model in the “lem4” package,

version 3.5.3 of R, and were used for further GWAS.
2.4 SNP genotyping and screening

The Affymetrix Wheat 660K SNP array was used to genotype

the wheat panel. SNP genotype calls and allele clustering were

analyzed using the Affmetrix Genotyping Console software. The

parameters of allele frequency (MAF) less than 0.05 and missing

data greater than 10% were used to filter the SNP marker to ensure

the accuracy of genotyping, together with a Hardy-Weinberg

equilibrium value greater than 0.01 (Wu et al., 2021), resulting in

a total of 405,606 high-quality SNP markers for GWAS. The

physical locations of all SNP markers were determined using the

bread wheat reference genome of IWGSC RefSeq v1.0

(I.W.G.S.C, 2018).
2.5 Linkage disequilibrium analysis,
population structure and GWAS

Genome-wide LD analysis was performed using PLINK. The

squared correlation (r2) of allele frequencies was plotted in R Studio

using genetic distance (Mb). The LD decay pattern was determined

as the distance at which the LD value was reduced to half of its

maximum value. STRUCTURE v2.3.4 (unlinked markers (r2 = 0))

was used to calculate population structure (Pritchard et al., 2000).

Each K value with a burn-in length of 20,000 was calculated five

times, and iterations were set to be 10,000. The delta K (DK) method

was used to determine the most likely number of subpopulations

based on the change rate between the K values (Earl and vonHoldt,

2012). The general linear model in the GEMMA software was used

to conduct GWAS, and BLUPs of 382 wheat accessions were used as

phenotypic data for GWAS. After calculating the suggestive P-value

threshold based on Bonferroni’s correction (P = 1/Ne, where Ne

represents the effective number of independent SNPs), we

considered -log10 (P-value) ≥ 4.5 to be significant. The -log10 (P-

value) values for all SNPs were plotted on a Manhattan plot.
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2.6 Candidate gene identification

Non-synonymous mutations were obtained using significant

SNPs in the selected QTLs, and phenotypic differences between

haplotypes in the three environments were analyzed to identify the

candidate genes. Root, stem, and leaf tissues at the jointing and

heading stages, as well as wheat grains at 5, 10, 20, and 25 days post-

anthesis (DPA), were collected from cv. Chinese Spring, which has

been used for genome sequencing (I.W.G.S.C, 2018), for

quantitative real-time PCR (qRT-PCR). Total RNA of each

sample was extracted using TRIzol reagent (TaKaRa, Japan)

following the manufacturer instructions, and first-strand cDNA

was synthesised uisng the HiScript III First-stand cDNA synthesis

kit (Vazyme, Nanjing, China). In turn, qPCR was conducted on an

ABI 7500 real-time PCR system (Applied Biosystems, USA) using a

SYBR Premix Ex Taq Kit (TaKaRa, Japan). TaTubulin was used as

an internal control, and the related expression levels were calculated

using the 2−△△Ct method. Primers for qRT-PCR are listed in

Table S1.
3 Results

3.1 Phenotypic analysis of GZnC

The GZnC of 382 wheat accessions in three environments was

determined (Table S2), and the corresponding maximum,

minimum, median, variance, coefficient of variation, skewness,

and kurtosis were calculated (Table 1). The highest GZnC values

were recorded in Suqian, the environment with the highest soil Zn

concentration, and ranged from 22.31 to 92.38 mg/kg (average

35.73 mg/kg). Those recorded in Nanyang followed, ranging from

13.55 to 60.59 mg/kg (average 22.64 mg/kg). In turn, the wheat

accessions in Yangling showed lowest GZnC, ranging from 11.92 to

36.65 mg/kg (average 21.50 mg/kg). BLUPs of GZnC based on

three environments were calculated in the range 24.78~39.21 mg/

kg. ANOVA revealed that the genotype, environment, and

interaction of genotype and environment had significant effects

on GZnC (P<0.001). The H2 of GZnC was determined to be 0.32,

confirming that both environment and genotype had significant

effects on GZnC (Table S3). In addition, the GZnC showed an

approximately normal distribution in the three environments and

BLUPs indicated by skewness, kurtosis, and GZnC distribution

(Table 1; Figure 1). These findings indicated that the wheat panel

was suitable for GWAS.
TABLE 1 Phenotypic data of GZnC in three environments and BLUP.

Environment Min
(mg/kg)

Max
(mg/kg)

Mean
(mg/kg)

Standard deviation
(mg/kg) Coefficient of variation (%) Skewness Kurtosis

Yangling 11.92 36.65 21.50 4.64 0.21 0.62 0.65

Nanyang 13.55 60.59 22.64 4.79 0.21 0.67 1.14

Suqian 22.31 92.38 35.73 9.41 0.26 0.57 0.02

BLUP 24.78 38.21 27.10 1.14 0.04 0.38 -0.20
fro
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3.2 GZnC variation with source and
released years

Based on source, these wheat accessions were divided into three

categories: 68 exotic cultivars, 43 landraces, and 271 domestic

cultivars. Domestic cultivars showed the highest wheat GZnC,

followed by landraces and exotic cultivars (Table 2). These wheat

accessions were further divided into five stages according to the

released years. In this respect, we found that GZnC increased from

the pre-1950s to the post-1990s in Suqian and Yangling

(Figures 2A, B), while it showed slightly fluctuation in Nanyang

(Figure 2C). These findings indicate that the predominant allele

may be selected during wheat breeding.
3.3 Genotyping by SNP array and linkage
disequilibrium analysis

The 660K SNP array was used for conducting a GWAS using

the phenotypes of 382 wheat accessions. After removing low-quality

SNPs (MAF< 0.05 and missing data > 0.1), 412,619 SNPs remained

for subsequent analysis. A set of 405,606 SNPs was distributed on 21

chromosomes, of which the B subgenome (185,057) was the most
Frontiers in Plant Science 04
labelled, followed by the A subgenome (162,316), and the D genome

(58,233). Chromosomal distribution of SNP markers showed that

chromosome 3B contained the largest number of SNP markers

(45,867) and the least number was found on chromosome 4D

(4,046). Further, marker density distribution was uneven across

chromosomes, ranging from 5.67 markers per Mb (4D) to 66.53

markers per Mb (3B). In addition, the polymorphism information

content of the three sub-genomes was 0.28, 0.29, and 0.27,

respectively (Table 3).

Population structure analysis was performed for these 382

wheat accessions. According to the DK method of Bayesian

clustering, the slope broke when K = 8. As a result, the 382 wheat

accessions were divided into eight subpopulations, SP1-SP8 (Table

S2; Figures 3A, B). SP1 contained eight exotic cultivars, two

landraces, and 56 domestic cultivars, with an average GZnC of

27.36 mg/kg. SP2 contained four exotic cultivars, 35 landraces, and

six domestic cultivars, with an average GZnC of 26.04 mg/kg. SP3

contained 59 domestic cultivars, with an average GZnC of 27.31

mg/kg. SP4 contained one exotic cultivars, two landraces, and 34

domestic cultivars, with an average GZnC of 27.29 mg/kg. SP5

contained two exotic cultivars and 38 domestic cultivars, with an

average GZnC of 28.10 mg/kg. SP6 contained one exotic cultivar,

one landraces, and 38 domestic cultivars, with an average GZnC of
TABLE 2 GZnC of different source in three environments.

Wheat accessions Nanyang (mg/kg) Suqian (mg/kg) Yangling (mg/kg)

Exotic cultivars 22.93 36.46 19.96

Landraces 23.42 34.56 20.03

Domestic cultivars 22.98 37.30 22.56
B

C D

A

FIGURE 1

Histogram of wheat GZnC density in three environments and BLUP. Nanyang (A), Yangling (B), Suqian (C), BLUP (D), and the red curves and the
black short horizontal lines represent the density curve and the rug plot of the distribution of GZnC.
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27.90 mg/kg. SP7 contained 25 exotic cultivars, with an average

GZnC of 26.46 mg/kg. SP8 contained 27 exotic cultivars, three

landraces, and 40 domestic cultivars, with an average GZnC of 27.14

mg/kg (Table S4). We found that the GZnC fluctuated slightly

among the eight subpopulations. LD was estimated using SNPs and

squared allele frequency correlations (r2) for subgenomes A

(162,316), B (185,057), and D (58,233). As expected, LD decayed

with increasing physical distance, and it differed among

subgenomes. Further, whole-genome-wide LD decayed with

genetic distance, and it decayed to half of the genome at a genetic

distance of 3.6 Mb. Subgenomes A, B, and D were 3.0 Mb, 5.7 Mb,

and 1.6 Mb, respectively (Figure 3C).
3.4 GWAS for GZnC

The BLUPs based on the GZnC across three environments were

used for the GWAS using the Lm4 model. SNPs with –log10
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(P-value) ≥ 4.5 were deemed significant (Figure 4). A total of nine

significant QTLs were selected, locating on chromosomes 3A, 4A,

5B, 6D, and 7A. For convenience, the SNP markers with the highest

threshold in each QTL were used to represent the corresponding

QTL, and the effects of the nine QTLs ranged from 0.16 to

0.30 (Table 4).
3.5 Identification of candidate genes for
wheat GZnC

A total of 494 genes were found in the nien QTLs. The functional

annotations of these genes are provided in Table S5. We further

analyzed significant SNPs in the nine QTLs that might cause

missense mutations. Interestingly, we found that the phenotype

between alleles, which was caused by the SNP AX-108884748,

showed significant differences in the three environments, whereby

it was further analyzed, as it may be closely related to GZnC.
B CA

FIGURE 2

The changes of GZnC in Suqian (A), Yangling (B), and Nanyang (C) with released years.
B C

A

FIGURE 3

The population structure and linkage disequilibrium of 382 wheat accessions. Subpopulations inferred by K-mean structure analysis (A). Principal
component analysis of all wheat accessions (B). LD decay (C) over different genetic distances (Mb) for A, B and D subgenomes and whole genome in
the wheat panel (r2 = 0.1).
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The SNP, AX-108884748, is located at 328,977,424 bp on

chromosome 6D (Figure 5A), and may cause an amino acid

change from Arg (CC haplotype) to Ser (AA haplotype) at 1047

bp in the GDSL esterase-encoding gene, TraesCS6D01G234600

(Figure 5B). The 382 wheat accessions were divided into three

categories according to genotype: among them, 250 wheat

accessions with the CC haplotype, 123 with the AA haplotype,

and 9 with heterozygosity or lack of genotype. After analysing the

phenotypic data of the two haplotypes, the GZnC of the AA

haplotype was found to be significantly higher (P ≤ 0.05) than

that of the CC haplotype across three environments (Figure 5C).

Further, qRT-PCR analysis showed that the gene was

predominantly expressed in the root, stem, and grain tissues,

suggesting a possible role in Zn transfer (Figure 5D). Altogether,

these results indicate that TraesCS6D01G234600 is an important

candidate gene for wheat GZnC.
Frontiers in Plant Science 06
4 Discussion

4.1 Increasing wheat GZnC is needed to
alleviate “hidden hunger”

Wheat grain yields have significantly increased over the past

75 years, from the early days of the “Green Revolution” in the

1960s to the recent optimisation of breeding and agronomic crop

management (Evenson and Gollin, 2003; Pingali, 2012). However,

nutrition-related traits are often neglected in the breeding process,

resulting in the low concentration of microelements in wheat

grains, giving rise to what has been called “hidden hunger” (Ul-

Allah, 2018). Zn is an indispensable microelement for the human

body. As an essential microelement, Zn cannot be synthesised by

the human body, and plays a very important role in the human

nervous, immune, and reproductive systems, as well as in the
TABLE 3 Summary of the SNPs information in three sub-genomes and chromosomes of 382 wheat accessions.

Chromosome No.of
markers

Effective
number

Effective
Ratio

Suggestive
P-value

Markers
(%)

Length
(Mb)

Marker
density He PIC

1A 28,959 5,687 0.20 1.76E-04 7.14 594.02 48.75 0.66 0.27

1B 20,624 4,796 0.23 2.09E-04 5.08 780.76 26.42 0.76 0.30

1D 10,584 3,090 0.29 3.24E-04 2.61 750.73 14.10 0.67 0.28

2A 28,832 6,170 0.21 1.62E-04 7.11 744.54 38.72 0.70 0.28

2B 28,645 6,708 0.23 1.49E-04 7.06 709.76 40.36 0.73 0.29

2D 10,449 3,744 0.36 2.67E-04 2.58 617.97 16.91 0.69 0.28

3A 19,409 4,611 0.24 2.17E-04 4.79 736.69 26.35 0.69 0.28

3B 45,867 7,828 0.17 1.28E-04 11.31 689.38 66.53 0.77 0.31

3D 7,247 2,678 0.37 3.73E-04 1.79 801.25 9.04 0.67 0.27

4A 17,856 4,258 0.24 2.35E-04 4.40 830.70 21.50 0.67 0.27

4B 13,120 3,021 0.23 3.31E-04 3.23 673.47 19.48 0.71 0.29

4D 4,046 1,666 0.41 6.00E-04 1.00 713.02 5.67 0.66 0.27

5A 22,616 4,947 0.22 2.02E-04 5.58 720.95 31.37 0.78 0.31

5B 33,966 6,539 0.19 1.53E-04 8.37 750.61 45.25 0.80 0.31

5D 8,396 3,267 0.39 3.06E-04 2.07 495.44 16.95 0.65 0.26

6A 16,383 3,834 0.23 2.61E-04 4.04 651.81 25.13 0.73 0.29

6B 25,783 5,565 0.22 1.80E-04 6.36 615.48 41.89 0.69 0.28

6D 7,425 2,924 0.39 3.42E-04 1.83 509.85 14.56 0.65 0.26

7A 28,261 6,280 0.22 1.59E-04 6.97 566.04 49.93 0.69 0.28

7B 17,052 4,499 0.26 2.22E-04 4.20 473.56 36.01 0.72 0.29

7D 10,086 3,682 0.37 2.72E-04 2.49 638.65 15.79 0.64 0.26

A genome 162,316 4934.47 32.89 0.70 0.28

B genome 185,057 5719.38 32.36 0.74 0.29

D genome 58,233 3950.83 14.74 0.66 0.27

Total 405,606 14064.68 28.84 0.70 0.28

Average 2.51E-04
fr
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growth and development of children. Hao et al. analyzed wheat

GZnC over the past 80 years in China, and found no decrease with

released years (Hao et al., 2021). In turn, this study revealed that

wheat GZnC has increased with the released years. Therefore, the

dominant allele of wheat GZnC was never lost during

selective breeding.

As one of the main food crops in the world, bread wheat is the

staple food and major source of microelements for 30% to 40% of
Frontiers in Plant Science 07
the world population (Poudel and Bhatta, 2017). Given the

significant impact of Zn on human health (Shewry et al., 2012), it

is unfortunate that, as many studies have shown, wheat GZnC is low

worldwide. Thus, for example, Rehman et al. analyzed 28 wheat

accessions in Pakistan and found that wheat GZnC ranged from

21.20 to 54.40 mg/kg (Rehman et al., 2018). Similarly, Khokhar et al.

analyzed 245 wheat accessions from Woestkin and found that

GZnC ranged from 24.0 to 49.0 mg/kg (Khokhar et al., 2020). In
FIGURE 4

Manhattan plots of the GWAS results for GZnC. The resulting BLUPs of GZnC of 382 wheat accessions across three environments was used for
GWAS. -log10 (P-value) of each SNP was shown in the Manhattan plot.
B

C

D

A

FIGURE 5

Candidate gene analysis based on the SNP AX-108884748 on chromosome 6D. Local Manhattan plot for the candidate region on chromosome 6D.
The green dot represents the significant SNP AX-108884748. The corresponding LD block analysis of SNPs in this region is shown below. The
degree of linkage is represented by the coefficient of r2 (A). Gene structure and location of the non-synonymous SNP for TraesCS6D01G234600.
Yellow rectangles and black lines represent exons and introns, respectively (B). Boxplots for GZnC based on haplotype analysis (C). Upper and lower
edges of the box represent the 75th and 25th quantiles, respectively, and the whiskers show the 90th and 10th quantiles; the horizontal solid lines
represent the median. Statistical significance was analyzed by t-test, * P ≤ 0.05; ** P ≤ 0.01. Expression profile of TraesCS6D01G234600 in different
tissues, as determined by qRT-PCR. The data was shown as the means ± Sd of n = 3 (D).
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turn, Maryami et al. analyzed 158 Iranian wheat accessions and

found that GZnC ranged from 27.9 to 65.0 mg/kg (Maryami et al.,

2020). In particular, according to a summary and analysis of a large

number of studies worldwide by Wang et al., the average global zinc

concentration in wheat grains is only 28.48 mg/kg (Wang et al.,

2020). Consistently, the results reported herein revealed that the

GZnC ranged from 11.92 to 92.83 mg/kg. Although domestic wheat

cultivars contained the highest GZnC, they were still far below

human requirements, at approximately 40 to 60 mg/kg (Cakmak,

2008). Therefore, there is an urgent need to improve GZnC

in wheat.
4.2 Genetic structure analysis was
performed by comparing known loci

As a complementary strategy, GWAS is a powerful tool to for

detecting QTLs for complex traits (Hamblin et al., 2011). With

the development of wheat genome sequencing, different SNP

arrays have been developed and gradually become the main tools

for wheat GWAS (Rasheed et al., 2017). To reveal the QTLs for

wheat GZnC, a 35K SNP array was used to identify two QTLs

located on chromosomes 1A and 7B (Rathan et al., 2022). A

wheat 660K SNP array was used to map seven QTLs on

chromosomes 1B, 3B, 3D, 4A, 5A, 5B, and 7A (Zhou et al.,

2020). Subsequently, the 90K and 660K SNP arrays were used to

identify 17 QTLs on chromosomes 1A, 2A, 3A, 3B, 5A, 5D, 6A,

6B, 6D, 7A, 7B, and 7D, which were related to wheat GZnC

(Tong et al., 2022). However, the molecular mechanism

underlying Zn accumulation in wheat grains remains unclear,

and no molecular marker conducive to GZnC has been used for

wheat breeding. In this study, we identified nine QTLs on

chromosomes 3A, 4A, 5B, 6D, and 7A. Specifically, the QTL

(AX-108884748) was first identified on chromosome 6D, and is

most likely a novel QTL located in the chromosomal region. This

finding enriches our understanding of the genetic basis of GZnC

in wheat.
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4.3 Candidate genes for GZnC in wheat

A few genes have been functionally verified aiming to improve

wheat GZnC. For example, the NAC transcription factor, NAM-B1,

promotes the transfer of Zn from the leaves to the grains to increase

GZnC (Uauy et al., 2006). However, wheat GZnC is a quantitative

trait that is contributed by many genes. To date, many studies have

been performed using GWAS to screen candidate genes for complex

traits in wheat. Tong et al. used three methods: haplotype analysis,

gene function comparison, and lineal homologues to screen a total

of 28 promising candidate genes that might be involved in zinc/iron

absorption, transport, storage, and regulation (Tong et al., 2022). In

turn, Zhou et al. used superior allele estimation to identify seven

candidate genes for GZnC, encoding NAC transcription factor and

TPR-like superfamily proteins (Zhou et al., 2020). Meanwhile, using

haplotype analysis, Krishnappa et al. identified two important

candidate genes for GZnC, encoding a late embryogenic rich

protein, LEA-18 , and RNA recognition motif domains

(Krishnappa et al., 2022). These findings indicate that GWAS is a

highly useful tool for identifying candidate genes for complex traits.

In addition, these studies showed haplotype analysis is reliable for

screening candidate genes for complex traits, which laid a solid

theoretical foundation for our subsequent research.

In th i s s tudy , we ident ified the cand ida te gene

TraesCS6D01G234600 on chromosome 6D through haplotype

analysis, which was caused by the SNP AX-108884748 (CC/AA).

This candidate gene encodes GDSL esterase, which shows

hydrolytic enzyme activity for thioesters , aryl esters,

phospholipids and amino acids, and others (Akoh et al., 2004).

The AA allele had a significant positive effect on GZnC in all three

environments (P ≤ 0.05), indicating the importance of

TraesCS6D01G234600. In addition, this gene was mainly

expressed in the root, stem, and grain tissues, suggesting that it

may play an important role in Zn transfer. These results provide

important information for further improvement of wheat GZnC,

and indicate that the pyramid effect should be considered in the

next step of selective breeding.
TABLE 4 Significant QTLs associated with GZnC.

Traita Chromosome Markerb Physical positionc (bp) Predominant allele and its ratiod -log10(P-value) Effect

GZnC

3A AX-109368604 140,810,282 G/A (0.12) 4.50 0.19

4A AX-109872817 621,769,441 G/A (0.38) 4.57 0.20

5B AX-109350479 13,177,703 G/T (0.46) 5.06 0.21

6D AX-108814900 307,646,180 G/A (0.39) 6.38 0.30

6D AX-108884748 328,977,424 A/C (0.33) 4.81 0.26

6D AX-89576368 403,654,827 T/C (0.45) 5.51 0.27

6D AX-108812106 410,167,022 C/T (0.49) 5.19 0.16

6D AX-94571657 469,831,635 C/G (0.11) 4.76 0.29

7A AX-109999591 726,436,979 T/C (0.33) 5.08 0.29
frontie
aGZnC, grain zinc concentration.
bThe SNP markers with the highest threshold in each QTL were used to represent the corresponding QTL.
cPhysical positions of single nucleotide polymorphism (SNP) markers were based on IWGSC RefSeq v.1.0.
d “–“ indicates the predominant allele with its ratio on GZnC.
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5 Conclusion

We constructed a diversity panel comprising 382 wheat

accessions, and conducted field trials in three environments.

The GZnC of 382 wheat accessions was determined, and the

data showed that wheat GZnC increased with the release years,

indicating that the predominant allele of wheat GZnC was not

lost during selected breeding. Phenotypic data were further

analyzed using GWAS, and nine QTLs for GZnC were

identified, with effects ranging from 0.16 to 0.30. In addition,

one candidate gene for GZnC was screened using haplotype

analysis. Overall, our study provides novel insights that

increase our understanding of the genetic information of

GZnC and will facilitate the improvement of GZnC in wheat

breeding programs.
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