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Uncrewed aerial systems (UASs) provide high temporal and spatial resolution

information for crop health monitoring and informed management decisions to

improve yields. However, traditional in-season yield prediction methodologies

are often inconsistent and inaccurate due to variations in soil types and

environmental factors. This study aimed to identify the best phenological stage

and vegetation index (VI) for estimating corn yield under rainfed conditions.

Multispectral images were collected over three years (2020-2022) during the

corn growing season and over fifty VIs were analyzed. In the three-year period,

thirty-one VIs exhibited significant correlations (r ≥ 0.7) with yield. Sixteen VIs

were significantly correlated with the yield at least for two years, and five VIs had

a significant correlation with the yield for all three years. A strong correlation with

yield was achieved by combining red, red edge, and near infrared-based indices.

Further, combined correlation and random forest an alyses between yield and VIs

led to the identification of consistent and highest predictive power VIs for corn

yield prediction. Among them, leaf chlorophyll index, Medium Resolution

Imaging Spectrometer (MERIS) terrestrial chlorophyll index and modified

normalized difference at 705 were the most consistent predictors of corn yield

when recorded around the reproductive stage (R1). This study demonstrated the

dynamic nature of canopy reflectance and the importance of considering growth

stages, and environmental conditions for accurate corn yield prediction.

KEYWORDS

corn, cover crop, phenology, remote sensing, vegetation indices, yield
1 Introduction

Feeding the growing population is an urgent challenge for the agriculture sector.

However, over-fertilization to improve yield has resulted in negative consequences like

water contamination and deterioration of soil health (Halliday andWolfe, 1991; Singh, 2018).

Fertilizer efficiency can be improved by applying the right amount at the right time based on
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1168732/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1168732/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1168732/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1168732/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1168732&domain=pdf&date_stamp=2023-07-21
mailto:rajubr@pss.msstate.edu
https://doi.org/10.3389/fpls.2023.1168732
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1168732
https://www.frontiersin.org/journals/plant-science


Shrestha et al. 10.3389/fpls.2023.1168732
the crop’s seasonal needs, and variable rate technologies (VRT) have

that potential. For VRT, input decisions are usually based on a

prescription map based on either intensive soil sampling (Kitchen

et al., 2005; Servadio et al., 2017) or historic yield information (Lark,

1998; Jaynes et al., 2005). Spatially dense soil sampling (i.e., ≤ 2.5-acre

grid which is the industry standard) is costly and not guaranteed to

accurately represent soil conditions across space. At the same time,

historic yield information is not reliable information for in-seasonal

management decisions as yield varies from season to season

(Maestrini and Basso, 2018). Therefore, in-season estimation of

yield can improve management decisions for agricultural inputs.

It is estimated that 1.2 billion tons of corn was produced globally

in 2021 (FAO, 2022) and the United States alone produced 382.9

million tons, worth of 82.6 billion USD (USDA, 2022). Corn is one of

the important cereal crops, which is cultivated across the globe with

the highest fertilization rate (IFA, 2022). The requirement for

agricultural inputs (fertilizer and water) can be estimated by

monitoring canopy optical properties. Green canopy has high

absorption in the visible portion of the light spectrum and high

reflectance in the near-infrared portion (Ustin and Jacquemoud,

2020). Plants absorb the maximum amount of light in the visible

portion for photosynthesis where blue (B) and red (R) are strongly

absorbed by the chlorophyll and carotenoid pigments (Lichtenthaler,

1987; Ustin and Jacquemoud, 2020), while, red edge (RE) and near-

infrared (NIR) values are found to be associated with plant health

(Horler et al., 1983; Fahrentrapp et al., 2019; Zahir et al., 2022).

Additionally, leaf optical signatures are highly responsive to changes

in soil and canopy nitrogen (Wood et al., 1992; Ziadi et al., 2008;

Yang et al., 2012). Any detrimental events that change chlorophyll

pigment reduce the potential assimilation capacity which adversely

affects the growth, development and yield (Bheemanahalli et al.,

2023). Consequently, changes in crop biochemical and physiological

properties can be measured by monitoring canopy reflectance

properties. The advancement of science and technologies has

revolutionized high-throughput phenotyping, especially with UASs.

The greatest boon has been its ability to collect high-resolution spatial

and temporal information quickly, as well as flexibility on revisiting

time and choice of sensor. Such high-resolution data can divulge the

spatial and temporal variability (Matese et al., 2015) present in the

crop during the growing season which can be integrated with VRT

for management decisions. In addition, the adoption of VRT in

combination with in-season spectral data for nitrogen application has

promoted an increase in profitability and nitrogen saving as

compared to traditional practices (Kitchen et al., 2010; Scharf

et al., 2011).

A UAS comprises an uncrewed aerial vehicle (UAV), potentially

one ormore sensors or payloads, and a communicating and controlling

device. The choice of sensor is an important consideration. A

multispectral sensor that consists of blue, green (G), red, red edge,

and near-infrared bands has been the first choice for studying crop bio-

physiological parameters for many researchers (Yao et al., 2019;

Bheemanahalli et al., 2022; Bheemanahalli et al., 2023). Various other

spectral, thermal, and light detection and ranging (LiDAR) sensors

have been deployed on UAV-based plant phenotyping (Xie and Yang,
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2020). Both spectral and thermal sensors have been used for studying

plant health (Geipel et al., 2014; Simic Milas et al., 2018) and LiDAR

data has been used for plant structure (Yuan et al., 2018; Wu et al.,

2019; ten Harkel et al., 2020; Luo et al., 2021). Santana et al. (2021)

deployed a four-band multispectral sensor mounted on a UAV for the

estimation of corn yield. Vong et al. (2021) used a red-blue-green

(RGB) sensor to estimate corn stand count. Barzin et al. (2020) used a

five-band multispectral sensor (blue, green, red, RE, NIR) for the

estimation of corn yield. Chivasa et al. (2021) used a four-band

multispectral sensor (green, red, RE, NIR) for the prediction of corn

streak virus severity and yield. Zhang et al. (2019) used hyperspectral

imagery collected from a UAV for detecting yellow rust disease in

wheat. Crusiol et al. (2020) used a thermal sensor mounted on a UAV

for determining water status of soybean plants.

The sensor is mounted on a UAV and deployed to collect the

imagery data. These data are generally transformed into a ratio or

combination of normalized differences of spectral bands known as a

vegetation index (VI) to study crop health and performance.

Vegetation indices (VIs) have been found highly related to

physiological parameters (Bannari et al., 1995; Xue and Su, 2017;

Ma et al., 2019) and less sensitive to atmospheric effects compared

to spectral bands (Myneni and Asrar, 1994; Gitelson et al., 2002).

The normalized difference vegetation index (NDVI) is commonly

used to measure vegetation health. It exhibits a strong association

with leaf dry biomass (Kross et al., 2015), yield (Hassan et al., 2019;

Maresma et al., 2020), and leaf area index (LAI) (Shafian et al.,

2018). However, its usefulness has been limited due to saturating

tendency at the higher LAI (Sellers, 1985; Carlson and Ripley, 1997).

Various other VIs are found to have a strong association with crop

bio-physiological parameters: normalized difference spectral index

(NDSI) and soil adjusted vegetation indices (SAVI) are found to

have a strong correlation with leaf nutrition index (Zhao et al.,

2018), modified normalized difference water index (MNDWI) with

LAI (Zarate-Valdez et al., 2012), MERIS terrestrial chlorophyll

index (MTCI) with chlorophyll (Dash and Curran, 2007), wide

dynamic range vegetation index (WDRVI) with yield (Maresma

et al., 2016), and crop water stress index (CWSI) with water status

(Gonzalez-Dugo et al., 2014; Santesteban et al., 2017). In addition,

different techniques were used to select vegetation indices based on

variance inflation factor, recursive feature elimination, random

forest, correlation, Bayesian variable selection, and genetic

algorithm for yield estimation (Maya Gopal and Bhargavi, 2019;

Barzin et al., 2020; Aditya Shastry and Sanjay, 2021; Saravi et al.,

2021; Barzin et al., 2022). A random forest was widely used to select

VIs to estimate different crop traits (Maya Gopal and Bhargavi,

2019; Barzin et al., 2020; Li et al., 2022; Luo et al., 2022) due to its

robustness to outliers and noise (Breiman, 2001).

To our best knowledge, none of the studies have reported

suitable VIs that can be used throughout the growing season to

predict yield in corn. Thus, the objectives of our research were to i)

identify the potential VIs that significantly correlate with yield

across the growing season, ii) identify the suitable phenological

stage for yield prediction and iii) identify the best predictive VI for

yield estimation under rainfed environments.
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2 Materials and methods

2.1 Site description

The field experiment was conducted for three consecutive years

2019-2022 in the R. R. Foil Plant Science Research Center,

Mississippi State University (33°28’21.0”N 88°46’25.5”W), Figure 1.

2.2 Experimental design
and crop husbandry

Corn - and - cotton was grown as a rotation cash crop during

the growing season under rainfed conditions. Best management
Frontiers in Plant Science 03
practices were adopted to establish the crops: cover crops were

grown during the fallow period with minimum or no tillage and

cash crop was planted in mid-April. The experiment consisted of

three cover crop treatments, Austrian winter pea (Pisum sativum

L.), Daikon radish (Raphanus sativus L. subsp. longipinnatus),

cereal rye (Secale cereale L. var. Elbon), and a no cover crop

(NCC) treatment. In 2022, radish was replaced with a mixture of

winter pea, radish, and rye. The experiment was designed as a split-

plot randomized complete block, with the cash crop as the main

factor and the cover crop species as the sub-factor. Each subplot had

four rows of 90 m length × 3.8 m width, with four replicates

(Figure 1). Cover crops were planted in October and terminated in

March across three years. Prior to the cover crop planting, two tons
A B

FIGURE 1

Research site location (A) and experiment design (B).
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per acre of poultry litter was surface broadcasted. After the

termination of the cover crop, corn was planted on April 14,

2020, April 07, 2021, and March 28, 2022. A split fertilization

procedure was adopted and divided into two parts. No cover crop

(NCC) treatment received 56 kg N ha-1 as a starter fertilizer at the

V3 and 168 kg N ha-1 at the V12 growth stage. The cover crop

treatments did not receive starter fertilizer, but 168 kg N ha-1 was

applied to cover crop treatments at the V12 growth stage. The

source of N fertilizer was urea ammonium nitrate (UAN solution,

32% N). Corn plots were harvested in September 2020-2022 after

completing physiological maturity. It is important to note that, in

this study, the cover crop treatment’s influence on corn yield was

not the major focus. Instead, the study aims to determine the ideal

phenological stages and likely highest predictive power VIs for corn

yield prediction under rainfed conditions.
2.3 Data collection

2.3.1 Yield
The middle two rows of each subplot were harvested using a

mechanical corn harvester and the yields were adjusted to a 15.5%

moisture level. The obtained yield was then converted into the

mega-gram per hectare (Mg ha-1).

2.3.2 Data acquisition
A UAV mounted with a five-band multispectral camera

(Rededge MX, Micasense Inc., Seattle, USA) was flown at an

altitude of 61 m (200 ft) above ground level producing a spatial

resolution of approximately 4 cm. The sensor has the following

central wavelengths(bandwidths): 475(20) nm, 560(20) nm, 668(10)

nm, 717(10) nm, and 842(40) nm for blue, green, red, RE, and NIR

bands, respectively. A mission planning software (DJI GSPro, DJI

LLC., Shenzen, China) was used to create the UAV flight plan in a

single grid pattern. Images were acquired by setting the sensor in

automatic exposure mode with 80% frontal overlapping and 70% side

overlapping. The data was stored in 16-bit raw format. Before and

after each flight, an image of the reference reflectance calibration tile

provided by the sensor manufacturer was taken, which was later used

for reflectance calibration following guidance from the sensor

manufacturer. The data were collected weekly throughout the year

as the weather permitted within ±2 hours of local solar noon. The

UAV data were collected between the vegetative stage (V3) and the

reproductive stage (R5) as shown in Supplementary Table S1.

Specifically, data were collected at various time points, including

V5, V6, V7, V10, V11, and V13, which represent the number of

visible leaf collars on the main stem, where Vn refers to leaf collars

greater than 13. In addition, data were collected at the reproductive

stage, including R1, R2, R3, R4, and R5, which correspond to the silk,

blister, milk, dough, and dent stages, respectively (Nleya et al., 2016).
2.4 Data preprocessing

A commercial image stitching software Pix4D Mapper (Pix4D

SA, Lausanne, Switzerland) was used to generate a single
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orthomosaic image of the whole field. The mosaic image was geo-

rectified using the ground control points that were placed around

the edge of the experimental field. The accuracy of the GPS device

(Trimble Geo7x, Trimble Inc., CA, USA) was ±2cm. The image

digital number was converted into reflectance value using the

reference reflectance calibration tile provided with the sensor. To

extract the corn pixels, a support vector machine algorithm was

employed using geospatial software (ENVI, version 5.6, Exelis

Visual Information Solution, Boulder, CO, USA). The

orthomosaic image can be classified into three major classes:

corn, soil and weed pixels. For each class, at least five thousand

pixels were selected for classification. The accuracy for the

classification of corn pixels for all the images was greater than 0.95.
2.5 VI extraction and selection

Orthomosaic images that were affected by clouds were removed

from the analysis. After removing the background pixels (i.e., soil,

stubble and weeds) from orthomosaic, the middle two rows of each

subplot were first digitized and split into individual subplots using

ArcGIS (Environmental Systems Research Institute, Inc. (ESRI),

Redland, CA, USA). Each subplot was loaded in Python using the

GDAL library to compute the average spectral information. This

spectral information was then used to calculate the VIs that are

related to crop health, photosynthesis, biochemical, and physiology.

The list of VIs used in this study is given in Supplementary Table S2.

Correlation analysis between VIs and yield was performed for each

flight or during the corn growing season. Further, to select the VI

with the best predictive power we followed three criteria: i) any VI

that had a significant correlation (absolute value of correlation

coefficient r ≥ 0.7) with yield for each date was assigned a score of 1,

ii) only those VIs that scored 1 were summarized in each year, and

iii) the top three VIs with the maximum cumulative score were

identified as stable across stages of growth as well as the VIs with the

best predictive power. We repeated the same analysis for three

growing seasons and selected the VIs that were unique and

common across years as the best predictors of yield. In previous

studies (Asuero et al., 2006; Akoglu, 2018; Kogan et al., 2018), a

correlation coefficient with an absolute value greater than 0.7 has

been widely regarded as a strong correlation. Therefore, we chose a

threshold limit of 0.7 to assign a score of 1.

In addition, to determine the best VI at a given phenology stage,

a machine learning technique based on random forest (RF)

algorithm was implemented. A RF is collection of decision trees

that are trained independently. The prediction from each decision

tree is averaged to a single output (Breiman, 2001). Initially, the RF

model parameters were tuned by implementing a randomized

search cross-validation method. In this method, a set of

predefined values were randomly chosen as a possible candidate,

and a hundred sets of hyperparameters were considered. Next,

cross-validation was performed for each set of hyperparameters,

and five-fold cross-validation was chosen. Then finally, the model

returns the best set of hyperparameters. The tuned hyperparameters

were the number of trees, number of samples required to split the

internal node, minimum samples required to be a leaf node, and
frontiersin.org
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maximum feature to be considered while splitting the node (full

feature and square root of total number of feature). A bootstrap

technique was selected for generating tree samples. After tuning the

RF model, the model was fitted with the best set of hyperparameters.

To rank the variables, a permutation-based feature importance

method was implemented utilizing all the variables, and a simple

linear model was developed with the top-ranked variable.

Geospatial software, ArcGIS and ENVI were used for data

manipulation. The modeling was done with Python (version 3.9)

using the stats models (version 0.13.5) library for linear regression

analysis and the sci-kit-learn library (version 1.0.2) for random

forest analysis.
2.6 Yield modeling

A simple linear regression model was employed to develop a

linear relationship between corn yield and selected variables as

discussed above. The model performance was compared with the

coefficient of determination (R2) and mean absolute percentage

error (MAPE). The variable with high R2 with significantly lower

MAPE (p<0.01) was considered the highest predictive power VI

across the growing season. The modeling was done with Python

(version 3.9) using the sci-kit-learn library (version 1.0.2).
3 Results

During the corn growing season in 2020, 2021 and 2022, the

observed average air temperature was 24.2, 23.7, and 24.7°C,

respectively, and precipitation was 523 mm (optimum), 859 mm

(high) and 481 mm (low), respectively (Figure 2). The year 2022 was

observed to be relatively drier than 2020 and 2021. There were

significant differences in corn yield between treatments and years

(Figure 3). Plots with winter pea and cereal rye treatments recorded

higher yields than radish treatment in 2020. Cover cropping

treatments (radish or mix and rye) yielded significantly lower

than control plots in 2021 and 2022 except winter peas. The

growing season with optimum rainfall (2020) was associated with

a higher yield, while maximum rainfall (2021) during the growing

season was associated with a lower yield. The annual mean yield for

2020, 2021 and 2022 were 10.72, 6.34 and 9.22 Mg ha-1,

respectively (Figure 3).
3.1 Correlation analysis

Results indicated a set of VIs (12 in 2020 and 2021, and 28 in

2022) with correlation coefficients |r| ≥ 0.7 at least twice in the same

growing season (Figure 4, Supplementary Table S3). In 2020, MTCI

and leaf chlorophyll index (LCI) had the strongest positive

correlation with the yield at four timings (R1, R2, R3, and R5

growth stages) and were ranked first. The modified normalized

difference at 705 (mND705), modified simple ratio at 705

(mSR705), and red edge chlorophyll reflectance index (RIrededge)

had significant correlations with corn yield at three timings. While
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seven VIs such as enhanced vegetation index (EVI), modified

chlorophyll absorption ratio index (MCARI2), soil adjusted

vegetation index (SAVI), modified SAVI (MSAVI), optimized

SAVI (OSAVI), renormalized difference vegetation index (RDVI),

and green chlorophyll reflectance index (RIgreen) had significant

correlations with yield at only two timings. The MCARI2 showed the

highest correlation with yield at R1 growth stage (r=0.81) (Figure 4).

In 2021, CVI, LCI and MTCI had strongest correlations across all

(V5, V7, V11, Vn, R1, R2, and R5) growth stages (first tier). The

second tier was dominated by RE-based VIs, while third tier includes

green chlorophyll index (CIgreen) and triangular greenness index

(TGI) (Figure 4). A strong negative correlation (r=-0.91) was noted

between TGI and the yield at R5 (119 DAP). At R1 (83 DAP), the

highest correlation (r=0.96) between yield and MTCI was observed.

In 2022, there were 20 VIs that fall under top tier. This group was

dominated with RE-based indices and showed a strong correlation

with yield across the six (V6, V10, V19, V1, V3 and V5) growth

stages. The second tier VIs such as EVI, LCI and MTCI showed

significant correlations with yield for five times. The third-tier VIs
A

B

C

FIGURE 2

Observed daily air temperature and precipitation variability during
the experimental period (2020 – (A), 2021 – (B) and 2022 – (C).
Weather data were obtained from the Delta Agricultural Weather
Center (http://deltaweather.extension.msstate.edu/) for the
experiment site.
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were TCARI/OSAVI, TVI, ARI CRIrededge and mARI. Further,

green normalized difference vegetation index and leaf chlorophyll

index showed strong positive correlations (r=0.91) with yield at Vn

(67 DAP) and R1 (78 DAP), respectively. At R5 (108 DAP), a

significant negative correlation (r=-0.95) was found between SR445

and yield (Figure 4).
Frontiers in Plant Science 06
3.2 Unique and common VIs across the
year for yield prediction

Across all three years, the five VIs (mND705, mSR705,

RIrededge, LCI, and MTCI) with the highest predictive power were

identified (Figure 5). In 2021, two unique VIs were identified, while
FIGURE 3

Corn yield variability in response to cover crop treatments. Vertical bars denote mean ± standard deviation (SD). Bars with common letters are not
statistically significant at p<0.05 (LSD test) within a year.
A B C

FIGURE 4

Heat map showing the significant correlation coefficient (r≥0.7) between corn yield and vegetation index at different growth stages in 2020 (A), 2021 (B) and
2022 (C). Darker color signifies a high correlation, while lighter color signifies a weaker correlation between yield and corresponding vegetation index.
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thirteen were noted in 2022. Six VIs (EVI, MCARI2, MSAVI, OSAVI,

RDVI and SAVI) were unique to 2020 and 2022; CIgreen, PBI,

reNDVI and SR705 were unique to 2021 and 2022. RIgreen was

common in both 2020 and 2021 (Figure 5). Five VIs common to all

growing seasons were used to build linear regression models for each

growing season (Table 1). The results of the models revealed

improvement in yield estimation as the season progressed with the

best prediction at the R1 stage: with mND705 (R2 = 0.62) in 2020,

with MTCI (R2 = 0.92) in 2021, and with LCI (R2 = 0.82) in 2022.

Thereafter, the performance became relatively weaker (Table 1). The

R2 and mean absolute percentage error (MAPE) of various models

ranged from 0.04 to 0.92 and 3.01% to 11.85%, respectively (Table 1).

A higher error was generally noted at the early or late growth stages.

Although the association was weaker, RIrededge, mSR705 and

mND705 performed better than LCI and MTCI at the early growth

stage. However, mND705 had higher predictive power throughout

the growing season compared to RIredege and mSR705 (Table 1). In

addition, MTCI had 8 times the highest performance (high R2 with

low MAPE), while LCI and mND705 had the highest performance

for six times. All common VIs that are sensitive to changes in

chlorophyll content had the ability to separate cover crop

treatments at the R1 growth stage across years (Figure 6). In

general, higher values of VIs at the R1 stage were associated with

higher yields and vice versa. In 2021, all VIs followed a similar trend

of yield response to cover crop treatment. At the reproductive stage,

RIrededge, mSR705 and MTCI had a higher ability to differentiate

cover crop treatments (winter pea and cereal rye) from the control

(no cover crop) under rainfed conditions (Figure 6). Lower MTCI

values in radish or mix and rye treatments at R1 were associated with

lower yields (Figure 6E).
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3.3 Variable assessment

A RF machine learning algorithm was implemented to identify

the VIs with the highest predictive power (best) at different growth

stages (Table 2). The R2 and MAPE of the various model considered

with the RF method ranged from 0.25-0.89 and 2.82-9.20%,

respectively (Table 2). In 2020, the highest predictive power of

VIs at V5 and V13 were the visible atmospherically resistant index

(VARI), while at Vn, R1, R2, R4, and R5 were visible MSAVI, soil

cover, triangular vegetation index (TGI), LCI, and MTCI,

respectively. In 2021, the most predictive power VIs were MTCI

(V5), RVI (V7), DATT (V11), CVI (Vn and R1), LCI (R2), and TGI

(R5). However, in 2022, the VIs with the highest predictive power

were RIgreen, TCARI/OSAVI, SR445, CVI, SAVI, and SR445,

corresponding to growth stages V6, V10, Vn, R1, R3, and R5.

Particularly, the reproductive stage exhibited the strongest

prediction power for these VIs. At the R1 stage, the best variables

ranked by the RF method had a strong association with yield

(Table 2): soil cover (R2 = 0.56) in 2020, CVI (R2 = 0.82) in 2021,

and CVI (R2 = 0.76) in 2022. However, at the same growth stage, the

VIs selected from correlation analysis had higher predictive power

in estimating yield: (mND705, R2 = 0.62) in 2020, (MTCI,

R2 = 0.80) in 2021, and (LCI and mND705, R2 = 0.81) in

2022 (Table 1).
4 Discussion

Crop yield is a complex result of genetics, environmental

factors, and management practices. Researchers aim to improve
FIGURE 5

A Venn diagram showing the vegetation indices (VIs) with the highest predictive power within (unique VIs) or between years (common VIs). Full form
of acronyms is given in Figure 4 and the formulation are given in Supplementary Table 2.
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yield through strategic selection of genotypes/hybrids, while

farmers focus on optimizing inputs. In both scenarios, the

common goal is to maximize crop yield, which is viewed as

important because of its association with economic value. Studies,

including the one presented herein, show significant variability in

yield from year to year, with greater variability within a year rather

than between years (Dhillon et al., 2022). This variability is

primarily due to environmental factors such as soil (Bresler et al.,

1981) and rainfall (Or and Hanks, 1992). To complement the

ongoing season-based studies to make more informed

management decisions, this study identified suitable growth stages

and VI/s for predicting corn yield. The intention is that such a

method can serve as an alternative and improvement to relying

solely on historical data.

Mapping yield early help diagnose plant health or yield

variability and create management zones for in-season decision

making. For example, with this knowledge, a farmer can allocate
Frontiers in Plant Science 08
sampling resources to regions of interest, reducing overall cost while

improving knowledge gained from the activity. With corn being

heavily reliant on fertilization, the yield map can serve as a

prescription map for VRT for agricultural input management. A

UAS can collect information at high resolution in contrast to

satellite remote sensing, which can be beneficial for finer-scale

management. Nevertheless, the extraction of information from

imagery and the selection of VI have a significant effect on yield

prediction or mapping. This study used a correlation-based feature

selection method and compared it to a random forest approach.

Results indicated that different variables are important at different

growth stages and can vary by year (Table 1, 2), as seen in previous

studies (Barzin et al., 2020). In addition, the results of feature

selection using correlation analysis demonstrated an ability to

make early predictions, compared to the RF approach.

This three-year study indicated that the VIs’ ability to predict

yields is weaker at the early vegetative stage compared to the
TABLE 1 Association between stable VIs collected at different phenological stages and corn yield under rainfed environments.

Growth stage
LCI MTCI RIrededge mSR705 mND705

R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE

2020

V5 0.04ns 4.65 0.04ns 4.65 0.18* 4.07 0.18* 4.07 0.18* 4.07

V13 0.24** 4.26 0.21* 4.36 0.17** 4.46 0.17* 4.46 0.19* 4.39

Vn 0.47*** 3.44 0.43*** 3.58 0.44*** 3.57 0.44*** 3.57 0.48*** 3.42

R1 0.59*** 3.07 0.58*** 3.12 0.60*** 3.03 0.60*** 3.03 0.62*** 2.99

R2 0.59*** 3.12 0.58*** 3.18 0.51*** 3.42 0.51*** 3.42 0.51*** 3.4

R4 0.56*** 3.18 0.55*** 3.23 0.46*** 3.54 0.46*** 3.54 0.47*** 3.51

R5 0.55*** 2.97 0.54*** 3.01 0.51*** 3.17 0.51*** 3.17 0.52*** 3.17

2021

V5 0.55*** 7.05 0.58*** 6.85 0.57*** 7.02 0.57*** 7.02 0.55*** 7.13

V7 0.68*** 5.64 0.68*** 5.73 0.70*** 5.5 0.70*** 5.5 0.70*** 5.45

V11 0.77*** 5.16 0.79*** 4.89 0.76*** 5.31 0.76*** 5.31 0.74*** 5.49

Vn 0.78*** 5.14 0.80*** 4.81 0.69*** 5.92 0.69*** 5.92 0.67*** 6.15

R1 0.90*** 3.51 0.92*** 3.12 0.86*** 3.87 0.86*** 3.87 0.84*** 4.16

R2 0.76*** 4.81 0.77*** 4.72 0.74*** 5.12 0.74*** 5.12 0.72*** 5.35

R5 0.55*** 7.42 0.59*** 7.0 0.49*** 7.49 0.49*** 7.49 0.46*** 7.72

2022

V6 0.09ns 11.85 0.09ns 11.85 0.60*** 7.8 0.60*** 7.8 0.60*** 7.71

V10 0.69*** 7.39 0.65*** 7.72 0.67*** 7.44 0.67*** 7.44 0.71*** 7.11

Vn 0.81*** 5.51 0.76*** 6.29 0.77*** 6.18 0.77*** 6.18 0.81*** 5.53

R1 0.82*** 5.79 0.81*** 5.89 0.79*** 6.16 0.79*** 6.16 0.80*** 6.09

R3 0.70*** 7.13 0.70*** 7.06 0.64*** 7.88 0.64*** 7.88 0.63*** 8.05

R5 0.53*** 8.68 0.54*** 8.55 0.54*** 8.65 0.54*** 8.65 0.53*** 8.76
front
Leaf Chlorophyll Index (LCI), MERIS Terrestrial Chlorophyll Index (MTCI), Red Edge Chlorophyll Reflectance Index (RIrededge), Modified Simple Ratio at 705 (mSR705) and Modified
Normalized Difference at 705 (mND705). *, ** and *** indicate the regression is significant at p<0.05, p<0.01 and p<0.001 respectively. ‘ns’ indicates non-significant. MAPE: mean absolute
percentage error, DAP: day after planting. Bold values represent the best VI for a given growth stage.
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reproductive stage due to slower growth and canopy. This study

identified five VIs (LCI, MTCI, mND705, mSR705, and RIrededge)

that had a significant correlation with yield across years (Figure 5).

The commonality in these VIs are NIR and RE bands. Although

reNDVI is based on NIR and RE, this VI was not selected due to a
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weaker correlation in 2020 (Figure 4). However, this VI has been

correlated with canopy chlorophyll and LAI around the

reproductive stage in corn (Simic Milas et al., 2018). In addition,

Li et al. (2014) and Zhao et al. (2007) reported that three-band

indices were better estimators of plant nitrogen concentration and

uptake compared, and LAI and above-ground biomass, respectively,

compared to two-band indices. In this study, LCI, MTCI and

mND705 were found to be superior compared to mSR705 and

RIrededge in yield estimation at the R1 stage (Table 1).

Chlorophyll content in leaves reaches its peak during the R1-R3

stages and is a vital pigment for photosynthesis (Schepers et al.,

1992; Brewer et al., 2022). Thus, LCI (Datt, 1999), MTCI (Dash and

Curran, 2004) and mND705 (Sims and Gamon, 2002) have been

used as proxies for canopy greenness or chlorophyll content. High

correlations were reported for LCI with chlorophyll a (r = 0.86), and

chlorophyll a+b (r=0.84) (Datt, 1999). Similarly, MTCI had strong

relationships with chlorophyll content (Dash et al., 2010),

photosynthesis (Maleki et al., 2020), nitrogen uptake (Li et al.,

2021) and yield (Zhang and Liu, 2014). mND705 has also been

utilized to track the senescence dynamics of wheat accessions

(Anderegg et al., 2020). The blue reflectance signal from crops is

a combination of chlorophyll and carotenoid pigments, while the

red reflectance is mainly dominated by chlorophyll. The prevalence

of chlorophyll and photosynthesis information in MTCI likely led

to better prediction results when combined with the RE and NIR

bands, compared to the combination of blue, RE, and NIR in

mND705, mSR705, and RIrededge. Further, the prediction ability

of MTCI were comparable or better than the prediction ability of

the preferred VIs by the RF algorithm.

We investigated the use of various VIs as indicators of canopy

greenness or photosynthetic pigments to examine crop health

(Figure 6) and yield (Figure 3) responses to management.

Identified five high predictive VIs (LCI, mND705, mSR705

RIrededge and MTCI) found to be linked to the plant’s ability to

capture and use light energy for growth and development (Boyd

et al., 2011; Dong et al., 2015; Barnes et al., 2017; Tan et al., 2018).

Moreover, these VIs are also sensitive to changes in chlorophyll

content and canopy structure (Sims and Gamon, 2002; Wang et al.,

2017; Croft et al., 2020). For instance, a higher LCI value indicates

greater photosynthetic efficiency and nitrogen content in corn,

which is often associated with higher yields. On the other hand,

lower MTCI values under radish or mix and rye treatments at R1

indicate lower chlorophyll content and poor canopy structure, thus

lower yields compared to other treatments (Figure 6). Similarly,

higher values of other VIs were also associated with increased

chlorophyll content and greater yields across years. It is evident

that VIs that are sensitive to changes in pigments can assist in

mapping differences in plant health and yield potential in corn in

response to cover cropping systems under rainfed conditions

(Supplementary Table 4). Identified five promising VIs can help

monitor plant health and yield potential, which can be used to guide

effective crop management practices, such as fertilization, irrigation,

and pest management.

In summary, a combination of either blue or red, RE, and NIR-

based vegetation indices had a strong correlation with corn yield. Our

results showed that certain vegetation indices demonstrated high
A

B

D

E

C

FIGURE 6

Influence of cover crop on the spectral properties of corn at R1
growth stage. Leaf Chlorophyll Index (LCI, A), Modified Normalized
Difference at 705 (mND705, B), Modified Simple Ratio at 705
(mSR705, C), Red Edge Chlorophyll Reflectance Index (RIrededge,
D), and MERIS Terrestrial Chlorophyll Index (MTCI, E). Vertical bars
denote mean ± SD. Treatments with common letters are not
statistically significant at p<0.05 (LSD test) within a year.
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consistency in predicting corn yield. Specifically, the indices LCI,

MTCI, mND705, mSR705, and RIrededge showed the strongest

predictive capabilities. Among them, MTCI emerged as the most

promising VI and can be effectively used to predict corn yield during

the reproductive stage. Further, weekly cloud-free imagery can be

used for real-time monitoring of yield estimation under different

cropping systems, which can support both research and farm

decision-making as UASs become increasingly ubiquitous.
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TABLE 2 A simple linear regression model statistic developed with the top-ranked vegetation index selected by a random forest based variable
selection method for three years of study.

2020 2021 2022

Growth stage VI R2 MAPE Growth stage VI R2 MAPE Growth stage VI R2 MAPE

V5 VARI 0.25** 4.25 V5 MTCI 0.58*** 6.85 V6 RIgreen 0.47*** 9.2

V13 VARI 0.39*** 3.63 V7 RVI 0.70*** 6.19 V10
TCARI/
OSAVI

0.71*** 7.19

Vn MSAVI 0.53*** 3.21 V11 DATT 0.69*** 5.83 Vn SR445 0.80*** 5.74

R1
Soil
cover

0.56*** 2.82 Vn CVI 0.82*** 4.04 R1 CVI 0.76*** 6

R2 TGI 0.43*** 3.61 R1 CVI 0.79*** 4.54 R3 SAVI 0.67*** 7.69

R4 LCI 0.56*** 3.18 R2 LCI 0.76*** 4.81 R5 SR445 0.89*** 4.21

R5 MTCI 0.54*** 3.01 R5 TGI 0.83*** 4.59
front
V5, V6, V7, V10, V11, and V13, represent the vegetative growth stage with 5, 6, 7, 10, 11 and 13 visible leaf collars on the main stem. Vn represent number of leaf collars greater than 13. R1, R2,
R3, R4, and R5, which correspond to the silk, blister, milk, dough, and dent stages, respectively. *, ** and *** indicate the regression is significant at p<0.05, p<0.01 and p<0.001 respectively. ‘ns’
indicates non-significant. VI- vegetation index; MAPE: mean absolute percentage error. Full form of acronyms are given in Figure 4 or Supplementary Table 2.
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