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Unlike standard chemical analysis methods involving time-consuming, labor-

intensive, and invasive pretreatment procedures, Raman hyperspectral imaging

(HSI) can rapidly and non-destructively detect components without professional

supervision. Generally, the Kjeldahl methods and Soxhlet extraction are used to

chemically determine the protein and lipid content of soybeans. This study is

aimed at developing a high-performance model for estimating soybean protein

and lipid content using a non-destructive Raman HSI. Partial least squares

regression (PLSR) techniques were used to develop the model using a

calibration model based on 70% spectral data, and the remaining 30% of the

data were used for validation. The results indicate that the Raman HSI, combined

with PLSR, resulted in a protein and lipid model Rp
2 of 0.90 and 0.82 with Root

Mean Squared Error Prediction (RMSEP) 1.27 and 0.79, respectively. Additionally,

this study successfully used the Raman HSI approach to create a prediction

image showing the distribution of the targeted components, and could predict

protein and lipid based on a single seeds.

KEYWORDS

hyperspectral Raman imaging, non-destructive measurement, spectral analysis,
soybean, protein, lipid
1 Introduction

Soybean, one of the most important crops globally, is also one of the best protein

sources for animal feed and provides outstanding global food security (Philis et al., 2018).

Additionally, soybean accounts for a significant share of the world’s oilseed production,

accounting for up to 60% of the global demand (Egli and Crafts-Brandner, 2017). On dry-

weight basis, mature raw soybean seeds typically contain between 35% and 40% proteins,

20% lipids, 9% dietary fiber, and approximately 8.5% moisture (He and Chen, 2013). The
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location, planting conditions, and variety affect soybean

composition. Foods made from soy are excellent sources of

vitamins, minerals, proteins, and fiber, and are low in saturated

fat (Dukariya et al., 2020). In the past two decades, several studies

have reported that regular soy consumption is linked to a

comparatively lower incidence of various malignancies in nations

that consume soy products (Liu, 1997). Moreover, soy protein has

several benefits, such as lowering liver or blood triglycerides and

increasing HDL cholesterol (Chao, 2008). All human cells and

tissues require proteins to function, and all components of the

essential body parts contain proteins (Leidy et al., 2015).

Since the past 30 years, the USA and Brazil have contributed to

over 50% of the world’s soybean production (Pagano andMiransari,

2016). China and India produce 18.1 million and 9.3 million metric

tonnes, respectively, accounting for more than 90% of the Asian

output in 2019. However, differences exist between how soybeans

are used in Asian and Western countries, which impact the soybean

varieties grown in these regions. Asian nations primarily use

soybeans to make tofu, soymilk, and other fermented cultural

foods (Shin, 2011). Western nations, however, refine soybean for

soybean meal or seed oil (Shin and Jeong, 2015). This consumption

behavior requires the breeding-industry sector to specifically

develop soybean seeds to meet market demand. The nutritional

and functional properties of soybeans, such as proteins, oils,

carbohydrates, and other minor components, can be modified by

conventional seed breeding and genetic engineering.

To measure the chemical components of food and agricultural

products, precise approaches such as the Kjeldahl and Soxhlet

methods have become generally accepted (AOAC, 1990; Lopez-

Bascon and de Castro, 2020). However, the work and time

requirements of these methods make it challenging to economically

assess the quality of the products. Additionally, using this technology

to evaluate seeds in breeding programs is restricted by the destructive

process and minimal weight need for extraction before analysis

(Mæhre et al., 2018; Wang and Cheng, 2018). Therefore, as the

modern agroindustry develops, there is a growing need for a quick

and non-destructive method to predict the chemical components of a

single seed in a large sample.

Raman spectroscopy is a non-destructive method for analyzing

materials without damage. Raman spectroscopy leverages Raman

scattering to provide detailed information about molecular

vibrations, yielding high sensitivity for minor components with

high accuracy and precision. In 1928, Raman discovered Raman

scattering for the first time (Ferraro et al., 2003). When

monochromatic light interacts with a sample, it experiences

inelastic scattering, which can be used to determine the

characteristics of the sample. When light strikes a substance, one

of the following three things can occur: light may be absorbed,

scattered, or indifferently interact with the substance. Raman

spectroscopy enables “fingerprint identification” of chemical

bonds and functional groups in molecules, and can reflect

differences in chemical composition and molecular structure at

the molecular level. The location, magnitude, and shape of the

Raman peaks can reveal information regarding the molecular

makeup or composition of the studied substances. The

composition and its distribution of the target sample in spatial
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domain can be observed using Raman chemical imaging (Song

et al., 2020). The Raman method has already been applied to predict

proteins and lipids in soybean powder, and yields the best

prediction performance (Rp
2) of over 0.90 and 0.80, respectively

(Lee et al., 2013). It has also been demonstrated that utilizing seed

samples and transmission Raman spectroscopy can accurately

predict the bulk amounts of proteins and lipids in soybeans

(Schulmerich et al., 2012; Singh et al., 2019). However, all

previous studies that used pointer Raman are limited in their

application to large samples, because each seed must be

collected individually.

The hyperspectral imaging technology simultaneously captures

spatial and spectral data, and it has been used to assess food and

agricultural products. This method can simultaneously evaluate

many seeds and identify the chemical compositions unevenly

distributed within a single seed. Therefore, the hyperspectral

imaging technique has developed into a potent tool for assessing

the chemical makeup of seeds. Many previous studies have used

hyperspectral imaging, especially NIR HSI, to detect, predict, and

classify agricultural resources, for example, to determine starch

content in a single kernel of corn seeds (Liu et al., 2020), and

estimate oil composition and discriminate species of Brassicas seeds

(da Silva Medeiros et al., 2022). However, the overlapping spectra of

different compositions make it challenging to directly examine the

chemical makeup of a seed using NIR hyperspectral imaging,

though. The characterisation of chemical compositions is

challenging because calibration procedures in chemometrics are

required to interpret the spectra.

Raman hyperspectral technology simultaneously captures

spatial and spectral data and has been used to assess food and

agricultural products. Raman imaging is generally performed by

gathering several spectra at specific locations on a sample. This

yields data cubes containing the Raman signal strength assessed as a

function of the x and y (spatial) and spectral dimensions (Cebeci-

Maltaş et al., 2014). The “point-scan”method, which is based on the

acquisition of hypercubes, records each point pixel-by-pixel. The

capabilities of spectroscopy and machine vision are combined in a

hyperspectral imaging system, enabling the concurrent acquisition

of both internal-component spectral data and external picture data

(Liu et al., 2022). The target-sample composition, distribution, and

morphology can be observed using Raman chemical imaging

combined with Raman spectroscopy and digital imaging. It has

applications in several fields, including mineralogy, biomedicine,

and threat detection (Qin et al., 2014). For example, it has been used

to quantify benzoyl peroxide in flour (Qin et al., 2017), detect

various adulterants in wheat flour (Lohumi et al., 2019), and inspect

bacterial contamination in watermelon seeds (Lee et al., 2017). To

the best of our knowledge, no research has been published on the

use of Raman HSI for the non-destructive prediction of protein and

lipid content in intact soybean seeds or to investigate the

distribution of protein and lipid content throughout the seeds. In

previous research, Raman hyperspectral imaging has been used to

detect the compositions in maize seeds (Yang et al., 2018). However,

that study only detected and characterized the distributions of

protein and oil, and did not predict the chemical compositions of

maize seeds. Therefore, this study aimed to examine the possibility
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of predicting the protein and lipid content in a single soybean seed

using a Raman hyperspectral imaging system. Additionally, to

ensure the accuracy of the seed-based performance model, a

powder-based model for each of the targeted components was

formulated to evaluate it side-by-side.
2 Materials and methods

2.1 Sample preparation

Rural Development and Administration (RDA), South Korea,

supported the use of soybean seeds in this study. These samples were

divided into two measurements: the first for the protein model, and the

second for the lipid model. The samples for the protein model

comprised three varieties that had already been classified into three

classes from the RDA. The total number of samples for the protein

model was 1491 seeds, and each variety was divided into a few groups,

each containing seven seeds, including the (low-protein class) PI85089

variety (80 groups), the (medium-protein class) Shinhwa variety (80

groups), and the (high-protein class) Saedanbaek variety (53 groups).

The total seeds of the lipid model were 5,790 soybeans comprising six

varieties divided into a few groups that contained 30 seeds each,

including PI85089 (30 groups), SLS90-101 (30 groups), Galmi (30

groups), Shinhwa (30 groups), Savoy (27 groups), and Saedanbaek (30

groups). Because of the minimum weight requirement of the Kjeldahl

and Soxhlet methods for the reference value, the number of seeds in

each group was determined in this manner.
2.2 Reference value

Protein and lipid contents were investigated using the Kjeldahl

and Soxhlet methods. It was not possible to determine these

compounds in a single seed because of the minimal weight

required for sample extraction. Each soybean cultivar was ground

using 1.6 grams (Kjeldahl method) and 4 g (Soxhlet method).

2.2.1 Protein determination
Organic nitrogen was transformed into ammonium sulfate

using the Kjeldahl method after digestion in strong sulfuric acid.

A boric acid solution was prepared by distilling ammonia under

alkaline conditions. The amount of nitrogen, indicating the amount

of crude protein in the sample, was estimated by titrating the borate

anions produced with standardized hydrochloric acid. The nitrogen

content was then converted using a conversion factor which is 6.25,

that has been used for almost all feed (Jiang et al., , 2014).

2.2.2 Lipid determination
Using Soxhlet extraction, the maximum oil yield in the feed was

determined by weighing 4 g of soybean powder in a cellulose

thimble and placing it in a Soxhlet device. Extraction was

performed for 10 h with 200 mL of hexane (63–65°C). Finally,

the weight of the crude soybean oil was calculated using the

maximum recoverable oil yield after removal of the solvent

(Terigar et al., 2011).
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2.3 Raman hyperspectral imaging

Laboratory line-scan Raman hyperspectral imaging system was

used in this research and is shown in Figure 1. The system was

modified using several optical devices to provide uniform laser

illumination of the sample and uniform Raman signal collection

during sample data collection. First, a high-energy laser line was

created by focusing the laser light from 19 emitters onto a 785-nm

bandpass filter. Then, a cylindrical lens (f = 200 mm) was used to

enlarge the relatively small laser line and achieve homogeneous

intensity. The laser beam was then run via an engineering diffuser

(EDI-L4100; Thorlabs, Hans Boekler, Dachau, Germany).

The resulting laser line was then projected onto a 785-nm

dichroic beam splitter, which fixed its angle at 45° to project the

laser line into the sample. The resulting Raman signal was projected

onto a spectrometer using a slit in the dichroic mirror. When the

resulting Raman signal passed through the filters, two long-pass

filters were applied to remove any traces of the 785-nm laser line. A

prism-grating-prism was also used to separate various wavelengths

of light. Finally, a 16-bit CCD camera (iKon-M 934, Andor

Technology, South Windsor, CT, USA) was positioned in the

focal plane of the spectrometer to gather signals and produce

images with an area array of 1024 × 1024 pixels. The produced

image was uploaded to a computer and saved as a 3D hypercube in

the ENVI format. Figure 1 shows a schematic of line-scan

Raman spectra.

A 100 × 100-mm black sample plate was filled with two groups

of soybean seeds containing 60 seeds, which were then scanned

using the described Raman hyperspectral imaging (HSI) method

with a 0.2 mm step size. The system was turned on for 30 min before

data collection to stabilize the laser sources and camera, enhance the

spatial homogeneity, and reduce noise. The camera was then

covered with an opaque cap while the laser was turned off to

capture dark photos, which were later used to rectify the raw

photographs. The generated Raman images were saved in the

ENVI format as a 3D hypercube. The Raman signal was

processed by polynomial fitting to exclude the fluorescence signals.
2.4 Fluorescence correction in
Raman spectra

Raman spectra are frequently distorted by unfavorable

background fluorescence noise from organic and biological

samples. This fluorescent noise shifts the baseline and mutates the

actual signal of the investigated sample. Additionally, the clarity and

resolution of the spectra are also affected, which reduces the

accuracy of detection of the target molecule, which is a difficulty

in Raman spectroscopy (Qin et al., 2011). This problem can be

solved by consistently fitting and correcting the baseline to precisely

identify the necessary Raman peaks from the raw spectral data,

reduce the fluorescence impact, and correct the baseline of the

Raman spectra obtained in this investigation. Because of its

effectiveness and simplicity, polynomial fitting was used in a

recent study to eliminate the fluorescence background of Raman

spectra (Lieber and Mahadevan-Jansen, 2003). Additionally, several
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previous studies have reported the use of various polynomial orders

to study Raman spectra. For example, to examine lycopene in

tomatoes, Qin et al. utilized an 8th-order polynomial equation,

whereas Schulmeric et al. and Lee et al. employed 5th and 16th-

order polynomial equations to remove the Raman spectra of

soybeans (Qin et al., 2011; Schulmerich et al., 2012; Lee et al.,

2013). In this study, we adopted 100 iterations and the 8th

polynomial order.
2.5 Preprocessing techniques

The initial spectrum data of the instrument may include

significant noise owing to uncontrolled environmental factors and

measurement-related variations. To improve the spectrum quality

by removing unwanted fluctuations in the spectral data, these

spectral data must be subjected to a proper mathematical

analysis. This technique permits signal amplification, spectrum

correction, and elimination of extraneous data such as

background noise, path length fluctuation, scattering, and

baseline shift (Rinnan, 2009). Normalization (mean, maximum,

and range), multiplicative scatter correction (MSC), standard

normal variate (SNV), and Savitzky–Golay derivative are the

preprocessing techniques that can be used in spectroscopic data

analysis (first and second). The selection of a specific preprocessing

data analysis scheme is a significant challenge when utilizing

vibrational spectroscopy techniques to examine the chemical

composition of organic materials. Therefore, all of the mentioned

preprocessing techniques were applied to the raw spectral data

before analysis.
Frontiers in Plant Science 04
The most commonly used preprocessing method is mean

normalization. The basic concept is to obtain the mean values from

each dataset. In contrast, max and range normalization subtract the

maximum or range data from each data point. The MSC approach

involves fitting each spectrum to the average using least squares

regression and calculating the preprocessed data by factoring in the

slope and intercept of the regression. However, the preprocessed

spectral data were calculated using the standard deviation of the SNV

approach. A moving window approach was used to fit the data before

Savitzky-Golay. The first derivative removed the baseline offset,

creating a linear background at a constant level. In contrast, the

baseline offset is typically removed using the second derivative to

increase the spectral resolution and resolve close peaks.
2.6 Model development

The spectral data collected from all instruments were processed

using several preprocessing techniques. First, protein and lipid

contents were predicted using partial least squares regression

(PLSR). This multivariate method, which can forecast the

behavior of dependent variables based on sizable datasets of

independent variables, combines multiple regression and feature-

based extraction using the principal component analysis method.

Spectral data (X) and response variables (Y) have a linear

connection in the PLSR model, which makes it possible to

forecast a component of the data variable.

X = TPT + E   (1)

Y = UQT + F (2)
FIGURE 1

Schematic of the Raman hyperspectral imaging system.
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U = XB + G, (3)

where X and Y represent spectra data and the protein and lipid

content of soybeans. P and Q are loading matrices, and T and U are

score matrices projected on linear combinations. The error matrices

are represented by E, F, and G. The B matrix in Equation 3 contains

regression coefficients.

The predicted root mean square error (RMSE) with the lowest

value to determine the latent variables is represented by the

following equation:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
zo

z
i=1(yi − ŷ i)

2

r
, (4)

where z is the number of predictions,   yi is the real reference

value, ŷ i is the anticipated value from the PLSR, and the entire

dataset is converted into calibration and validation datasets. The

entire dataset was randomly assigned to 70% of the validation

dataset and 30% of the calibration dataset. Finally, the model was

constructed, encompassing the wavelength range of 900–1800 nm,

after eliminating the poor intensity response above 1800 nm.
2.7 Prediction image

Hyperspectral imaging can generate a chemical image of the

target chemical distribution of a sample. Therefore, chemical

images were first created by multiplying the original HSI images

with regression-coefficient vectors. However, the large size of the

original Raman HSI image affected the iteration time required to

generate the prediction image. The Raman original image contains

512 × 330 × 393 bands. The iteration time was reduced by selecting
Frontiers in Plant Science 05
one band from the Raman image and removing the background.

Polynomial correction pixels from all the band images were

subsequently used to calculate the selected component

concentration of the sample. Finally, the PLS was multiplied by

the beta coefficient to generate the chemical images. The image

processing process is outlined in Figure 2.
3 Results and discussions

3.1 Reference value analysis

Proteins and lipids in soybean seeds are essential for human

health. Soybean is one of the cheaper protein sources in agricultural

resources. In total, three varieties of the protein model and six

varieties of the lipid model were used in this study to examine their

chemical contents. Table 1 presents statistical information about

lipids and proteins, including the number of group varieties used in

model development. Generally, the concentration range discovered

in this investigation matched the conclusion offered by Wilson in

that soybean has a protein range of 34.1–56.8 g/100 g (34.1–56.8%)

of total seed weight (Wilson, 2004), and the lipid content ranges

from 8.1% to 24% on the dry-seed basis (Medic et al., 2014).
3.2 Model prediction of soybean protein
and lipid content

The original Raman spectra of the soybean samples are displayed

in Figure 3A. Owing to the background fluorescence, there was a

significant intensity variation. Therefore, the fluorescence signal

from the original Raman signals of soybeans was subtracted using
FIGURE 2

Strategy to generate the prediction image.
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an 8th-order polynomial equation. Figure 3B shows identical spectra

after removal of the fluorescence signal. These peaks represent

different parts of soybean. The results of the PLSR model for

predicting protein and lipid content using Raman hyperspectral

imaging modified by removing the fluorescence signal are shown in

Tables 2 and 3. The coefficient of determination value (R2) and

standard error were used as evaluation metrics. The higher the

correlation values, the better the model performance. Based on

theseed and powder data for predicting protein content in

soybean, the mean normalization preprocessing approach

produced the best results: Rp
2 (0.90), RMSEP (1.27%), and 11 for

the latent variable. By contrast, the powder result is Rp
2 (0.92),

RMSEP (1.05%), and the lowest latent variable (LV) is 12. The lipid

model results showed that the best preprocessing method for seed

and powder samples using the SNV technique was the most effective

preprocessing model. The Rp
2 results of the seed and powder

samples are 0.82 and 0.84, respectively. Hence, according to

Rinnan et al., mean normalization can be applied to spectral data,

followed by SNV and MSC (Rinnan et al., 2009).
Frontiers in Plant Science 06
The performance of the powder sample is better than that of the

seed sample on the protein and lipid models, and it is denoted by

the higher Rp
2 value of 0.92 of 0.84, respectively. This was because

the powder sample was already ground and mixed into one sample,

and most of the protein and lipid content was inside the bean.

According to Kawamura, soybean seeds have the highest protein

and lipid content in the cotyledon part, containing 43% protein and

23% lipid, while the seed coat only contains 9% protein and 1% lipid

(Kawamura, 1967).Therefore, the macro- and micro-components

were homogenized because the sample had been ground into

sample powder.

However, based on the model performance, the protein model

yielded better results than the lipid model. Figures 4 and 5 show the

prediction plots of the protein and lipid models, and differences can

be observed between the two. The difference is that the protein

model is already classified into the low, middle, and high classes by

the soybean company, which could affect the performance value. By

contrast, no lipid class was classified based on the data distribution

of the lipid model. As reported by Hahn, if the measurements
A B

FIGURE 3

Original Raman spectra of soybean (A) and Raman spectra of soybean sample by removing the fluorescence signal using a polynomial equation (B).
TABLE 1 Reference values of protein and lipid content in soybean using the Kjeldahl and Soxhlet methods.

Sample Mean ± SD Maximum Minimum Number of soybean groups

Protein

PI85089 34.1 ± 0.94 35.81 31.71 80

Shinhwa 38.81 ± 0.87 41.99 36.84 80

Saedanbaek 43.60 ± 1.56 45.77 38.37 53

Lipid

PI85089 18.46 ± 0.70 19.51 16.87 35

Galmi 17.27 ± 0.54 18.57 16.14 35

SLS90-101 17.53 ± 0.65 18.74 16.27 35

Shinhwa 16.77 ± 0.52 17.82 15.47 35

Savoy 18.92 ± 0.80 20.2 17 27

Saedanbaek 13.87 ± 0.34 14.97 13.29 35
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TABLE 2 Partial least squares regression model for predicting protein content in soybean using Raman hyperspectral imaging.

Preprocessing Method Rc
2 RMSEC Rp

2 RMSEP LV

Seed Sample

Mean normalization 0.95 0.84 0.90 1.27 11

Maximum normalization 0.95 0.87 0.90 1.30 13

Range normalization 0.95 0.87 0.90 1.31 13

MSC 0.95 0.82 0.88 1.41 12

SNV 0.95 0.85 0.89 1.34 11

SG first derivative 0.96 0.81 0.90 1.29 13

SG second derivative 0.96 0.82 0.79 1.87 16

Raw 0.95 0.86 0.90 1.28 12

Powder Sample

Mean normalization 0.95 0.87 0.92 1.05 12

Maximum normalization 0.96 0.82 0.93 1.04 14

Range normalization 0.96 0.83 0.93 1.04 14

MSC 0.95 0.91 0.92 1.04 12

SNV 0.95 0.87 0.92 1.05 12

SG first derivative 0.94 0.99 0.88 1.33 14

SG second derivative 0.95 0.86 0.77 1.80 17

Raw 0.94 0.93 0.89 1.28 16
F
rontiers in Plant Science
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TABLE 3 Partial least squares regression model for predicting lipid content in soybean using Raman hyperspectral imaging.

Preprocessing Method Rc
2 RMSEC Rp

2 RMSEP LV

Seed Sample

Mean Normalization 0.88 0.58 0.82 0.80 11

Maximum Normalization 0.88 0.57 0.83 0.78 11

Range Normalization 0.88 0.58 0.82 0.78 11

MSC 0.88 0.58 0.79 0.86 11

SNV 0.88 0.59 0.82 0.79 9

SG first derivative 0.94 0.40 0.67 1.12 20

SG second derivative 0.48 1.21 0.23 1.78 8

Raw 0.84 0.66 0.73 0.98 11

Powder Sample

Mean Normalization 0.86 0.64 0.84 0.69 11

Maximum Normalization 0.83 0.69 0.82 0.72 11

Range Normalization 0.83 0.70 0.82 0.72 11

MSC 0.87 0.62 0.82 0.72 12

SNV 0.87 0.60 0.84 0.70 11

SG first derivative 0.81 0.74 0.54 1.15 11

SG second derivative 0.27 1.45 0.11 1.58 5

Raw 0.81 0.74 0.77 0.82 12
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closely match the model predictions, the R2 result is high. When the

R2 is low, the model’s predictions and the observations are

significantly different, which indicates that several points were

located outside the best-fit line (Hahn, 1973). In addition,

according to the guidelines for the interpretation of R2 by

William and Norris show that if a model has an R2 value greater

than 0.8 then can be used with caution in most applications,

including research whereas if R2 is more than 0.9 then the model

can be used in most applications (Polinar et al., 2019).

Beta coefficients are crucial when analyzing multivariate data,

because they quantify the number of units of standard deviation of

the criterion variables in an equation involving multiple regression

changes when a predictor variable’s standard deviation is changed

while keeping the other predictor variables constant. The direction

of association between the predictor variables (spectra) and

substance variables was determined using the beta coefficient. The

PLS model’s beta coefficient plots in Figures 6 and 7 illustrate how

the protein and lipid composition of various soybean varieties affect

the energy absorbed by each variety. The peak in the graph indicates

the result of the beta coefficient, which exhibits a similar pattern for

both the seeds and powder. The first range is 800-833 cm-1 which

indicates tyrosine doublet H-bonding. The second wave ranges
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from 983 to 1009 cm-1, representing glutamic acid and

phenylalanine, which refer to an amino acid in soybean protein

from a previous study (Kovalenko et al., 2006). Amide III, CH2, and

CH3 deformations were observed between 1284 and 1288 cm-1. The

last Raman peak at 1590-1680 cm-1 represents the protein content

of C=N, which denotes a protein hand in histidine (Takeuchi,

2003). The moving atoms of the peptide backbone are represented

by this compound, also known as amide I, as reported by Kurouski

et al (Range et al., 2012).

Following the use of an 8th-order polynomial equation to

eliminate the fluorescence signal, Figure 7 shows the Raman

spectra of soybeans for predicting lipid content. The band at

approximately 860–890 cm-1 originated from C–O–C.

Simultaneously, the bands in the ranges of 1002–1006 cm-1 and

1284–1291 cm-1 were attributed to C–C alicyclic and aliphatic chain

vibrations, respectively, which are related to the lipid content, as

reported in a previous study (Bai et al., 2022). The other peaks were

between 1500 cm-1 and 1530 cm-1, corresponding to C=C.

According to Lee (2017), the band associated with lipids was

between 1680 and 1800 cm-1, specifically 1729 and 1723 cm-1,

which were assigned to C=O. The chemical chain of C=O refers to

fatty acids in lipid bonds (Lee et al., 2018).
A B

FIGURE 5

Prediction plot of lipid model in soybean seeds sample (A) and powder sample (B).
A B

FIGURE 4

Prediction plot of protein model in soybean-seeds sample (A) and powder sample (B).
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3.3 Prediction image of protein and lipid
content in soybean seeds and powder

A prediction image was created to illustrate the distribution of

proteins throughout the sample using data analysis results from the

PLSR approach. Figure 8 shows the protein distribution and

prediction for each seed. The prediction-image results indicate that

the variety PI85089 (low class) ranges from 31.71% to 35.81%,

Shinhwa (middle class) from 36.84% to 41.95%, and Saedanbaek

(high class) from 38.37% to 45.77%. The result of the prediction

image shows a reasonable accuracy compared to the reference value.

The PI82089 variety (low class) in the prediction image was 34.13%

and 33.99%, whereas the mean protein in the reference value was

34.1%, indicating good performance. The second variety was

Shinhwa, which was assigned to the middle-class protein predicted

at 37.21% and 38.45%, whereas the reference value was 38.81%. The

mean protein of the reference value for the Saedanbaek variety (high-

protein class) was 43.60%, while the image predictions were 43.7%

and 43.38%, respectively. The prediction imaging results demonstrate
Frontiers in Plant Science 09
that the information shown is accurate, given the assigned reference

value and protein class group.

Figure 9 shows the distribution of the lipid content in the

soybean seeds in the prediction image. Analysis of the seed

prediction image revealed that the lipid results were not as

correctly predicted as the protein model. This was because the

beta coefficient values from the preprocessing approach were

necessary to create the prediction image. The Rp
2 value of the

lipid model was 0.819, whereas the Rp
2 of the protein model was

0.90 for seed samples, indicating that the prediction model’s

performance on lipid content was less accurate than the protein

result, and affected the image prediction result. This is denoted by

comparing the predicted image and lipid reference value obtained

using the Soxhlet method. Although the result is not close to the

mean result of the reference value, all results in the prediction image

are in the reference value range, as shown in Table 1. For example,

the Shinhwa prediction values were 15.45% and 15.64% while the

mean result from the reference value was 16.77%. Nevertheless, the

prediction result is still at the minimum to maximum value because
A B

FIGURE 7

Beta coefficient curve of the PLS model of seeds sample (A) and powder sample (B) using Raman HSI techniques for predicting lipid.
A B

FIGURE 6

The beta coefficient curve of the PLS model of seeds sample (A) and powder sample (B) using Raman HSI techniques for predicting protein.
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FIGURE 9

Prediction image of seed and powder samples constructed using Raman HSI technique for the lipid content in soybean sample: Saedanbaek, Savoy,
and Shinhwa.
FIGURE 8

Prediction image of seed and powder samples constructed using Raman HSI for the protein content in soybean samples PI85089 (low class),
Shinhwa (middle class), Saedanbaek (high class).
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the minimum value of the Shinhwa variety is 15.47%, and the

maximum value is 17.82%.

As indicated by the corresponding color bars in Figures 8 and 9,

blue represents low lipid and protein levels, and red represents

high-level content. The red color on the surface of the powder, as

illustrated in the figure, indicates that the protein content

distribution spreads equally in the soybean powder. In contrast,

the protein and lipid contents in intact seeds are only at a few points

on the image of the seed. Therefore, although the image prediction

represented the same protein content in both the seed and powder

samples, the image prediction of the seed and powder samples was

different in color distribution. Overall, unlike the human eye and

conventional industrial color cameras, visual image prediction can

show the distribution of chemical concentrations in samples.

Additionally, the visualization results showed that HSI has several

advantages over conventional spectroscopy in terms of the chemical

composition and spatial contaminant identification of whole

soybean seeds and powders.
4 Conclusion

Raman HSI methods were used to estimate the amount of

proteins and lipids in soybeans using an entire seed sample. To

examine the possibilities of these methodologies for measuring the

chemical components of agricultural products, the possibility of

predicting various types of targeted components was examined. We

investigated the viability of employing a Raman HSI to predict the

protein and lipid content in soybean seeds. The results indicated

that Raman HSI combined with PLSR is a promising method for

predicting protein and lipid content in a single soybean seed,

presenting a performance prediction model (Rp
2) of 0.90 and

0.82, respectively. Additionally, the non-destructive technology

demonstrated the estimation of protein- and lipid-content

distribution in a single seed. The results demonstrated that the

non-destructive measurement was consistent with the reference-

value range for the representative varieties of soybean raised in

Korea. Based on the capability of the chemical imaging of the

Raman HSI for a single soybean seed, rapid seed sorting based on

the protein and lipid content can be developed with the

combination of an online or gravity assisted conveying system.
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