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Machine learning and artificial intelligence for smart agriculture, volume II
1 Introduction

Currently, AI is being widely used in various agricultural scenarios, including

intelligent perception, real-time field monitoring, intelligent early warning, disease and

pest detection, and intelligent decision-making for crop production environments. With

the help of AI, farmers can now detect whether there are any diseases and pests, whether

they need to use pesticides, and whether their plant protection practices are effective. This

special edition focuses on several issues that still require further study and discussion, such

as agricultural unmanned aerial vehicles, crop type mapping, crop phenotypic analysis, and

the identification of crop diseases and pests in sustainable and intelligent phytoprotection.
2 Agricultural unmanned aerial vehicle

Agricultural unmanned aerial vehicles (AUAVs) integrate robots, AI, big data, and the

Internet of Things. They have been widely applied to various agricultural operations, such as

seed sowing, land monitoring, crop disease and pest detection, and pesticide and fertilizer

spraying. AUAVs greatly improve agricultural production efficiency and liberate the labor force

(Kim et al., 2019). They are becoming a new force in the field of precision agricultural aviation

(Wang et al., 2019). Compared to traditional agricultural machinery, they are small, lightweight,

and easy to transport, and have flexible flight control. AUAVs are characterized by precision

operation, high efficiency, environmental friendliness, intelligence, and ease of use. However, in

many cases, real-time changes in the AUAV load during flight can affect its speed, accuracy, and

flight path stability. Xu et al. (Wei et al.) proposed a flight dynamics model for achieving AUAV

flight trajectory stability using a PID controller and robust T-S fuzzy control method. This

model can achieve certain stability in the flight path against load perturbations for different
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mission requirements. With crop growth data recorded by AUAVs,

farmers can analyze their crops and make informative decisions based

on accurate crop growth information.
3 Crop type mapping

Large-scale and accurate CTM plays a critical role in

agricultural management, including field-scale crop monitoring,

optimizing crop distribution, and achieving agricultural

intensification for sustainable development and food security.

However, it is challenging due to factors such as crop diversity,

inter-class spectral similarity, and intra-class variability. Traditional

CTMmethods rely on remote sensing images (RSIs) as data sources,

but cloud cover and limited availability of optical images during

critical crop growth periods can impede the accuracy of RSIs,

particularly in hot and rainy areas (Yang et al., 2019). Moreover,

the irregular time series and limited coverage of remote sensing data

further complicate CTM. To overcome these challenges, recent

studies have proposed deep learning-based CTM methods that

outperform traditional machine learning methods, leveraging

advancements in Earth observation satellites and deep learning

technology (Pott et al., 2021). For instance, in Bian et al. designed a

channel attention U-Net model that integrates shallow CNN, U-

Net, and channel attention mechanism to improve the spectral

feature extraction ability. This approach can better handle the

problem of inconsistent availability of remote sensing data due to

cloud and rainy weather. Future research should continue to focus

on addressing this problem to realize large-scale CTM for precision

agriculture management and macro-control of food production.
4 Crop phenotypic analysis

Overall, crop phenotypic analysis (CPA) is an essential tool in

understanding the various factors affecting crop growth and providing

timely data for crop managers. Traditional CPA methods rely on

manual operations, which are time-consuming and labor-intensive,

and the analysis results may be unstable and inaccurate (Song et al.,

2021). To overcome these challenges, machine vision and deep learning

techniques can be used to achieve rapid and accurate analysis of crop

phenotypic characteristics (Xiong et al., 2021). In Zhang et al. proposed

a three-stage multi-branch self-correcting trait estimation network

(TMSCNet) for CPA, which can provide a scientific basis for real-

time monitoring of crop growth. Additionally, seed morphology

analysis is important for understanding the taxonomic relationship of

various plant families and genera and for developing higher-yield and

better-quality crop varieties. In Seki et al. used image-based phenotyping

to develop a quantitative method for measuring seed morphology traits,

even for small crop seed sizes, through deep learning. This approach can

accelerate the discovery of the genetic basis of small morphological

characteristics, such as seed size and shape.
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5 Crop disease-pest control

Crop disease and pest identification is a critical aspect of

agriculture that can help reduce pesticide use and increase

agricultural productivity in a sustainable manner. Traditional

methods of identification such as support vector machines, Naive

Bayes and BP neural networks are not suitable for large area disease-

pest identification in the field due to low recognition rate and weak

generalization. In contrast, deep learning methods based on

convolutional neural networks (CNN) have shown remarkable

results and have strong generalization (Gu et al., 2021). Pre-

trained VGG and ResNet 50 architectures based on the ImageNet

dataset are commonly used due to the scarcity of images of crop

disease-pests. To improve the identification accuracy of small insect

targets, S-ResNet has been constructed based on ResNet, which has

a 7% improvement in identification accuracy in Wang et al.. Deep

learning methods require powerful computing power and large

training datasets, which make them difficult to deploy on mobile

devices (Chen et al., 2021). Future research efforts should focus on

developing lightweight Siamese networks and incorporating other

data forms such as geographic location, disease-pest incidence

history, and weather trends to enhance the accuracy and

reliability of disease-pest recognition systems.
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