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The roles of plant proteases and
protease inhibitors in drought
response: a review

Sellwane Jeanette Moloi and Rudo Ngara*

Department of Plant Sciences, University of the Free Sate, Qwaqwa Campus, Phuthaditjhaba, South
Africa
Upon exposure to drought, plants undergo complex signal transduction events

with concomitant changes in the expression of genes, proteins and metabolites.

For example, proteomics studies continue to identify multitudes of drought-

responsive proteins with diverse roles in drought adaptation. Among these are

protein degradation processes that activate enzymes and signalling peptides,

recycle nitrogen sources, and maintain protein turnover and homeostasis under

stressful environments. Here, we review the differential expression and functional

activities of plant protease and protease inhibitor proteins under drought stress,

mainly focusing on comparative studies involving genotypes of contrasting

drought phenotypes. We further explore studies of transgenic plants either

overexpressing or repressing proteases or their inhibitors under drought

conditions and discuss the potential roles of these transgenes in drought

response. Overall, the review highlights the integral role of protein degradation

during plant survival under water deficits, irrespective of the genotypes’ level of

drought resilience. However, drought-sensitive genotypes exhibit higher

proteolytic activities, while drought-tolerant genotypes tend to protect

proteins from degradation by expressing more protease inhibitors. In addition,

transgenic plant biology studies implicate proteases and protease inhibitors in

various other physiological functions under drought stress. These include the

regulation of stomatal closure, maintenance of relative water content,

phytohormonal signalling systems including abscisic acid (ABA) signalling, and

the induction of ABA-related stress genes, all of which are essential for

maintaining cellular homeostasis under water deficits. Therefore, more

validation studies are required to explore the various functions of proteases

and their inhibitors under water limitation and their contributions towards

drought adaptation.

KEYWORDS
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1 Introduction

Plants require an optimum supply of light, water, temperature,

and mineral nutrients for normal growth and development (Taiz

and Zeiger, 2012). In nature, however, plants are often exposed to

diverse abiotic stresses, including drought, high salinity, extreme

temperatures, chemical toxicity and nutrient deficiency, which

negatively affect their survival (Wang et al., 2003; Mahajan and

Tuteja, 2005). In the case of crops, these stress factors may reduce

yield, causing negative impacts on food supply chains (Mittler,

2006). Among the environmental stresses, drought is the major

limiting factor of crop production worldwide (Farooq et al., 2009;

da Silva et al., 2013), and its effects are further exacerbated by

climate change and global warming. As climate models continue to

predict the occurrence of frequent and severe drought episodes,

more famines are likely to be experienced in drought-prone areas

(IPCC, 2007; Nelson et al., 2009).

Plants are exposed to water deficit stress when rainfall declines

during the growing season and when the rate of transpiration exceeds

that of water absorption by roots due to hot and dry conditions

(Turner and Begg, 1981; Bray, 1997). Consequently, osmotic stress

develops, causing adverse effects on plant physiology, metabolism,

and growth patterns (Taiz and Zeiger, 2012). For example, water

deficit disrupts cell structure and function, including membrane

integrity, photosynthesis, respiration, and growth processes (Anjum

et al., 2011; Kumar et al., 2018; Kapoor et al., 2020). The extent of

such effects, however, depends on the duration and severity of the

water limitation, the plant species, genotype and/or developmental

stage (Mullet andWhitsitt, 1996; Bray, 1997; Anjum et al., 2011), and

whether water scarcity occurs in combination with other biotic and/

or abiotic stresses (Rizhsky et al., 2004; Suzuki et al., 2014; Zandalinas

et al., 2018). Nonetheless, plants have developed various mechanisms

to cope with the prevailing environmental stresses to maintain cell

structure, function and growth (Xiong and Zhu, 2002; Farooq et al.,

2009; Shao et al., 2009; Osakabe et al., 2014).

One of the earliest responses of plants to dehydration stress is

stomatal closure which is induced by the phytohormone abscisic acid

(ABA) (Zhang et al., 2006; Lim et al., 2015; Kuromori et al., 2018).

ABA is synthesised in roots and leaves in response to reduced water

content in drying soil (Davies and Zhang, 1991; Taiz and Zeiger,

2012). As stomata close, transpiration water loss is reduced, and water

is conserved. However, stomatal closure also restricts the absorption

of CO2 required for photosynthesis and the uptake of nutrients for

plant growth (Basu et al., 2016). The reduction in CO2 absorption and

assimilation leads to an electron-rich environment in cells that is

conducive for increased accumulation of reactive oxygen species

(ROS) (Salehi-Lisar and Bakhshayeshan-Agdam, 2016), causing

oxidative stress (Gill and Tuteja, 2010; Sharma et al., 2012), a

secondary effect of many environmental stresses, including drought

(Levitt, 1980a; Levitt, 1980b). If ROS molecules are not maintained at

relatively low levels and/or effectively detoxified, they may damage

lipids, nucleic acids and proteins, causing catastrophic disruptions to

cell structure and metabolism (Wang et al., 2003).

To mitigate the adverse effects of both osmotic and oxidative

stresses on cells, plants accumulate or activate a variety of stress-

related genes, proteins, and metabolites through changes in cellular
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metabolism (Xiong and Zhu, 2002; Shao et al., 2009). Some of these

molecular changes are mediated by ABA via the ABA-dependent

pathway of stress response, while others form part of the ABA-

independent pathway (Shinozaki and Yamaguchi-Shinozaki, 1997;

Shinozaki and Yamaguchi-Shinozaki, 2007; Yoshida et al., 2014),

and have various signalling, gene regulatory and protective

functions (Shinozaki and Yamaguchi-Shinozaki, 1997; Shinozaki

and Yamaguchi-Shinozaki, 2007). Ultimately, cellular homeostasis

is maintained to promote plant survival under stressful conditions

(Xiong and Zhu, 2002; Vinocur and Altman, 2005).

Apart from ABA, other phytohormones such as jasmonic acid,

salicylic acid, ethylene, auxins, gibberellins, cytokinins,

brassinosteroids, and small molecular peptides also mediate plant

responses to drought through complex interactions of their

signalling pathways (Clarke and Durley, 1981; Hale and Orcutt,

1987; Ullah et al., 2018; Jogawat et al., 2021; Salvi et al., 2021; Iqbal

et al., 2022). The crosstalk between phytohormones may have

positive or negative effects on the interacting hormones and their

ultimate effect in alleviating drought stress (Ullah et al., 2018;

Jogawat et al., 2021). Furthermore, the biosynthesis, catabolism,

and transport of phytohormones, and their conversion between

bioactive, inactive, and storage forms also influence how plants

reprogram growth and developmental processes to survive drought

stress (Clarke and Durley, 1981; Hale and Orcutt, 1987). For

example, the levels of ABA, auxins, salicylic acid, jasmonic acid,

brassinosteroids, and ethylene may increase in response to water

deficits to facilitate stomata regulation of transpiration, osmotic

adjustment, ROS scavenging, and increased root growth.

Conversely, the contents of gibberellins and cytokinins tend to

decline under drought, and these hormones have opposite effects on

stomata conductance and shoot and root meristem activity compared

to ABA (Clarke and Durley, 1981; Hale and Orcutt, 1987; Ullah et al.,

2018; Salvi et al., 2021; Iqbal et al., 2022). Furthermore, a decline in

gibberellins content in plants under drought results in the

accumulation of growth-repressor proteins such as DELLA and the

subsequent development of growth-retarded plant phenotypes that

are more tolerant to drought (Achard and Genschik, 2009; Salvi et al.,

2021). Likewise, drought-induced reduction in cytokinins is

associated with shoot growth inhibition and enhanced root growth

facilitating water absorption from drying soils (Salvi et al., 2021).

Collectively, phytohormone interactions in plants under drought

stress modulate plant responses through complex morpho-

physiological and molecular mechanisms, including transcriptional

regulation of drought stress-related genes to maximise survival.

Research on plant responses to drought has increased

exponentially in the last two decades, as evidenced by the growing

number of related publications available on the PubMed database

https://pubmed.ncbi.nlm.nih.gov/. In addition, genomes of over 788

different plant species (Sun et al., 2022), including those of the model

plant Arabidopsis (Arabidopsis thaliana) (The Arabidopsis Genome

Initiative, 2000), and major crops (Bolger et al., 2014) have been

sequenced. Several reviews have discussed the applications of genome

sequences (Edwards and Batley, 2010; Bolger et al., 2014) and genome

editing tools (Arora and Narula, 2017; Bao et al., 2019; Zhang et al.,

2020) for crop improvement, including drought resilience.

Furthermore, genome sequence data are invaluable reference tools
frontiersin.org
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for high-throughput “omics” studies involving many aspects of plant

biology. Consequently, innumerable transcriptomics, proteomics, and

metabolomics studies on plant responses to drought have been

published and reviewed (Cramer et al., 2011; Ngara and Ndimba,

2014; Shanker et al., 2014; Barkla, 2016; Ngara et al., 2021; Singh et al.,

2022; Thanmalagan et al., 2022). In addition, the generalised functional

catalogue of plant genes outlined by Bevan et al. (1998) has become an

invaluable tool for assigning putative roles to drought-responsive

proteins identified in proteomics studies (Nouri and Komatsu, 2010;

Aranjuelo et al., 2011; Zhao et al., 2011; Mohammadi et al., 2012a;

Wang et al., 2014; Tamburino et al., 2017; Goche et al., 2020).

Undoubtedly, the drought models employed in such studies are

quite diverse, and so are the results generated (Osmolovskaya et al.,

2018). Nonetheless, “omics” studies continue to broaden our

understanding of how plants reprogram cellular metabolism to

maximise survival under unfavourable environmental conditions

(Kido et al., 2016; Ngara et al., 2021; Baldoni, 2022; Rakkammal

et al., 2022; Singh et al., 2022). Furthermore, comparative proteomics

studies of plant genotypes with contrasting drought phenotypes

provide new insights into drought response mechanisms (Barkla,

2016). For example, common plant responses to water deprivation

between drought-tolerant and sensitive cultivars include the down-

regulation of metabolism-related proteins, possibly as an energy-saving

mechanism, and the up-regulation of defence-related proteins for

protective functions (Ford et al., 2011; Jedmowski et al., 2014;

Faghani et al., 2015; Cheng et al., 2016; Wu et al., 2016; Zeng et al.,

2019; Goche et al., 2020; Moosavi et al., 2020). Conversely, increased

alternative splicing events (Fracasso et al., 2016) and higher constitutive

expression of secondary metabolism, redox homeostasis, and

translation-related genes (Fracasso et al., 2016; Azzouz-Olden et al.,

2020) possibly contribute towards the drought-superior traits of some

varieties. These tolerant varieties also exhibit greater drought-induced

accumulation of proteins involved in signal transduction, osmolyte

biosynthesis, transcription, translation, and several protective roles

such as antioxidant enzymes, dehydrins, late embryogenesis

abundant proteins, chaperons, and regulators of proteolysis (Wang

et al., 2015; Cheng et al., 2016; Chmielewska et al., 2016; Goche et al.,

2020). Overall, such genes and proteins are pivotal during drought

adaptation (Ingram and Bartels, 1996; Ramanjulu and Bartels, 2002)

and could serve as potential biomarkers for crop improvement

strategies (Barkla, 2016).

Here, we review the differential expression and functional

activities of plant protease and protease inhibitor proteins under

drought stress, mainly focusing on comparative studies of cereal

crops involving genotypes of contrasting drought phenotypes. We

further explore studies of transgenic plants that either overexpress or

repress proteases or their inhibitors under drought conditions and

discuss the potential roles of these transgenes in drought response.
2 Plant proteases and
protease inhibitors

Plant proteases are proteolytic enzymes that hydrolyse peptide

bonds in proteins and are found in various plant tissues and organs

(Palma et al., 2002; Schaller, 2004; van der Hoorn, 2008; Sharma
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and Gayen, 2021). Their activities are tightly regulated through the

transcriptional control of protease transcripts, post-translational

modifications of their proenzymes, actions of endogenous protease

inhibitors, and/or compartmentalization into organelles and

cellular compartments to avoid random acts of protein

degradation (Brzin and Kidrič, 1996; Vierstra, 1996; Diaz-

Mendoza et al., 2016). For instance, plant proteases are located in

the cytosol, chloroplasts, vacuoles, nuclei, endoplasmic reticulum,

proteasome, mitochondria, and cell walls (Vierstra, 1996; Kidric

et al., 2014; Diaz-Mendoza et al., 2016), and also secreted into the

extracellular matrix (Ngara et al., 2018; Ngcala et al., 2020; Godson

and van der Hoorn, 2021). Each of these cellular compartments may

possess specialised proteolytic pathways. For example, in the

cytosol, protein degradation is mainly carried out by the highly

selective ubiquitin-proteasome system (UPS), which consists of

ubiquitin, the proteasome and associated components (Hopkins

and Huner, 2009; Xu and Xue, 2019). Other proteolytic machinery

found in plants include the caseinolytic protease (Clp) system in

plastids and mitochondria and the vacuolar processing enzymes in

vacuoles (Kato and Sakamoto, 2010; Vaseva et al., 2012; Nishimura

and van Wijk, 2015; van Wijk, 2015; Ali and Baek, 2020).

Proteases are structurally and functionally diverse and are

classified based on their catalytic activity, such as aspartic,

cysteine, serine and threonine peptidases (Callis, 1995; Schaller,

2004). Alternatively, proteolytic enzymes are grouped into endo-

and exo-peptidases depending on the site of cleavage on the peptide

chain (Palma et al., 2002; Schaller, 2004). Examples of

endopeptidases include serine, cysteine, aspartic, threonine and

meta l loendopept idases , whi l e exopept idases inc lude

aminopeptidases, dipeptidases, carboxypeptidase, didpeptidyl-

peptidases, omega peptidases and peptidyl-dipeptidases (Beers

et al., 2000; Palma et al., 2002; Vaseva et al., 2012; Kidric et al.,

2014). Likewise, protease inhibitors are diverse small molecules of

either protein or non-protein nature (Polya, 2003); and are located

in various plant organs and cellular compartments (Mosolov and

Valueva, 2011; Kidric et al., 2014). They are differentiated based on

their reaction mechanism or the type of proteases they inhibit

(Mosolov and Valueva, 2011; Kidric et al., 2014). Examples of

endogenous plant protease inhibitors include phytocystatins,

serpins, Kunitz protease inhibitors, Bowman-Birk inhibitors, a-

amyla se inh ib i tors , b i func t iona l t ryps in inh ib i tors ,

metallocarboxypeptidase inhibitors, mustard trypsin inhibitors,

and potato-type inhibitors (Mosolov and Valueva, 2011; Vaseva

et al., 2012; Kidric et al., 2014; Hellinger and Gruber, 2019).

Additional information and online resource tools for plant

proteases and their endogenous inhibitors can be found in the

listed databases (Table 1).
2.1 Putative protein substrates and
functions of plant proteases

The mechanism of action of proteases, their inhibitors, and

different proteolytic pathways in plants have been extensively

reviewed elsewhere (Vierstra, 1996; Vaseva et al., 2012; Kidric

et al., 2014) and can be accessed for in-depth reading. Other
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reviews have discussed proteolytic machinery in plastids,

mitochondria and peroxisomes, as well as their roles in

maintaining protein homeostasis, also called proteostasis in these

organelles (Kato and Sakamoto, 2010; Nishimura and van Wijk,

2015; vanWijk, 2015; Nishimura et al., 2016; Nishimura et al., 2017;

Sun et al., 2021). The extensive review by van Wijk (2015) also lists

substrates of plastidal, mitochondrial and peroxisomal proteases

and is recommended for further reading, together with other

references therein. Readers are also encouraged to access the

comprehensive review chapter by Kato and Sakamoto (2010) on

major chloroplast proteases, their substrates and functions.

Nishimura et al. (2016) also provide a comprehensive pictorial

depiction of the different types of metallo, serine, and aspartic

proteases in plastids of land plants, their suborganellar location, and

apply case studies to illustrate how the major chloroplastic proteases

maintain organellar proteostasis. These earlier reviews highlight the

different types of proteolytic machinery in plant cells, organelles

and compartments, as well as the integral role of proteolysis during

protein processing, maturation and quantity and quality control.

A common notion from these reviews is the extensive diversity

of plant proteases, their multiple protein substrates, subcellular

locations, and specialised functions. These proteolytic systems also

work in a coordinated manner to maintain protein homeostasis

(Kato and Sakamoto, 2010). However, the identities of specific

protein substrates and mechanisms of action for many of these

proteases are only partially known (Kato and Sakamoto, 2010; van

Wijk, 2015). Nevertheless, enormous progress has been made in

profiling the physiological substrates of various plant proteases. For

example, several studies have used in vitro recombinant proteins,

mutant systems, substrate-trapping assays, and N-terminal

degradome techniques coupled with quantitative proteomics and

mass spectrometry technologies for substrate identification

(Moberg et al., 2003; Tsiatsiani et al., 2013; Sako et al., 2014;

Carrie et al., 2015; Galiullina et al., 2015; Opalinska et al., 2017;

Moreno et al., 2018; Welsch et al., 2018; Rowland et al., 2022).

In a recent study, Rowland et al. (2022) used several mutant

types, the terminal amine stable isotopic labelling of substrates

(TAILS), and label-free proteomic methods to investigate the

coordination between Clp and presequence protease (PreP)

proteases in maintaining chloroplast proteostasis. The results

showed synergistic interactions between the two protease systems,

their effects on embryo lethality, and changes in N-terminal protein

processing activities. Furthermore, the loss-of-function of the Clp

systems resulted in the over-accumulation of chloroplast stromal

chaperons such as heat shock protein 90 (HSP90), chaperon protein

CLPB3, chloroplastic (CLPB3) and chaperonins (CPN60/10/20),
Frontiers in Plant Science 04
which possibly re-fold and stabilise abnormally folded and

aggregated proteins. However, none of these three chaperons

was affected in the prep1prep2 mutant plants relative to the wild-

type (Rowland et al., 2022) further highlighting the different

effects of proteases in plants. Using several clp mutants, co-

immunoprecipitation, and proteomic analyses, Welsch et al.

(2018) experimentally showed that phytoene synthase, an enzyme

in carotenoid biosynthesis, is a substrate for the Clp protease

system. Therefore, the authors argued that proteolysis is critical in

ensuring quantity control of phytoene synthase for adequate

carotenoid biosynthesis (Welsch et al., 2018).

We acknowledge that a complete listing of known substrates of

various plant proteases is beyond the scope of the current review.

However, below is a brief account of how plants maintain protein

homeostasis using diverse proteolytic machinery and their

substrates. In many cases, they operate in tandem to complete

target protein degradation (Kato and Sakamoto, 2010; van Wijk,

2015). A summary list of protein substrates of selected plant

proteolytic machinery is also presented in Table 2. For example,

once imported into their target organelles, nucleus-encoded

chloroplast and mitochondrial proteins are further processed

through the proteolytic cleavage of chloroplast transit peptides

(cTP) and mitochondrial targeting peptides (mTP) before

maturation. These activities are carried out by the stromal

processing peptidase (SPP) (Richter and Lamppa, 1999; Richter

et al., 2005) and mitochondrial processing peptidase (MPP) (Ghifari

et al., 2019) metalloproteases in chloroplasts and mitochondria,

respectively or other yet to be identified peptidases (Rowland et al.,

2022). In peroxisomes, the cleavable N-terminal peroxisomal

targeting signal (PTS2) of nucleus-encoded proteins is cleaved off

by the degradation of the periplasmic protein (Deg)15 proteases,

while PTS1 in non-cleavable (Schuhmann et al., 2008). Deg

proteases are ATP-independent serine endopeptidases with

essential roles in protein quality control in nearly all organisms,

including plants (Schuhmann et al., 2008; Schuhmann et al., 2012).

Schuhmann et al. (2008) experimentally verified that PTS2-

containing presequences of glyoxysomal malate dehydrogenase, 3-

keto-acyl-CoA thiolase, and a long-chain acyl-CoA synthetase 6 are

substrates of Deg15. The cleaved cTP, mTP and PTS2 peptides are

subsequently degraded by PreP (Moberg et al., 2003; Kmiec and

Glaser, 2012) or organellar oligopeptidase (OPP) (Ghifari et al.,

2019) to prevent the accumulation of potentially toxic non-

functional peptides and to facilitate amino acid recycling (van

Wijk, 2015; Rowland et al., 2022). Other in vitro studies using

recombinant proteins have shown that various Deg family proteins

may be involved in maintaining chloroplast proteostasis by
TABLE 1 Online databases and resource tools for plant proteases and protease inhibitors.

Database/resource tool Website Supported information References

MEROPS http://merops.sanger.ac.uk Proteolytic enzymes, their substrates and inhibitors Rawlings et al. (2018)

PLANT-PIs http://plantpis.ba.itb.cnr.it/ Proteases inhibitors and their genes in higher plants De Leo et al. (2002)

PINIR http://pinir.ncl.res.in Potato type inhibitor-II proteins Yadav et al. (2021)

ProtIdent http://www.csbio.sjtu.edu.cn/bioinf/Protease/ Proteolytic enzymes Chou and Shen (2008)
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degrading thylakoid lumen proteins such as plastocyanin and the

oxygen-evolving complex (OEC) protein 33 of the photosystem II

(PSII), and heat stressed or photo-damaged D1 reaction centre

protein (Kato and Sakamoto, 2010; van Wijk, 2015). Chloroplasts

and mitochondria also contain other specialised endopeptidases,

such as the type-I signal peptidase family (SPase I) and the plastidal

type-I signal peptidase (Plsp1), that process luminal and

intermembrane precursor proteins by cleaving off signal peptides

for full maturation and activation (Tuteja, 2005; Kato and

Sakamoto, 2010). For example, Plsp1 is involved in the

maturation of the translocon at the outer envelope membrane of
Frontiers in Plant Science 05
chloroplasts, 75kDA (Toc75), a member of the protein

translocation complex at the outer envelope membrane of plastids

(Baldwin et al., 2005). Other chloroplast and mitochondrion-

encoded proteins are further post-translationally modified by the

proteolytic removal of an N-terminal methionine using methionine

aminopeptidases (MAPs) to achieve normal protein function and

leaf development (Ghifari et al., 2019).

Due to their wide structural diversity, substrate specificities,

selectivity, and/or subcellular locations (Vierstra, 1996; Kato and

Sakamoto, 2010; Vaseva et al., 2012; Kidric et al., 2014; van Wijk,

2015), plant proteases are involved in numerous functions during
TABLE 2 Examples of protein substrates for selected proteases and peptidases during plant growth and development.

Name Class Examples of substrates1 Physiological functions of proteolytic
activity

References2

Clp ATP-dependent
serine-type protease

Phytoene synthase; molecular
chaperons, CAO, various
chloroplast proteins involved in
protein homeostasis,
photosynthesis, redox homeostasis,
plastid biosynthesis pathway, and
plastid gene expression

Chloroplast biogenesis, chloroplast housekeeping,
protein homeostasis, regulation of chlorophyll b
synthesis, protein quality control, folding, and
activity, quantity control for adequate carotenoid
biosynthesis

Kato and Sakamoto (2010); van
Wijk, 2015; Moreno et al. (2018);
Welsch et al. (2018); Liao and van
Wijk (2019); Rodriguez-concepcion
et al. (2019); Bouchnak and van
Wijk (2021); Rowland et al. (2022)

Deg ATP-independent
serine-type protease

Thylakoid lumen proteins,
plastocyanin, OEC33 of PSII;
photo-damaged, heat and high
light intensity pretreated D1
protein of the PSII

PSII repair cycle, response to photo-oxidative
stress, maintenance of chloroplast homeostasis

Kato and Sakamoto (2010)

FtsH ATP-dependent
metalloprotease

D1 protein of PSII; oxidatively
damaged membrane proteins,
MPC4, Pam18-2, Tim17-2,
oxidatively damaged
mitochondrial proteins, Slp1& 2,
GCD, several metabolism-related
proteins

PSII repair cycle, plastid development and
thylakoid membrane formation, Response to
photo-oxidative stress, high light acclimation,
senescence, thermotolerance

Kato and Sakamoto (2010);
Opalinska et al. (2017)

Metacaspase9 Cysteine aspartate
protease

Several substrates including
PEPCK, LEAs, chaperons,
proteases, protease inhibitors,
HSPs, Toc159, protein synthesis-
related proteins, metacaspase

PCD, maintenance of plant growth and
development, regulation of cell metabolism,
possible involvement in drought stress response

Tsiatsiani et al. (2013)

Icp55 N-terminal
aminopeptidase

Several substrates including HSPs;
antioxidant enzymes, proteases,
PRR proteins, ATP synthases,
metabolism and protein synthesis-
related proteins

Secondary processing of mitochondrial
presequences; maintenance of protein stability in
mitochondria

Carrie et al. (2015)

Oct1 (or
MIP)

N-terminal
aminopeptidase

PRR proteins, valyl-tRNA
synthetase, PRORP1, PMH1,
PMH2, B13 NADH complex,
glycine-tRNA synthetase

Secondary processing of mitochondrial
presequences; maintenance of protein stability in
mitochondria

Carrie et al. (2015)

Phytaspase Subtilisin-like serine-
dependent protease

Various peptide-based caspase
substrates

PCD triggered by biotic and abiotic factors such
oxidative and salt stresses

Galiullina et al. (2015)

Plsp1 Serine endopeptidase Toc75, OEC33 Biogenesis of chloroplast internal membranes,
protein maturation

Kato and Sakamoto (2010)

PreP Metalloendopeptidase Cleaved cTP, mTP and PTS2
peptides

Prevention of over-accumulation of potentially
toxic non-functional peptides; amino acid
recycling

Moberg et al. (2003); Kato and
Sakamoto (2010); Kmiec and
Glaser (2012); van Wijk (2015);
Rowland et al. (2022)

26S
proteasome

ATP-dependent
protease complex

DELLA, JAZ, LTA2, PDH E1a;
various unimported or misfolded

Regulation of phytohormone activity and
signaling. Degradation of unimported and

Achard and Genschik (2009); Sako
et al. (2014)

(Continued)
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normal plant growth and development and in response to biotic

and abiotic stresses (Figure 1). For instance, proteolytic activities

are essential during nitrogen recycling and remobilisation, leaf

senescence and programmed cell death, controlled degradation of

damaged or abnormal proteins, activation and maturation of

proteins and peptide hormones, seed germination, seedling

growth, cellular housekeeping, regulating protein turnover, and

in response to biotic and abiotic stresses (Brzin and Kidrič, 1996;

Vierstra, 1996; Schaller, 2004; van der Hoorn, 2008; Hopkins and

Huner, 2009; Kato and Sakamoto, 2010; Kidric et al., 2014; van

Wijk, 2015; Diaz-Mendoza et al., 2016). On the other hand,

protease inhibitors regulate the function of proteases by

inhibiting their catalytic activity and may participate in plant

defence and protective roles in response to biotic and abiotic

stresses (Brzin and Kidrič, 1996; Mosolov and Valueva, 2005;

Mosolov and Valueva, 2011).
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2.2 Plant protease and protease inhibitor
proteins under drought stress

2.2.1 Comparative proteomics studies
The involvement of plant proteases and protease inhibitors in

drought response has been reported in various plant species using

transcriptomics, proteomics and/or enzyme activity assays. Earlier

reviews have also discussed the roles of plant proteases and their

inhibitors under normal growth and in response to various biotic

and abiotic stresses (Brzin and Kidrič, 1996; Mosolov and Valueva,

2011; Kidric et al., 2014; Godson and van der Hoorn, 2021),

including senescence (Diaz-Mendoza et al., 2016). Xu and Xue

(2019) reviewed the components of the UPS and their regulation in

response to biotic and abiotic stresses. Others have outlined the

potential function of plant proteases in signal transduction systems

under environmental stresses (Sharma and Gayen, 2021), including
FIGURE 1

General functions of plant proteases in plant growth and development. (Brzin and Kidrič, 1996; Vierstra, 1996; Schaller, 2004; van der Hoorn, 2008;
Hopkins and Huner, 2009; Kato and Sakamoto, 2010; Kidric et al., 2014; van Wijk, 2015; Diaz-Mendoza et al., 2016; Sharma and Gayen, 2021).
TABLE 2 Continued

Name Class Examples of substrates1 Physiological functions of proteolytic
activity

References2

plastid precursor proteins in the
cytosol

misfolded plastid precursors to avoid
cytotoxicity, maintenance of cellular homeostasis

VPE Cysteine-type
endopeptidase

Proprotein precursors of various
vacuolar proteins such as seed
storage proteins, hydrolytic
enzymes, protease inhibitors, stress
proteins e.g. chitinases

Maturation and activation of various vacuolar
proteins, mediation of PCD, production of cyclic
peptides due to peptide ligating activity, supports
plant development and responses to
environmental stresses, processing of seed storage
proteins, and hydrolytic enzymes, protease
inhibitors

Yamada et al. (2020)
1To manage long lists of protein substrates from the reviewed research paper, major functional groups of substrates are given; 2The list of protein substrates was retrieved from both research
papers and reviews.
Caspases-cysteine-dependent death and inflammation-related proteases of animal origin; CAO, chlorophyll a oxidase; Clp, caseinolytic protease; cTP, chloroplast transit peptide; Deg,
degradation of periplasmic proteins; FtsH, filamentous temperature-sensitive H; HSPs, heat shock proteins; Icp55, intermediate cleaving peptidase of 55 kDa; JAZ, jasmonate ZIM-domain; LEA,
late embryogenesis abundant; LTA2, nuclear encoded dihydrolipoamide s-acetyltransferase encoding the pyruvate decarboxylase E2 subunit; MIP, mitochondrial intermediate peptidase; MPC4,
mitochondrial pyruvate carrier 4; mTP, mitochondrial targeting peptides; Oct1, octapeptidyl aminopeptidase 1; OEC33, oxygen-evolving complex protein 33; PAM18-2, presequence translocase-
associated motor 18-2; PCD, programmed cell death; PDH E1a, pyruvate dehydrogenase E1 alpha subunit; PlsP1, plastidal type-I signal peptidase; PMH1, mitochondrial RNA helicase 1; PMH2,
mitochondrial RNA helicase 2; PreP, presequence protease; PRORP1, proteinaceous RNase P1; PRR, pentatricopeptide repeat; PSII, photosystem II; PTS2, N-terminus peroxisomal targeting
signal; Slp1, stomatin-like protein 1; Slp2, stomatin-like protein 2; TIM-17-2, translocase inner membrane subunit 17-2; Toc75, translocon at the outer envelope membrane of chloroplast 75;
Toc159, translocon at the outer envelope membrane of chloroplast 159; VPE, vacuolar processing enzyme.
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drought (D’Ippólito et al., 2021). Due to the extensive collection of

“omics” studies available in the public domain, we opted to focus

this review on the drought-induced expressional changes of

protease and protease inhibitor proteins as depicted in

comparative proteomic studies of cereal crops (Table 3).

However, the general literature on proteomics approaches

(Monteoliva and Albar, 2004; Wu et al., 2006; Abdallah et al.,

2012; Zargar et al., 2016) and plant proteome analyses under
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drought stress and applications in crop improvement

(Mohammadi et al., 2012b; Barkla, 2016; Wang et al., 2016;

Ghatak et al., 2017) has been extensively reviewed elsewhere and

will not be discussed in the current review.

Wu et al. (2016) used label-free and tandem mass tag

multiplexing methods to analyse leaf proteome changes in two

rice (Oryza sativa) varieties subjected to water deficits and re-

watering. Amongst the observed unique proteome changes was the
TABLE 3 Studies showing differential accumulation and functional activities of protease and protease inhibitor proteins in plants under drought stress.

Plant
species

Tissue Genotypes Proteomic
methods

Differential expression of proteases and inhibitor proteins under
drought stress

References

Sorghum

Roots SA1441-
tolerant
ICSB338-
suseptible

iTRAQ, LC-
MS/MS, qRT-
PCR

Up-regulation of peptidase C1A family in both varieties, aspartic peptidase A1 family
peptidase in the susceptible variety, and proteinase inhibitor, potato inhibitor I in the
tolerant variety.

Goche et al.
(2020)

Leaves 11434-
tolerant
11431-
sensitive

2D-DIGE,
MALDI-TOF-
MS

Up-regulation of aspartate protease, mitochondrial processing peptidase in the
susceptible variety.

Jedmowski
et al. (2014)

Rice Leaves IAC1131-
tolerant
Nipponbare-
sensitive

SDS PAGE,
Label-free,
TMT and
western blotting
analyses

Up-regulation of ClpD1 protease in the drought tolerant variety. Wu et al.
(2016)

Wheat

Leaves Xihan No.2-
tolerant
Longchun 23-
sensitive

2D gel
electrophoresis,
MALDI-TOF/
TOF MS

Up-regulation of proteasome subunit alpha type-7-A, proteasome subunit alpha type-1
and ATP-dependent Clp protease proteolytic subunit in the drought sensitive variety.
The drought tolerant variety increased the abundance of proteasome subunit alpha type-
2, 20S proteasome beta 7 subunit, aspartic proteinase nepenthesin-1 precursor and
triticain alpha subunit.

Cheng et al.
(2016)

Leaves
Roots

SERI M 82-
tolerant
SW89.5193-
sensitive

2D gel
electrophoresis,
MALDI-TOF/
TOF MS, qRT-
PCR

Up regulation of proteasome alpha type protein in leaves of the drought sensitive variety. Faghani et al.
(2015)

Leaves Excalibur-
tolerant
RAC875-
tolerant
Kukri-
sensitive

iTRAQ and
LC-MS/MS

Up-regulation of type II metacaspase and leucine aminopeptidase in drought-tolerant
cultivars.

Ford et al.
(2011)

Barley

Leaves 15141-
tolerant
15163-
sensitive

2D gel
electrophoresis,
MALDI-TOF/
TOF MS

Up-regulation of ATP-dependent Clp proteases and leucine aminopeptidase in both
varieties, while zinc metalloprotease increased in abundance in the drought tolerant
variety.

Ashoub et al.
(2013)

Leaves XZ5-tolerant
XZ54-
sensitive

2D gel
electrophoresis,
MALDI-TOF-
TOF, qRT-PCR

Up-regulation of FtsH protease 1 metallopeptidase in the drought tolerant genotype. Wang et al.
(2015)

Leaves
Roots

Cam/B1/CI-
tolerant
Maresi-
sensitive

2D gel
electrophoresis,
MALDI-TOF-
TOF

Up-regulation of ClpP protease in the leaves of the drought tolerant variety. Chmielewska
et al. (2016)
SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; TMT, Tandem Mass Tags; iTRAQ, isobaric tags for relative and absolute quantification; LC-MS/MS, Liquid
chromatography mass spectrometry; 2D-DIGE, two- dimensional difference gel electrophoresis qRT-PCR-quantitative real time polymerase chain reaction; MALDI-TOF-MS, matrix assisted
laser desorption ionization-time of flight mass spectrometry; Clp, caseiolytic protease; FtsH, filamentous temperature sensitive H; ATP, adenosine triphosphate.
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increased accumulation of a ClpD1 protease in the drought-tolerant

IAC1131 rice variety under severe drought conditions and its

decreased accumulation upon re-watering. ClpD1 belongs to the

caseinolytic protease (Clps) family of proteins (Kato and Sakamoto,

2010; Roberts et al., 2012; Vaseva et al., 2012; Nishimura and van

Wijk, 2015) and is encoded by the drought-inducible gene OsClpD1

in rice (Wu et al., 2016). Clp proteases are involved in degrading

damaged proteins in the plastids (Kato and Sakamoto, 2010; Ali and

Baek, 2020). Wu et al. (2016) suggested that the drought-induced

accumulation of ClpD1 in the drought-tolerant variety increased

the genotype’s chances of coping with extreme drought conditions

through the regulation of protein quality.

In a comparative gel-based proteomic study, an array of

proteolysis-related proteins were up-regulated in leaves of wheat

(Triticum aestivum) plants subjected to drought stress for 18, 24

and 48 hours (Cheng et al., 2016). For example, proteasome subunit

alpha type-2, 20S proteasome beta 7 subunit, an aspartic proteinase

precursor protein and a triticain alpha subunit were up-regulated in

Xihan No. 2, a drought-tolerant wheat variety. Likewise, increased

abundances of proteasome subunit alpha type-7-A, proteasome

subunit alpha type-1 and an ATP-dependent Clp protease

proteolytic subunit were observed in the drought-sensitive variety

following water deprivation. The authors suggested that proteolysis

is an essential mechanism for maintaining protein quality under

stress, irrespective of a cultivar’s degree of drought resilience.

Furthermore, when coupled with adequate protein refolding by

chaperons, proteolytic activity helps plants to maintain protein

homeostasis under dehydration stress (Cheng et al., 2016). In

another study, a proteasome alpha-type protein accumulated in

leaves of a drought-sensitive wheat variety but not the drought-

tolerant one upon exposure to water limitation (Faghani et al.,

2015). Overall, the observations highlight the importance of

selective protein degradation by the ubiquitin-proteasome system

in plants under water deficit stress.

In another comparative gel-based proteomic study of sorghum

(Sorghum bicolor) leaves, an aspartate protease and a mitochondrial

processing peptidase were up-regulated in the drought-susceptible

variety in response to drought stress (Jedmowski et al., 2014).

Aspartic proteases are widely distributed within the plant

kingdom and are involved in protein degradation during normal

plant development, nitrogen recycling, programmed cell death, and

stress response (Mutlu and Gal, 1999; Simoes and Faro, 2004). As

discussed earlier, mitochondrial processing peptidases are involved

in the removal of N-terminal signal peptides also called the

presequence, from nuclear-encoded mitochondrial proteins

during or after their import into the mitochondrion (Glaser et al.,

1998; Kwasniak et al., 2012; Ghifari et al., 2019). As such, the

observed drought-increased accumulation of aspartic protease

could indicate high levels of degraded proteins in the susceptible

variety, while the mitochondrial processing peptidase could be

responsible for presequence removal (Jedmowski et al., 2014), and

thus maturation of various newly synthesised mitochondrial

precursors (Glaser et al., 1998; Gakh et al., 2002; van Wijk, 2015).

In one of our studies, Goche et al. (2020) conducted a

comparative root proteomic analysis of two contrasting sorghum

varieties subjected to limited watering. Among the observed
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differences in protein expression patterns were the up-regulation

of proteolytic enzymes in ICSB338, the drought-sensitive variety,

while the more drought-tolerant SA1441 accumulated proteins

involved in transcription, protein synthesis, and the inhibition of

protease activities (Goche, 2018; Goche et al., 2020). For example,

dipeptidyl peptidase, serine-type, cysteine-type, and aspartic-type

endopeptidases were up-regulated in the drought-susceptible

sorghum variety upon exposure to drought stress. On the other

hand, the drought-tolerant variety predominantly up-regulated

protease inhibitors such as the proteinase inhibitor, potato

inhibitor I (Goche, 2018; Goche et al., 2020). Although the

significance of such contrasting proteome expression patterns

warrants further functional validation studies, it is evident that

the drought-resilient SA1441 reprograms gene expression, possibly

to facilitate the accumulation of diverse stress proteins and protect

them from proteolytic degradation. It is also plausible that the

drought-sensitive sorghum variety requires extensive protein

degradation to remove damaged proteins in many cellular

locations and to recycle amino acids for targeted protein synthesis

(Hopkins and Huner, 2009).

Ford et al. (2011) also conducted an extensive comparative leaf

proteomic analysis of one drought-sensitive Kukri and two

drought-tolerant RAC875 and Excalibur wheat cultivars in

response to cyclic drought treatment. Leaf samples were

subsequently taken during the initial period of water deficit, two

wilting time-points, and following re-watering for relative water

content (RWC) estimations and proteome analysis. As observed

from the RWC results, this experimental system provided a

platform for investigating complex physiological changes of wheat

under repetitive cycles of water deficit and recovery, similar to those

experienced under natural field conditions. Comparative analyses of

the drought-responsive proteins were conducted at the four

sampling time points using isobaric tags for relative and absolute

quantification (iTRAQ) and tandem mass spectrometry. Overall,

the results revealed complex proteome responses of wheat to the

cyclic drought treatment, genotypic differences between cultivars

irrespective of their levels of drought resistance, and some common

trends in metabolic changes under conditions of water deprivation

(Ford et al., 2011). For example, proteins related to photosynthesis

and the Calvin cycle were down-regulated across the three cultivars,

while ROS-scavenging enzymes and dehydrins were up-regulated.

The study also revealed increased accumulation of type II

metacaspase and leucine aminopeptidase proteins in drought-

tolerant cultivars, especially towards the later stages of water

deprivation. However, after re-watering, the type II metacaspase

protein levels reverted to control levels in both drought-tolerant

cultivars but increased in the drought-susceptible cultivar (Ford

et al., 2011). Conversely, the accumulation pattern of the leucine

aminopeptidase protein was not consistent between the tolerant

cultivars during the water deficit but increased upon re-watering in

both cultivars. Generally, the study highlights the complexity of

plant proteome responses during drought stress and recovery, the

diversity of proteases and their selective functions during drought

stress, and the differential responses of proteases in drought-

stressed wheat plants with different drought tolerance levels. For

example, since metacaspases play a role in programmed cell death
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(Tsiatsiani et al., 2011), their early expression in drought-tolerant

cultivars may implicate them in protein degradation processes that

rapidly sacrifice some cells to ensure plant survival under stress

(Ford et al., 2011). In addition, leucine aminopeptidases activate

proteins and regulate protein turnover in plants (Walling and Gu,

1996; Matsui et al., 2006). As such, their increased accumulation

upon re-watering in the drought-tolerant cultivars may indicate the

importance of protein degradation, amino acid recycling and

activation processes as cells reset their protein component during

recovery from stress.

In another comparative proteomic study, proteases were

differentially expressed in barley (Hordeum vulgare) plants

subjected to drought stress (Ashoub et al., 2013). The study used

gel-based proteomic methods to analyse the leaf proteome changes

between accessions #15141 and #15163, which are tolerant and

sensitive to drought, respectively. For example, two ATP-dependent

Clp proteases were up-regulated in both varieties in response to

drought stress. In contrast, a third ATP-dependent Clp protease

and two leucine aminopeptidases were up-regulated only in the

drought-susceptible accession, while a zinc metalloprotease had

increased accumulation only in the tolerant accession. The authors

also reported that the drought-susceptible variety showed an

increased accumulation of proteases in drought response

compared to the drought-tolerant variety, which accumulated

more proteins involved in protective mechanisms against drought

stress (Ashoub et al., 2013). Overall, the studies mentioned above

emphasize the diversity of proteolytic enzymes, their selective

specificities, and pivotal roles in various protein degradation

processes during drought response in plants.

Although the current review aimed at surveying the drought-

induced expression changes of protease and protease inhibitor

proteins as depicted in comparative proteomic studies, we also

scanned through a few similar studies on comparative

transcriptomics to establish trends in transcript levels of these

two groups of proteins. Indeed, the correlation between mRNA

and proteins of various biological systems, including the human

liver (Anderson and Seilhame, 1997), yeast (Gygi et al., 1999), and

plants (Carpentier et al., 2008; Ponnala et al., 2014) has been

debated for years, with poor correlation trends being attributed to

various factors including the differential turnover rates of mRNA

and proteins and posttranslational modifications of proteins

(Abbott, 1999; Salekdeh et al., 2002; Vogel and Marcotte, 2012).

Nevertheless, different “omics” technologies and the data thereof

should be regarded as complementary, as each analytical technique

may over and/or under-represent particular groups of biological

molecules depending on their inherent characteristics (Carpentier

et al . , 2008). However, we found recent comparative

transcriptomics studies that reported the drought-induced

differential gene expression patterns of proteases and/or their

inhibitors between plant genotypes with contrasting levels of

drought tolerance (Zenda et al., 2019; Abdel-Ghany et al., 2020;

Bhogireddy et al., 2020; Shivhare et al., 2020).

For example, Abdel-Ghany et al. (2020) conducted an extensive

comparative transcriptome analysis between two drought-resistant

and two drought-sensitive sorghum varieties in response to 20%

polyethylene glycol (PEG)-induced osmotic stress. The results
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transcripts between seedlings of the two groups of genotypes in

response to 1 and 6 hours of osmotic stress treatment. For example,

a cysteine protease gene and a senescence-associated gene were up-

regulated in all four sorghum genotypes in response to the 1 hour

and 6 hours of stress, respectively, highlighting the critical role of

proteolysis and senescence during drought response in plants. In

addition, following 1 hour of PEG treatment, a cysteine protease

inhibitor and three cysteine protease genes were among the top 20

up-regulated genes in both drought-resistant sorghum varieties.

However, at 6 hours, four seed storage protein-related protease

inhibitors are down-regulated in the same drought-resistant

varieties. Surprisingly, no protease or protease inhibitor genes

were responsive to the PEG treatments at either time point in the

drought-susceptible sorghum varieties. The authors suggested that

these proteases and inhibitor genes possibly functioned in early-

stress responses in the drought-resistant varieties (Abdel-Ghany

et al., 2020).

Bhogireddy et al. (2020) also conducted a comparative leaf

transcriptome analysis of two peanut (Arachis hypogaea L.)

genotypes subjected to drought stress. The study reported a

higher constitutive expression of several drought-responsive genes

including protease inhibitors and senescence-related proteases in

the drought-tolerant genotype than the sensitive one. Following

water deprivation, both genotypes had increased expression of

several proteolysis-related genes, but the change was generally

much greater in the drought-susceptible variety. The authors

suggested that high constitutive expression of drought-stress

genes contributes towards the increased drought resilience of the

drought-tolerant peanut genotype (Bhogireddy et al., 2020), and

these findings are consistent with those reported in other drought

transcriptomics studies of sorghum (reviewed in Ngara et al., 2021).

Protein degradation-related genes were also differentially

expressed in maize (Zea mays) plants subjected to limited

watering (Zenda et al., 2019). For example, several UPS-related

genes were up-regulated in leaves of the drought-tolerant maize

genotype following stress. Furthermore, a comparative analysis of

transcripts between the drought-stressed samples of the susceptible

genotype versus the tolerant genotype revealed an up-regulation of

several ubiquitin-related and the really interesting new gene (RING)

zinc-finger protein related genes. The authors suggested that

protein ubiquitination and proteolytic processes are critical in

facilitating protein turnover and homeostasis in plants under

drought stress (Zenda et al., 2019). While the above account

describes the trends in a few studies, future systematic reviews

with meta-analyses of various studies must evaluate and synthesise

the trends in constitutive and drought-induced expression of these

proteolysis-related genes and proteins between multiple plants

and genotypes.

2.2.2 Functional validation studies
Indeed, proteomics technologies continue to broaden our

understanding of plant molecular changes under drought. Such

alterations affect many functional classes of plant genes (Bevan

et al., 1998), including protein degradation. However, expression

proteomics data still needs to be validated to ascertain the biological
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functions of the identified stress-responsive proteins (Rabilloud

and Lescuyer, 2014; Handler et al., 2018). Undoubtedly, such

proteomic to biological inferences are laden with hurdles that

have been critically reviewed by Rabilloud and Lescuyer (2014).

Nevertheless, different system biology approaches (Kitano, 2002),

such as western blotting, quantitative polymerase chain reaction

(qPCR), and enzyme activity assays, are often used to validate

quantitative proteomics data (Rabilloud and Lescuyer, 2014;

Handler et al., 2018). Other functional validation approaches

include transgenic plant systems that either overexpress or repress

specific genes under altered environmental conditions (Oh et al.,

2005; Kondou et al., 2010; Bolle et al., 2011; Rhee and Mutwil, 2014;

Watanabe and Hoefgen, 2019). Therefore, here we discuss a few

studies that have utilised protease activity assays in cereals and

legumes (Table 4), and transgenic overexpression (Table 5) and

knockout or knockdown mutant (Table 6) plant systems to

elucidate the involvement and functions of proteases and/or

protease inhibitors in plants subjected to drought stress. The

reviewed transgenic studies are mainly on the model plant

Arabidopsis. The study of plant gene function using gain-of-

function or loss-of-function mutants, such as overexpression or

knockout/down, has been reviewed (Kondou et al., 2010; Bolle et al.,

2011). However, the pros and cons of the above-mentioned

experimental validation systems are outside the scope of the

current review and, thus, will not be discussed. Readers are

directed to excellent reviews where such issues are critically

discussed (Bajaj et al., 1999; Sharma et al., 2002; Bhatnagar-

Mathur et al., 2008; Kondou et al., 2010; Bolle et al., 2011;

Rabilloud and Lescuyer, 2014; Rhee and Mutwil, 2014; Khan

et al., 2016; Handler et al., 2018).

2.2.2.1 Enzyme activity assays

Using a wide range of substrates and protease inhibitors, Hieng

et al. (2004) evaluated the activities of different proteolytic enzymes

in leaf extracts of common bean (Phaseolus vulgaris) cultivars
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subjected to water limitation. The cultivars used, Tiber, Zorin and

Starozagorski exhibited various degrees of sensitivity to drought

stress, with Tiber being more drought-tolerant. The results showed

a general decrease in leaf protein content in all three cultivars,

possibly due to increased proteolytic activity. However, the

drought-tolerant cultivar exhibited the least protein content

decrease and the least amount of proteolytic activity under severe

drought stress. Activity assays for a 65 kDa serine protease with a

pH optimum of 8.5 showed the greatest increase in the drought-

susceptible varieties Starozagorski and Zorin, and a decrease in

Tiber, the tolerant cultivar under severe stress. In contrast, the

activities of two other serine proteases increased in all three

cultivars, possibly illustrating the existence of a large group of

proteases with different roles under drought stress in common

beans. The study also reported increased activity of an

aminopeptidase in the most drought-sensitive Starozagorski and a

decrease in the drought-tolerant cultivar. Overall, the findings of the

study support the notion of the presence of a wide range of

proteolytic enzymes with different substrate specificities,

subcellular locations and specific inhibitors in plants. The authors

also suggested that regulation of serine proteases in the tolerant

variety could guard against premature drought-included leaf

senescence in common bean (Hieng et al., 2004).

In another study, Simova-Stoilova et al. (2010) investigated the

activities of acidic proteases and aminopeptidases in winter wheat

genotypes under drought and recovery at biochemical and

transcriptional levels. The cultivars used were Katya (drought-

resistant), Pobeda (cold-resistant) and Sadovo (disease-resistant),

with Pobeda and Sadovo being more drought-sensitive than Katya.

The results showed significant variations in leaf total protein

content of control plants of all three cultivars. Furthermore, upon

exposure to water limitation, the protein content of the drought-

susceptible Pobeda and Sadovo varieties decreased by almost 50%

relative to the respective controls but was restored after re-watering.

On the other hand, minimal protein loss was observed in the
TABLE 4 Studies showing differential functional activities of proteases in plants under drought stress.

Plant
species

Tissue Genotypes Functional
assay

Differential functional activities of proteases under drought stress References

Wheat Leaves Katya-
resistant
Pobeda-
susceptible
Sadovo-
susceptible

Endopeptidase
and
aminopeptidase
activity assays

Increased endopeptidase activity in all three wheat cultivars. The susceptible varieties
exhibited the highest activity.

Simova-
Stoilova et al.
(2010)

Common
bean

Leaves Tiber-tolerant
Starozagorski-
susceptible
Zorin-
susceptible

Endoproteolytic
and
aminopeptidase
activity assays

Serine protease activity highest in drought-susceptible varieties. Increased activity of
aminopeptidase in Starozagorski.

Hieng et al.
(2004)

Cowpea
&
Common
bean

Leaves EPACE-1-
tolerant
TI83D-
tolerant
Carioca-
sensitive
IPA-sensitive

Endoproteolytic
activity assays

Increased endoproteolytic activity higher in drought-susceptible bean cultivars
compared to drought tolerant cowpea cultivars. The highest activity of aspartic
protease was observed in Carioca, the most drought-susceptible bean cultivars.

Cruz de
Carvalho
et al. (2001)
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TABLE 6 List of transgenic knockout/down studies illustrating the roles of protease and protease inhibitors in plants under drought stress.

Gene
ID

Name Transgenic
plant

Drought-induced performance of knockout plants References

ZmSAG3 Zea mays
Senescence-
associated
gene

Maize Increased levels of MDA, ion leakage, ROS content, wilting and senescence in ZmSAG3-OE compared
to wild-type. Increased seed germination rate and levels of antioxidant enzymes, high levels of
chlorophyll synthesis and stress-related genes in knockout plants with reduced levels of senescence and
chlorophyll degradation-related genes compared to wild-type.

Wang et al.
(2022)

HvPap1
&
HvPap19

Cathepsin F-
like &
Cathepsin B-
like genes

Barley HvPap1 knockdown plants exhibited delayed leaf senescence under control conditions, thicker cuticle
under control and drought conditions. Jasmonic acid and JA-isoleucine levels increased in HvPap1
knockdown and wild-type plants following drought. ABA content high in wild-type, and the two
knockdown lines, was significantly higher in knockdown plants after drought.

Gomez-
sanchez et al.
(2019)

Tr-KPI Kunitz
proteinase
inhibitor

White clover High proline levels before and after drought stress in tr-kdi1 and tr-kdi5 knockdown plants than wild-
type. Increased drought-induced expression of genes involved in ethylene biosynthesis in knockdown
plants.

Islam et al.
(2017)

AtFtsHi3 Arabidopsis
thaliana
Pseudo-
protease
AtFtsHi3

Arabidopsis ftshi3-I(kd) knockdown lines had a pale green phenotype, reduced growth, and distorted chloroplast
ultrastructure following drought stress but high endogenous ABA content. Early onset of drought
sensitivity in wild-type and ftshi3-1(Comp) lines that ftshi3-I(kd). Increased levels of ABA-responsive
genes in the AtFTsHi3 knockdown mutant than the wild-type plants.

Mishra et al.
(2021)
F
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ABA, abscisic acid; MDA, malondialdehdye; ROS, reactive oxygen species; kd, knockdown.
TABLE 5 List of transgenic overexpression studies illustrating the roles of protease and protease inhibitors in plants under drought stress.

Gene
ID

Name Transgenic
plant

Drought-induced performance of transgenic plants References

Proteases

ASPG1 Aspartic
protease in
guard cell 1

Arabidopsis Overexpression of ASPG1 gene in drought-stressed Arabidopsis plants enhanced ABA sensitivity in
guard cells and triggered stomatal closure to reduced water loss. The transgenic plants also showed
increased activities of superoxide dismutase and catalase compared to wild-type plants. The ASPG1
gene played an essential role in drought avoidance through ABA signalling in guard cells and displayed
more tolerance.

Yao et al.
(2012)

APA1 Aspartic
Protease

Arabidopsis APA1 expression was induced in response to drought stress and ABA treatment in the transgenic
plants. The overexpression of the APA1 gene in the transgenic plants enhanced drought tolerance to
mild water deficit through ABA-dependent signalling.

Sebastián
et al. (2020)

SPCP2 Sweet potato
papain-like
cysteine
protease

Arabidopsis Transgenic Arabidopsis plants overexpressing SPCP2 exhibited early flowering, higher percentage of
incompletely developed siliques, reduced average fresh weight and lower seed germination rates
compared to the wild-type. SPCP2 gene expression was induced during natural leaf senescence in salt
and drought stress tolerance compared to wild-type plants.

Chen et al.
(2010)

Protease Inhibitors

BBI Bowman-Birk
inhibitor

Arabidopsis The transgenic plants expressing BBI maintained normal growth and higher relative water content
when compared to the wild-type plants. The transgenic plant overexpressing BBI showed increased
activities of glutathione-s-transferase and ascorbate peroxidase antioxidants and reduced
malondialdehyde content when compared to the wild-type plants. The expression of BBI in the
transgenic plants enhanced drought tolerance.

Malefo et al.
(2020)

OCPI1 Oryza sativa
chymotrypsin
inhibitor-like
1

Rice OCPI1 overexpressing transgenic plants had higher total protein content than wild-type under drought
stress. OCPI1 overexpressing plants also had higher grain yield compared to the wild-type.
Chymotrypsin activity was also inhibited in the OCPII-overexpressing transgenic plant.

Huang et al.
(2007)

OCP12 Oryza sativa
chymotrypsin
inhibitor-like
2

Arabidopsis OCPI2 overexpressing plants maintained higher biomass, relative water and proline content compared
to the wild-type. Chymotrypsin protease activities were lower in the transgenic compared to the wild-
type plants. The transgenic plants overexpressing OCP12 showed enhanced tolerance to salt and
osmotic stresses when compared to wild-type plants.

Tiwari et al.
(2015)

MpCYS4 Malus
prunifolia
cystanin

Arabidopsis
and Apple

Transgenic plants overexpressing MpCYS4 exhibited higher relative water content, chlorophyll content
and stomatal closure, and reduced electrolyte leakage compared to the wild-type. Overexpression of
MpCYS4 in transgenic plants led to up-regulation of ABA-and drought-related genes and enhanced
drought tolerance.

Tan et al.
(2017)
ABA-abscisic acid.
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drought-resistant cultivar under drought stress. The results also

showed increased endopeptidase activity for all three cultivars

under severe drought stress, with both susceptible varieties

exhibiting the highest activity. The high basal level of

azocaseinolytic activity observed in the drought-resistant variety,

but the least drought-induced effect is noteworthy. As suggested in

sorghum transcriptomics studies under water limitation (Fracasso

et al., 2016; Azzouz-Olden et al., 2020) high constitutive expression

of genes in drought-tolerant genotypes could contribute towards

superior traits to dehydration stress. Overall, the authors suggested

that low levels of proteolytic activity observed in the drought-

resistant Katya cultivar could be regarded as a marker for drought

tolerance (Simova-Stoilova et al., 2010).

Likewise, Cruz de Carvalho et al. (2001) investigated the leaf

endoprotease activity of common bean and cowpea (Vigna

unguiculata) cultivars in response to drought stress. The cowpea

cultivars EPACE-1 and TI83D were reportedly more drought-

tolerant than the common bean cultivars Carioca and IPA, with

an overall tolerance trend of EPACE-1 > TI83D > IPA > Carioca.

The results showed differences in endoproteolytic activity across all

four cultivars, being higher in the most drought-susceptible

common bean cultivars than in cowpea. For example, under

mild-drought conditions, the total endoproteolytic activity

increased by 235%, 119%, 95% and 58% for cultivar Carioca, IPA,

TI83D and EPACE-1, respectively. The study also investigated the

involvement of cysteine, aspartic, serine, and metalloproteases in

the drought response of the most drought-sensitive Carioca cultivar

using class-specific protease inhibitors. The results suggested

limited involvement of metalloproteases in the common bean

cultivar under mild stress, but some enzyme activity of cysteine

and serine proteases. Furthermore, pepstatin A inhibited about 25%

of the total proteolytic activity under mild-drought conditions, thus

indicating the presence of drought-responsive aspartic proteases in

the bean leaf extract. Subsequent analysis of aspartic protease

activity in all four cultivars using a specific peptide substrate

revealed that water deficit induced aspartic protease activity in

cowpea and bean leaf tissues. However, this enzyme activity

increased with increasing levels of sensitivity to drought. The

authors suggested that this increase in aspartic protease enzyme

activity in the drought-sensitive bean cultivars could be a drought-

adaptive response for remobilizing nitrogen to other plant parts

under stressful environments (Cruz de Carvalho et al., 2001).

2.2.2.2 Transgenic plant biology
2.2.2.2.1 Using overexpression mutant lines

Drought studies using transgenic plants overexpressing

protease and protease inhibitors genes (Table 5) are unravelling

the roles of protein degradation under conditions of water

deprivation (Huang et al., 2007; Zhang et al., 2008; Chen et al.,

2010; Yao et al., 2012; Tiwari et al., 2015; Tan et al., 2017; Roux

et al., 2019; Malefo et al., 2020; Sebastián et al., 2020). For example,

Yao et al. (2012) conducted an extensive molecular study of an

Arabidopsis gene ASPG1 (aspartic protease in guard cell 1) and its

biological functions in drought response. The study used wild-type

and ASPG1-overexpressing (ASPG1-OE) Arabidopsis plants to

investigate tissue-specific gene expression patterns and the roles
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of ASPG1 in ABA-signalling systems associated with drought. After

exposure to a 14-day drought stress treatment followed by re-

watering, ASPG1-OE plants exhibited a greater recovery from

wilting symptoms and higher survival rates. Gene expression

analysis revealed that ASPG1 is drought-inducible in both wild-

type and ASPG1-OE plants and is expressed in young seedlings,

leaves, stems, flowers, and siliques but not in roots. The gene is also

preferentially localized in guard cells where it participates in the

ABA-signalling processes, including ROS accumulation triggering

stomatal closure. The increased hydrogen peroxide contents are

further detoxified by high antioxidant activities of superoxide

dismutase and catalase, thus alleviating oxidative stress effects. In

addition, increased ABA sensitivity was observed in ASPG1-OE

plants under drought stress which could account for increased

stomatal closure and a significant reduction in transpiration water

loss. The authors suggested that ASPG1 participates in drought

response via the ABA-dependent pathway (Yao et al., 2012).

Sebastián et al. (2020) also investigated the participation of an

aspartic protease gene (APA1) in drought response using transgenic

Arabidopsis plants overexpressing APA1 (OE-APA1), wild-type and

apa1 insertional lines under well-watered and mild-water deficit

conditions. The study revealed that OE-APA1 lines tolerated

drought stress better than the wild-type and apa1 lines. In addition,

drought stress did not affect the overall plant phenotype, total

chlorophyll content, and principal root length of the OE-APA1

lines relative to the well-watered plants. However, APA1

overexpressing plants exhibited reduced stomatal pore aperture and

water loss under mild-drought stress compared to the wild-type and

apa1 lines, yet exogenous ABA did not intensify stomatal closure.

APA1 was shown to be ABA-responsive, exhibiting a 4-fold increase

in expression in well-watered wild-type plants supplemented with

exogenous ABA. Furthermore, under well-watered conditions, OE-

APA1 plants up-regulated the expression of ABA biosynthetic and

signalling genes relative to the wild-type, while the same genes were

down-regulation in apa1 insertional lines. As such, the authors

suggested that APA1 participates in drought response via the

regulation of the ABA-signalling pathway and its location in leaves,

vascular tissues, epidermal, and guard cells implicate it in stomatal

closure as a water-saving mechanism under conditions of water

scarcity (Sebastián et al., 2020).

Likewise, Chen et al. (2010) also investigated the role of sweet

potato (Ipomoea batatas) papain-like cysteine protease (SPCP2) in

transgenic Arabidopsis plants. Qualitative phenotypic analyses

showed that transgenic Arabidopsis plants overexpressing SPCP2

contained a higher number of incompletely developed siliques, and

exhibited earlier flowering, reduced fresh weight per seed, and lower

germination rates compared to the wild-type controls. It is plausible

that the SPCP2 protein degraded silique storage proteins resulting

in incomplete development. Furthermore, SPCP2 gene expression

was induced during natural leaf senescence, thus suggesting a gene

function in senescence. SPCP2 transgenic Arabidopsis plants also

showed high tolerance to salt and drought stresses compared to the

wild-type, further implicating the gene in osmotic-stress response

(Chen et al., 2010).

Bowman-Birk inhibitors (BBI) are compound inhibitors that

inhibit both trypsin and chymotrypsin (Habib and Fazili, 2007;
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Vaseva et al., 2012). Malefo et al. (2020) generated transgenic A.

thaliana plants overexpressing a BBI gene from maize and studied

its role in drought tolerance. Drought stress was imposed on 4-

week-old plants by withholding water for 9 days, and comparisons

were made between the wild-type and transgenic plants under well-

watered and drought-stress conditions. The results showed that the

transgenic plants exhibited less wilting symptoms, greater survival

rate, higher RWC, and higher fresh leaf biomass than the wild-type

under drought conditions. Furthermore, lipid peroxidation was

reduced, while glutathione-S-transferase activity was enhanced in

transgenic lines compared to the wild-type exposed to water

limitation. The authors suggested that the improved performance

of the BBI-overexpressing transgenic plants under drought could be

attributed partly to the reduction in drought-induced oxidative

stress (Malefo et al., 2020).

In another study, an Oryza sativa chymotrypsin inhibitor-like 1

(OCPI1) gene was transformed into rice plants and characterized at

the reproductive stage under drought-stressed field conditions

(Huang et al., 2007). The results showed that the positive

transgenic plants inhibited endogenous chymotrypsin activity

resulting in higher total protein content of leaves and panicles

compared to the wild-type under drought conditions. Furthermore,

the OCPI1-overexpressing plants had higher grain yield due to

higher seed setting rates than the wild-type under similar drought

conditions, further supporting the potential usefulness of OCPI1 in

crop improvement strategies (Huang et al., 2007). Likewise, the

over-expression of an OCPI2 gene in Arabidopsis resulted in

enhanced tolerance to salt and PEG- and mannitol-induced

osmotic stresses in transgenic plants relative to the wild-type

(Tiwari et al., 2015). Transgenic Arabidopsis OCPI2 plants also

exhibited greater vegetative and reproductive potential, higher

biomass, seed yield, RWC, membrane stability and proline

content . The authors suggested that these enhanced

characteristics could have contributed towards the better

performance of transgenic plants under salt and osmotic stresses

(Tiwari et al., 2015).

Apart from serine protease inhibitors discussed above, plants

also contain cystatins which inhibit cysteine proteases of papain and

legumain families (Grudkowska and Zagdańska, 2004; Martıńez

et al., 2012). Some phytocystatins are drought-inducible as

evidenced by increased gene expression of a triticale cystatin

TrcC-8 in triticate leaf and root tissue under dehydration

(Chojnacka et al., 2015). Western blotting analysis also showed

increased drought-induced accumulation of the protein but its

decline upon re-watering in the same tissues. In addition, the

recombinant TrcC-8 protein exhibited inhibitory effects on wheat

and triticale leaf cysteine proteases under water deficit stress

(Chojnacka et al., 2015). Therefore, cystatins may function as

regulatory elements of cysteine protease activity under drought

stress (Diop et al., 2004; Zhang et al., 2008).

Tan et al. (2017) studied the biological roles of cystatins under

drought stress by overexpressing a Malus prunifolia cystatin gene

(MpCYS4) in transgenic Arabidopsis and apple (Malus domestica).

The study showed that the MpCYS4 protein is localized in the

nucleus, plasma membrane and cytoplasm, consistent with its

known cellular locations (Kidric et al., 2014; Diaz-Mendoza et al.,
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2016). A range of drought assays showed that transgenic

Arabidopsis plants overexpressing MpCYS4 had improved

drought tolerance as exhibited by the plants’ decreased water loss,

increased survival rate, increased RWC and greater stomatal closure

under drought, relative to the wild-type. Physiological assessments

of the transgenic apple plants overexpressing MpCYS4 also

exhibited higher RWC, chlorophyll content and stomatal closure,

and reduced electrolyte leakage under water deficits compared to

the wild-type. Generally, the MpCYS4 gene resulted in higher

transcriptional expression of known ABA- and stress-responsive

genes in both transgenic Arabidopsis and apple plants, further

highlighting the involvement of MpCYS4 in ABA-signalling

processes and thus drought tolerance (Tan et al., 2017).

2.2.2.2.2 Using knockout or knockdown mutant lines

Plant gene function can also be studied using knockout or

knockdownmutants with total or partial loss of gene function (Bolle

et al., 2011). Several studies have utilized such mutants of proteases

or protease inhibitors to study their role during plant growth and

drought response (Islam et al., 2017; Gomez-sanchez et al., 2019;

Mishra et al., 2021; Wang et al., 2022). A summary of these studies

is also given in Table 6. For example, Wang et al. (2022) investigated

the role of the maize (Z. mays) senescence-associated gene,

ZmSAG39 encoding a cysteine protease in maize plants subjected

to either darkness or drought stress. The genotypes used were wild-

type, transgenic ZmSAG39 overexpression (OE) lines and

ZmSAG39 knockout lines. The results indicated that ZmSAG39

gene expression was induced by darkness and drought stress in the

leaves of wild-type plants. The study also investigated seed

germination rates in wild-type, ZmSAG39 knockout and

ZmSAG39-OE plants under 8% and 12% polyethylene glycol

(PEG)-6000 treatment. The results showed that the knockout

lines had higher germination rates when compared to the wild

and ZmSAG39-OE. Furthermore, the ZmSAG39-OE lines exhibited

severe leaf senescence under complete darkness for 5 days, with

lower chlorophyll content but higher membrane ion leakage rate

and malondialdehyde (MDA) content than wild-type and

knockout lines.

Similarly, following a 14-day drought-stress treatment imposed

by withholding water, the ZmSAG39-OE lines showed greater levels

of leaf wilting and senescence than the wild-type. In contrast, the

ZmSAG39 knockout lines had an upright and greener phenotype. In

addition, the ZmSAG39-OE lines exhibited reduced survival rates

and chlorophyll content, higher membrane leakage levels, MDA,

ROS, and oxidative stress damage compared to wild-type and

knockout lines. Interestingly, the activities of a range of

antioxidant enzymes were much greater in the ZmSAG39

knockout lines than in the wild-type and ZmSAG39-OE lines,

thus, indicating the enhanced antioxidant capacity of knockout

mutants. The expression levels of various stress-responsive genes

were also analyzed between the wild-type and transgenic plants.

The results showed expression levels of stress-related genes (lipid-

transfer protein, caleosin-related family protein, and salt-overly

sensitive 1) and chlorophyll synthesis-related genes (chlorophyll a

oxygenase) were higher in the drought-stressed knockout lines

compared to the wild-type.
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On the other hand, senescence-related genes (microRNA 3,

cysteine protease, and senescence-associated gene 12) and a

chlorophyll degradation-related gene (non-yellow colouring 1)

were higher in the drought-stressed ZmSAG39-OE lines

compared to the wild-type. These results indicate the negative

regulatory effect of ZmSAG39 on the analysed stress-related and

chlorophyll-synthesis-related genes under drought stress. However,

under the same conditions of water deficits, ZmSAG39 exhibited a

positive regulatory effect on genes associated with senescence and

chlorophyll degradation. The authors concluded that ZmSAG39 is

associated with leaf senescence, and its increased expression under

darkness and drought enhances the sensitivity of maize plants to

stress. As such, the knocking out of ZmSAG3 from maize enhanced

the resistance of maize plants to darkness and drought tolerance

and delayed leaf senescence (Wang et al., 2022).

Gomez-sanchez et al. (2019) also investigated the effect of

individually knocking down drought-induced cysteine protease

genes, HvPap1 and HvPap19, in leaves of barley (Hordeum

vulgare) under drought stress. Seven-day-old plants of wild-type,

knockdown HvPap1 (KDPap1), and knockdown HvPap19

(KDPap19) were subjected to drought stress by withholding water

for 14 days. The wild-type plants were more susceptible to water

deprivation, as evidenced by reduced leaf turgor, while both

knockdown genotypes remained upright. Furthermore, KDPap1

plants exhibited delayed leaf senescence during their normal

growth cycle under well-watered conditions compared to the

wild-type. KDPap1 also had a thicker upper epidermis cuticle

under normal and drought conditions compared to the wild-type

and KDPap19. However, the drought-induced reduction in

chlorophyll and carotenoid contents was not significantly

different between the three genotypes. Nevertheless, drought-

stressed KDPap1 and KDPap19 plants exhibited higher total

protein content than wild-type plants, possibly indicating reduced

proteolysis in the knockdown mutant lines.

The study also analysed the levels of selected phytohormones in

the three genotypes under well-watered and drought-stress

conditions (Gomez-sanchez et al., 2019). The results showed

differences in the responses of the phytohormones to water

deprivation. For example, ABA levels increased upon exposure to

drought in wild-type, KDPap1 and KDPap19 lines, possibly

underscoring the critical role of this hormone during drought

response. However, ABA levels were much higher in both

knockdown lines compared to the wild-type. Conversely, 12-oxo-

phytodienoic acid (OPDA), a precursor for jasmonic acid (Taiz and

Zeiger, 2012), decreased in all three genotypes following water

deprivation. This decline could be attributed to the observed

increase in jasmonic acid and its bioactive form, jasmonic-

isoleucine, in drought-stressed wild-type and KDPap1 plants.

However, independent lines of KDPap19 gave inconsistent trends

in jasmonic acid and jasmonic-isoleucine levels. On the other hand,

salicylic acid remained unchanged under drought stress conditions

in wild-type and transgenic plants. Although increases in ABA and

jasmonic acid levels are known to regulate stomatal closure and

water loss under drought stress conditions (Salvi et al., 2021), the

observed stomatal behaviour in the knockdown plants was unusual.

The authors, however, concluded that HvPap1 and HvPap19 are
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drought-inducible genes and may cause differential effects on barley

plants subjected to drought (Gomez-sanchez et al., 2019).

Islam et al. (2017) investigated the functions of Kunitz

proteinase inhibitors (KPIs) in white clover (Trifolium repens L.)

plants subjected to water deficits using several knockdown lines of

different Tr-KPIs. The study utilised two distinct water withholding

regimes, a Non-PreStress treatment with direct exposure of plants

to water deficits and a PreStress treatment in which plants were

initially exposed to drought stress and rehydration, followed by a

final drought stress treatment. Both Tr-KPI1 and Tr-KPI5 genes

were drought-inducible in three untransformed white clover

genotypes with varying degrees of drought tolerance. However,

significantly higher gene expression levels were observed in the

PreStress treatment, and the genes exhibited different induction

levels in leaf and root tissues. The study also showed that proline

accumulation and gene expression of 9-cis-epoxycarotenoid

dioxygenase (NCED1), a key enzyme in the ABA biosynthesis

pathway (Taiz and Zeiger, 2012) are drought-inducible in Non-

PreStress treated plants but not PreStress treatment. The authors

suggested that PreStress water deprivation treatment primes plants

for future exposure to water limitation, resulting in reduced proline

accumulation and no significant changes in NCED gene expression.

To further study the role of Tr-KPI genes in drought response,

four knockdown mutant lines were generated, 35S::tr-kpi1, 35S::tr-

kpi2, 35S::tr-kpi4 and 35S::tr-kpi5; however, for the sake of brevity in

this review, the knockdown lines will be referred to as kpi1, kpi2,

kpi4 and kpi5, respectively. Leaf proline levels were much higher in

well-watered plants of kpi1 and kpi5 lines and even greater during

PreStress treatment than the wild-type plants. However, kpi2 and

kpi4 lines exhibited lower proline levels under well-watered

conditions compared to the wild-type and were not used further

in the study. These results possibly highlight the additive effects of

high endogenous proline levels in kpi1 and kpi5 lines in response to

PreStress treatment. Both kpi1 and kpi5 plants also exhibited

increased drought-induced transcript abundance of ethylene

biosynthesis genes, 1-aminocyclopropane-1-carboxylic acid

(ACC) synthase 1 (ACS1) and ACC oxidase 1 (ACO1) compared

to the wild-type plants. The authors suggested that knockdown lines

may experience some level of constitutive stress under well-watered

conditions; hence the increased proline accumulation possibly acts

as a ROS scavenger. Furthermore, Tr-KPIs may have different

tissue-specific expression patterns and target various proteases,

resulting in a functionally diverse group of active proteinase

inhibitors during plant growth and drought response (Islam

et al., 2017).

In an extensive study, Mishra et al. (2021) investigated the effect

of an A. thaliana filamentous temperature-sensitive H (FtsH)

pseudo-protease (AtFtsHi3) on the growth and drought tolerance

of Arabidopsis plants using knockdown mutants. Pseudo-proteases

are catalytically inactive proteolytic enzymes with cell regulatory

functions (Reynolds and Fischer, 2015). Gene expression analysis of

AtFtsHi3 indicated that the transcript was expressed in seedlings,

young flowers, roots, leaves, siliques, and stems during the growth

of wild-type Arabidopsis plants. The generated knockdown mutant,

ftshi3-I (kd), exhibited a 99% reduction in the transcript expression

of the target gene AtFtsHi3 relative to the wild-type. In addition, the
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mutant seedlings and plants had a pale-green phenotype, were

much smaller in rosette size, and had reduced root growth, with

lower numbers of lateral roots than the wild-type. The study also

generated complementation lines by expressing the FtsHi3 gene in

the ftshi3-I (kd) background and designated them ftshi3-I (Comp).

Further analysis of chloroplasts ultrastructure between the wild-

type, ftshi3-I (Comp), and ftshi3-I (kd) showed that the knockdown

mutant lines had distorted chloroplasts with thinner membranes,

fewer and distorted thylakoid membranes, and fewer starch

granules relative to the other wild-type and Comp lines.

Severe drought stress was also imposed on 4-week-old

Arabidopsis plants of wild-type, ftshi3-I (Comp), and ftshi3-I (kd)

lines by withholding watering for up to 20 days and observing the

drought-related phenotypes. The results showed that ftshi3-I (kd)

plants were more tolerant to 12-days of drought treatment, while

the wild-type and ftshi3-I (Comp) plants were more drought

sensitive with wilting and chlorotic phenotypes. Furthermore,

80% of the ftshi3-I(kd) plants recovered after 20 days of drought

stress, followed by 14 days of re-watering, while only 20% of the

wild-type and ftshi3-I (Comp) recovered under the same conditions.

While all three genotypes had relatively similar leaf ABA levels

under control conditions, upon exposure to water limitation, the

wild-type and ftshi3-I (Comp) plants had higher ABA content in

leaves than the knockdown line. The authors suggested that high

endogenous levels of ABA in cotyledons and roots under well-

watered conditions could better prime the ftshi3-I(kd) plants for

drought than the wild-type. Furthermore, the ftshi3-I(kd) plants

had reduced stomatal density but larger stomatal size than the other

two genotypes. Overall, this study showed that ftshi3-I(kd) plants

had improved drought tolerance compared to wild-type and ftshi3-I

(Comp) plants (Mishra et al., 2021).
2.3 Overall functions: more than just acts
of protein degradation and its regulation

In summary, plants encounter drought-induced osmotic and

oxidative stresses, which disrupt cell structure and function (Levitt,

1980b; Ingram and Bartels, 1996; Bray, 1997). In turn, drought

signalling events alter the expression patterns of various genes and

proteins with diverse functions in drought adaptation, such as

proteases and protease inhibitors (Figure 2A). Consequently,

damaged, misfolded, or aggregated proteins are either removed

through protein degradation activities of proteases (Vierstra, 1996;

Vaseva et al., 2012) or stabilized by chaperons and osmoprotectants

(Ingram and Bartels, 1996; Bray, 1997) to restore cellular

homeostasis. Such proteolytic activities are essential for

preventing the accumulation of potentially toxic non-functional

proteins and peptides, recycling nitrogen sources and providing free

amino acid pools for renewed protein synthesis well-suited for

stressful conditions (Vierstra, 1996; van Wijk, 2015; Rowland et al.,

2022). The accumulated drought-responsive protease inhibitor

proteins primarily regulate the catalytic activities of proteases

(Mosolov and Valueva, 2011). Nonetheless, the roles of plant

proteases and their inhibitors under drought stress are more than

just acts of protein degradation and regulation (Figure 2).
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Results from comparative proteomics and enzyme activity

assays (Figure 2B) and transgenic biology studies (Figure 2C)

provide experimental evidence for the diverse roles of plant

proteases and their inhibitors under drought stress (Tables 3-6).

For example, while most plants undergo protein damage due to

osmotic and/or oxidative stresses, the drought-sensitive genotypes

suffer the most, as evidenced by their increased endoproteolytic

activities and reduced protein content under drought stress (Cruz

de Carvalho et al., 2001; Hieng et al., 2004; Simova-Stoilova et al.,

2010). On the contrary, drought-tolerant genotypes protect their

proteins from drought-induced damage by increasing the efficiency

of their protective machinery, such as antioxidant capacity and

chaperon activities, and inhibiting proteolysis (Cheng et al., 2016;

Goche et al., 2020). Furthermore, the reviewed transgenic plant

biology studies (Tables 5, 6) add new insights into other roles of

proteases and protease inhibitors, including maintaining high RWC

and water conservation through enhanced stomatal control (Yao

et al., 2012; Tiwari et al., 2015; Tan et al., 2017; Malefo et al., 2020;

Sebastián et al., 2020). In addition, proteases and their inhibitors

participate in ABA-signalling events and the up-regulation of ABA-

responsive genes essential for drought adaptation (Yao et al., 2012;

Tan et al., 2017; Sebastián et al., 2020). As a result, transgenic plants

overexpressing either protease or protease inhibitor genes exhibit

enhanced performance, plant growth and yield, survival rate, and

resilience to water deficits (Huang et al., 2007; Yao et al., 2012;

Tiwari et al., 2015; Tan et al., 2017; Malefo et al., 2020).

Furthermore, gene function studies using loss-of-function

technologies such as knockout/down mutants also provide

additional experimental evidence on the broader roles of plant

proteases and their inhibitors in drought response (Tables 5, 6;

Figure 2C). Nevertheless, the experimental challenges related to the

unintended effects of gene manipulation technologies on the overall

plant phenotype are real. For example, Gomez-sanchez et al. (2019)

suggested that the observed unexpected increase in cuticle thickness

of KDPap1, an HvPap1 knockdown mutant line, could have been

due to pleiotropic effects associated with the knocked-down

cysteine protease gene. In addition, knockdown mutants exhibit

some residual mRNA expression or protein accumulation of the

knocked-down gene to varying extents (Islam et al., 2017; Gomez-

sanchez et al., 2019; Mishra et al., 2021), hence the knockdown

character (Gomez-sanchez et al., 2019). For example, while Mishra

et al. (2021) reported a 99% reduction in the transcript expression of

the target AtFtsHi3 gene in the generated knockdown mutant,

ftshi3-I (kd), relative to the wild-type, other studies reported

much lower reduction rates of the target genes (Islam et al., 2017).

Furthermore, although the knockdown procedure would have

specifically intended to reduce the expression level of a target gene,

in some cases, untargeted genes are also affected (Islam et al., 2017).

For example, Islam et al. (2017) produced different knockdown

mutants of specific Tr-KPIs in their study. However, the RNA

interference procedure also affected the expression of other

untargeted members of the Tr-KPI gene family. Consequently,

evaluating resultant plant mutant phenotypes after exposure to

drought stress becomes challenging. Therefore, despite the steady

progress in gene function investigations using transgenic mutant

plants, more studies with multiple transgenic lines are required to
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ascertain the bona fide physiological effects and roles of target

protease and protease inhibitor genes.

As discussed earlier, phytohormones may interact during plant

growth and development, as well as in response to drought stress,

ultimately contributing towards the overall plant phenotype (Clarke

and Durley, 1981; Hale and Orcutt, 1987; Ullah et al., 2018; Jogawat

et al., 2021; Salvi et al., 2021; Iqbal et al., 2022). In some cases, the

proteolytic machinery regulates phytohormone activity and

signalling (Ullah et al., 2018; Salvi et al., 2021; Iqbal et al., 2022).

This is evidenced by the results of the reviewed transgenic studies

(Tables 5, 6) involving genes of aspartic proteases (Yao et al., 2012;

Sebastián et al., 2020), a cystatin (Tan et al., 2017), senescence-

associated gene (Wang et al., 2022), cathepsin-like proteases

(Gomez-sanchez et al., 2019), Kunitz proteinase inhibitors (Islam

et al., 2017) and a pseudo-protease FtsHi3 (Mishra et al., 2021).
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For example, gibberellins regulate gene expression through

DELLA proteins, which are repressors of plant growth and

development (Achard and Genschik, 2009). Under normal growth

conditions, gibberellins facilitate optimal plant growth and

development by mediating the 26S proteasome degradation of

DELLA proteins. Conversely, when exposed to drought conditions,

gibberellins levels decrease, and DELLA proteins accumulate,

resulting in plant growth inhibition and the development of dwarf

plant phenotypes (Achard and Genschik, 2009; Taiz and Zeiger, 2012;

Colebrook et al., 2014; Salvi et al., 2021). Similarly, the 26S

proteasome degradation pathway is involved in the jasmonic acid

signalling pathway (Taiz and Zeiger, 2012). During drought stress,

the biosynthesis and accumulation of jasmonic acid increases and

jasmonate ZIM-domain (JAZ) proteins are degraded by the 26S

proteasome, thus allowing transcription of downstream stress-related
B

C

A

FIGURE 2

Regulation and functions of plant proteases and protease inhibitors extrapolated from various drought-stress studies. (A) A simplified schematic
diagram showing that drought stress signalling in plants results in changes in gene and protein expression patterns such as those of proteases and
protease inhibitors. (B) Differential regulation of plant proteases and protease inhibitors in drought-susceptible and tolerant plant varieties under
drought stress. (C) Physiological effects of transgenic overexpression and repression of proteases and protease inhibitors in plants under drought
stress. Red arrows indicate up-regulation or increase, while black arrows indicate down-regulation or decrease. ABA, abscisic acid; Clp, caseinolytic
protease; MDA, malondialdehyde; ROS, reactive oxygen species; RWC, relative water content; OE-plants, overexpression-plants. (Cruz de Carvalho
et al., 2001; Hieng et al., 2004; Huang et al., 2007; Chen et al., 2010; Simova-Stoilova et al., 2010; Ford et al., 2011; Yao et al., 2012; Ashoub et al.,
2013; Jedmowski et al., 2014; Faghani et al., 2015; Tiwari et al., 2015; Wang et al., 2015; Cheng et al., 2016; Chmielewska et al., 2016; Wu et al.,
2016; Islam et al., 2017; Tan et al., 2017; Gomez-sanchez et al., 2019; Goche et al., 2020; Malefo et al., 2020; Sebastián et al., 2020; Mishra et al.,
2021; Wang et al., 2022).
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genes. JAZ proteins are repressors of DNA-binding transcriptional

factors of the jasmonate hormonal signalling system (Taiz and Zeiger,

2012; Wager and Browse, 2012). Therefore, their presence under

normal growth conditions regulates the transcriptional control of

jasmonic acid-related gene expression (Wager and Browse, 2012).

Thus, the 26S proteasome machinery regulates phytohormone

signalling systems in plants.

Other studies have reported that exogenous application of ABA

increases chymotrypsin inhibitory activity in barley leaves, while

jasmonic acid treatment enhances trypsin inhibitor activity (Casaretto

et al., 2004). These observations highlight the role of phytohormones in

regulating proteolytic activities and vice versa during normal plant

growth and drought response. Indeed, the current review of

comparative proteomics, enzyme activity assays and transgenic studies

expands our understanding of the broader functions of proteases and

protease inhibitors in drought response. Some of the inferred

physiological roles of protein degradation activities and their regulatory

processes discussed above are summarised in Figure 3.
3 Concluding remarks and
perspectives

Protein degradation and its regulatory processes in plants are

crucial for maintaining cellular homeostasis under water deficits;

otherwise, damaged proteins would accumulate and disrupt cell

structure and metabolism. However, the drought-induced

differential expression of proteases and protease inhibitor proteins
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in contrasting genotypes are also unravelling the complex

networking events during drought responses in plants. For

example, increased proteolysis and reduced total protein in

drought-sensitive genotypes could indicate massive protein

damage events and less robust protective machinery against

drought and its secondary effects, which result in sub-optimal

metabolic and growth processes. In contrast, the more drought-

tolerant genotypes exhibit reduced levels of proteolysis due to fewer

proteases and more protease inhibitors. Together with enhanced

protective machinery and improved targeted stress-induced gene

transcriptional and translational activities, these factors collectively

contribute towards greater performance and survival rates under

water-limitation conditions.

Nevertheless, the types and functions of proteases and protease

inhibitors are quite diverse, and these proteins could be involved in

many more physiological roles, such as stomatal control and ABA,

jasmonic acid, and ethylene signalling. Furthermore, with this wide

structural and functional diversity, their differential expression

patterns between drought-tolerant and susceptible genotypes

possibly make proteases and protease inhibitors important groups

of proteins with potential use in crop improvement strategies.

For instance, could the reduced level of protein degradation in

drought-tolerant genotypes be used as a marker for drought

tolerance and vice versa? Nevertheless, more functional validation

studies are required to unravel additional roles of protein

degradation events in plants under drought stress as we continue

to find ways of generating crops with enhanced resilience to

hot and drier climates. Furthermore, meta-analyses of protease
FIGURE 3

Physiological functions of selected proteases and protease inhibitors in drought-stressed plants inferred from transgenic studies. ABA, Abscisic acid;
RWC, relative water content. (Chen et al., 2010; Yao et al., 2012; Tan et al., 2017; Malefo et al., 2020; Sebastián et al., 2020; Mishra et al., 2021).
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and protease inhibitor gene and/or protein expression datasets

between contrasting plant species and genotypes are required to

unravel the expansive role of protein degradation in plant

drought response.
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