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Aspergillus aculeatus enhances
nutrient uptake and forage
quality in bermudagrass by
increasing phosphorus and
potassium availability

Xiaoning Li, Ting Zhang, Ying Xue, Xiao Xu, Xinyu Cui
and Jinmin Fu*

Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University,
Yantai, China
Introduction: Potassium and phosphorus are essential macronutrients for plant

growth and development. However, most P and K exist in insoluble forms, which

are difficult for plants to directly absorb and utilize, thereby resulting in growth

retardation of plants under P or K deficiency stress. The Aspergillus aculeatus

fungus has growth-promoting characteristics and the ability to dissolve P and K.

Methods: Here, to investigate the physiological effects of A. aculeatus on

bermudagrass under P or K deficiency, A. aculeatus and bermudagrass were

used as experimental materials.

Results and discussion: The results showed that A. aculeatus could promote

tolerance to P or K deficiency stress in bermudagrass, decrease the rate of leaf

death, and increase the contents of crude fat as well as crude protein. In addition,

A. aculeatus significantly enhanced the chlorophyll a+b and carotenoid contents.

Moreover, under P or K deficiency stress, bermudagrass inoculated with A.

aculeatus showed higher N, P, and K contents than non-inoculated plants.

Furthermore, exogenous A. aculeatus markedly decreased the H2O2 level and

CAT and POD activities. Based on our results, A. aculeatus could effectively

improve the forage quality of bermudagrass and alleviate the negative effects of

P or K deficiency stress, thereby playing a positive economic role in the

forage industry.

KEYWORDS

Aspergillus aculeatus, bermudagrass, potassium, phosphorus, P or K deficiency stress
Abbreviations: APX, ascorbate peroxidase; CAT, catalase; DLB, dead leaf biomass; DLR, dead leaf rate; GB,

growth biomass; GPX, glutathione peroxidase; H2O2, hydrogen peroxide; K, potassium; K0A0, no K-feldspar

and A. aculeatus treatment; K0A1, only A. aculeatus; K1A0, only K-feldspar; K1A1, K-feldspar and A. aculeatus

treatment; LB, leaf biomass; P, phosphorus; P0A0, no tricalcium phosphate and A. aculeatus treatment; P0A1,

only A. aculeatus; P1A0, only tricalcium phosphate; P1A1, tricalcium phosphate and A. aculeatus treatment;

POD, peroxidase; ROS, reactive oxygen species; SOD, superoxide dismutase.
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1 Introduction

Phosphorus (P) and potassium (K) are the major

macronutrients for plant growth and development (Wang et al.,

2021). P and K play dominant roles in maintaining a variety of

physiological metabolic processes in plants, including nucleic acid

synthesis, energy metabolites, membrane lipids, photosynthesis,

membrane polarization, and protein biosynthesis (Clarkson and

Hanson, 1980; Poirier and Bucher, 2002). However, P and K in soil

exist in the form of insoluble K, which cannot be directly absorbed

and used by plants (Illmer and Schinner, 1995; Meena et al., 2016).

Therefore, it is of great interest to investigate management strategies

that can improve the availability of phosphorus and potassium.

As fundamental mineral nutrients, P and K have been

documented to be involved in plant photosynthesis processes

(Wang et al., 2012; Krishnaraj and Dahale, 2014). Previous

investigators proposed that P deficiency triggered reddish leaf and

necrosis on the tips of old leaves and could result in a decrease in the

maximum PSII efficiency and electron transport rate (Guo et al.,

2002; Luiz et al., 2018). Chlorosis along the leaf margins is an obvious

symptom of K deficiency. In severe cases, the leaf will turn yellow and

fall off (Meena et al., 2016). Previous research has reported that K

deficiency disrupts leaf photosynthetic performance and causes a

lower net photosynthetic rate and stomatal conductance, which

directly affects the yield of plants (Zhao et al., 2016).

A deficiency of mineral nutrition in plants could cause oxidative

stress due to the disequilibrium between the scavenging and

production of excess reactive oxygen species (ROS) (Cakmak,

2005; Shin et al., 2005). An excess of ROS triggers protein

denaturation, cell membrane lipid peroxidation, and nucleic acid

degradation, which restrains normal cellular physiological processes

(Mittova et al., 2002). Fortunately, ROS can be scavenged through

synergistic and interactive enzymatic and non-enzymatic

antioxidant defense systems. The enzymatic systems mainly

include peroxidase (POD), superoxide dismutase (SOD), catalase

(CAT), ascorbate peroxidase (APX), and glutathione peroxidase

(GPX) (Apel and Hirt, 2004).

Whenever the soil cannot adequately supply the P and K

required for plant growth, people must supplement soil reserves

with chemical P and K fertilizers. However, not all fertilizers that

have been applied to the soil are fully taken up and utilized by

plants. A portion of the applied fertilizers are left behind, thereby

causing environmental contamination, such as eutrophication, and

soil fertility depletion (Sharma et al., 2013; Meena et al., 2016;

Kumar et al., 2021). Therefore, the emergence of phosphorus and

potassium fertilizers has not given the ultimate solution. Such

environmental concerns have triggered the exploration of

sustainable P and K nutrition in plants. Given this circumstance,

phosphate-solubilizing microorganisms have been considered an

eco-friendly and cost-effective approach for the supply of P

nutrition to plants (Sharma et al., 2013; Meena et al., 2016;

Garcia et al., 2017). Mounting evidence suggests that P-

so lub i l i z ing mic roorgan i sms ( such a s Azo tobac t e r ,

Bradyrhizobium, Penicillium, and Aspergillus) can convert

insoluble P into the bioavailable form through various
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mechanisms of solubilization and mineralization (Bargaz et al.,

2018). Similarly, diverse groups of K-solubilizing microorganisms

(Bacillus mucilaginosus, Aspergillus terreus, and Aspergillus niger)

were proven to be involved in solubilizing the insoluble forms of K

into available forms that are directly absorbed and utilized by plants

(Prajapati andModi, 2012; Gundala et al., 2013; Zarjani et al., 2013).

Therefore, improvement of P and K utilization efficiency provides a

potential strategy to overcome the adverse effects of P and K

deficiencies. Investigation of the characteristics of fungi in

dissolving P and K is an important prerequisite to improve plant

nutrient utilization efficiency.

Aspergillus aculeatus is isolated from the rhizosphere of

bermudagrass in heavy metal-contaminated areas (Xie et al.,

2014). Our previous study proved that A. aculeatus can facilitate

plant growth by producing indole-3-acetic acid, ACC deaminase,

and siderophores (Xie et al., 2017). In addition, we have

demonstrated that the fungus possessed P- and K-solubilizing

characteristics, which accelerated the uptake and utilization of P

and K nutrient elements, thereby promoting the growth and

development of plants (Li et al., 2019; Li et al., 2021). However,

the critical function of A. aculeatus in increasing the performance of

bermudagrass exposed to P and K deficiency is still ambiguous.

Bermudagrass [Cynodon dactylon (L.) Pers] is a typical warm

season turfgrass and forage and is widely used in urban greening,

sports fields, slope protection, and animal husbandry due to its high

reproduction rate, short-term turf establishment, and strong

mechanical stress resistance (Fan et al., 2014; Shi et al., 2014).

The objective of this experiment was to explore A. aculeatus-

mediated protective responses to P or K deficiency stress in

bermudagrass. We measured important physiological indicators

of P or K deficiency stress, such as biomass, dead leaf rate,

chlorophyll, carotenoids, forage quality, ion content, and

antioxidant enzyme activities.
2 Materials and methods

2.1 Culture of bermudagrass and
Aspergillus aculeatus

The experimental materials were obtained from the artificially

bred bermudagrass ‘Wrangler’ in the coastal grass germplasm

resources and breeding base located in Ludong University, Yantai

City, Shandong Province. The fourth to sixth stem segments (three

stem segments) of the biological upper end of the bermudagrass

were selected, and stems with the same length and thickness were

inserted into the pots (10 cm in diameter and 15 cm in height) on 25

July 2021. All the materials were placed in a plant growth incubator

at 30°C/25°C (day/night), with a 14-h photoperiod, 400 mmol

photons m−2 s−1 of light intensity, and 60% relative humidity for

7 weeks to establish the roots and leaves. The grass was irrigated

with 0.5× Hoagland nutrient solution every 2 days and cut based on

a one-third principle. Aspergillus aculeatus was cultured and

massively propagated in a Martin liquid medium according to

our previous study (Xie et al., 2017).
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2.2 Experimental treatment

A mixture of sand and sawdust (v:v = 3:1) was used as the

growth substance for this experiment. Subsequently, on 10

September 2021, all the substances were sterilized at 127°C for

1 h in an autoclave and then dispensed into 24 pots (10 cm in

diameter and 18 cm in height) with 550 g of the mixed matrix. On

12 September 2021, all the roots and shoots of the materials were

washed and trimmed, and the length or height was maintained at 8

and 10 cm, respectively. The initial weight was recorded as W0, the

trimmed plants were transferred into the above pots, and the 0.5×

Hoagland nutrient solution (not present at the source of

phosphorus or potassium, i.e., P or K deficiency treatment), was

used to irrigate the plants every 2 days (100 ml pot−1). For the P

deficiency experiment, tricalcium phosphate was evenly mixed into

the growth substance at a concentration of 5 g per pot before the

plants were transplanted. Four groups and three replicates were

designed, including P0A0 (no tricalcium phosphate and A. aculeatus

treatment), P0A1 (only A. aculeatus), P1A0 (only tricalcium

phosphate), and P1A1 (tricalcium phosphate and A. aculeatus

treatment). In the same way, for the K deficiency experiment, K-

feldspar was evenly mixed into the growth substance at a

concentration of 5 g per pot before the plants were transplanted.

The four groups and three replicates were designed, including K0A0

(no K-feldspar and A. aculeatus treatment), K0A1 (only A.

aculeatus), K1A0 (only K-feldspar), and K1A1 (K-feldspar and A.

aculeatus treatment). For the inoculated A. aculeatus treatment

groups, 100 ml of fungal spore suspension was inoculated into the

growth substances. The treatment lasted for 4 weeks, and then the

plants were harvested for further analysis on 10 October 2021.
2.3 Determination of growth parameters
and forage quality

For growth biomass (GB) determination, the whole

bermudagrass (including aboveground and underground) were

washed and weighed (W1) at the end of the experiment. GB (kg

day−1) = (W1 –W0)/D.W0 is the fresh weight before treatment,W1

is the fresh weight at the end of treatment, and D is the treatment

days. To calculate the dead leaf rate (DLR), the leaf biomass (LB)

and dead leaf biomass (DLB) of bermudagrass were weighed and

recorded. DLR = DLB/LB × 100%.

For crude protein content measurement, the dried samples

(0.20 g) were digested with 10 ml of H2SO4 using a graphite

digestion apparatus (SH220N; Jinan Hanon, Shandong, China).

The crude protein content was measured by an automatic Kjeldahl

apparatus (Hanon K9860). Crude protein content (%) = N content

× 6.25 × 100%.

To assess the crude fat content, the dried sample powder was

weighed and measured with the Soxhlet extraction method. The

samples were mixed with 50 ml of petroleum ether and dried in an

oven at 120°C for 3 h with a Soxhlet apparatus (SOX406; Jinan

Hanon, Shandong, China), and the residue was weighed

and recorded.
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2.4 Determination of ion content

To measure the N, P, and K contents, dried samples of the

leaves (0.20 g) were digested with 10 ml of 99% sulfuric acid

(H2SO4) in a graphite digestion apparatus. The contents of P and

N were determined by a fully automatic intermittent chemical

analyzer (SmartChem 200; AMS Alliance, Guidonia, Rome, Italy)

(Zhang et al., 2020). The K content was assessed with flame

photometry (Jackson, 1973).
2.5 Determination of chlorophyll and
carotenoid content

Chlorophyll and carotenoids were extracted with dimethyl

sulfoxide from all leaf segments (200 mg) and were determined

using ultraviolet spectrophotometry (UV1700; Meixi, Shanghai,

China) according to the method of Wellburn (1994).
2.6 Determination of antioxidant enzyme
activity

Antioxidant enzymes were extracted at 4°C using 200 mg of

tissue from the fresh samples of bermudagrass leaves. Plant samples

were homogenized with 8 ml of phosphate buffer (pH = 7.8) and

were centrifuged at 12,000 rpm for 20 min, and then the

supernatants were collected for the determination of the activities

of antioxidant enzymes. POD activity was assayed by measuring the

increase in absorbance at 470 nm with guaiacol as the substrate.

CAT activity was determined by calculating the substrate

consumption of H2O2 in absorbance at 240 nm (Hu et al., 2011).

The content of H2O2 was determined according to the method of

the hydrogen peroxide kit (Nanjing Jiancheng Bioengineering

Institute, A064, Nanjing, China), and the absorbance value at 405

nm was measured with a spectrophotometer to calculate the content

of H2O2.
2.7 Statistical analysis

The raw data of the whole experiment were statistically

analyzed with one-way ANOVA using SPSS software (Statistical

Product and Service Solutions, version 20; IBM, Chicago, United

States). The overall significance of the treatment was tested by the

SNK test at the p <0.05 level. Correlation analysis was performed

using the Pearson method.
3 Results

3.1 Phenotypic characteristics

Phosphorus and potassium play an important role in the growth

and development of plants. As shown in Figure 1A, the growth
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biomass of bermudagrass was significantly increased by 105.4% in the

K0A1 group compared with the K0A0 treatment. In addition, the K1A1

treatment significantly enhanced the growth of bermudagrass by

66.7% compared with the K1A0 treatment. At the same time,

bermudagrass biomass had an obvious increase (by 69.7%) in the

P1A1 group compared with the P1A0 regime. In the K treatment

group, compared with the K0A0 group, the dead leaf rate of

bermudagrass was significantly reduced by 44.3% in the K0A1 group

(Figure 1B). K1A1 treatment significantly improved the growth of

bermudagrass under the K1A0 stress, which showed a significant

decrease of 40.4% in the dead leaf rate. Similarly, P1A1 treatment

showed a significant decrease of 39.0% in the rate of dead leaf

compared with the P1A0 group. Taken together, A. aculeatus could

enhance the growth situation of bermudagrass by improving biomass

and decreasing the dead leaf rate under P- or K-deficient conditions.
3.2 Chlorophyll and carotenoid contents of
bermudagrass

Under K-deficient conditions, the chlorophyll a+b and

carotenoid contents were not obviously different in the K0A0,
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K1A0, and K0A1 groups (Figure 2). Nevertheless, the K1A1

treatment significantly increased the chlorophyll a+b and

carotenoid contents of bermudagrass by 48.5% and 45.4%,

respectively, compared with the K1A0 treatment. Similarly, under

P-deficient conditions, the chlorophyll a+b and carotenoid contents

were increased by 30.1% and 23.6% in inoculated plants (P0A1

treatment) compared with the P0A0 treatment. Compared with the

P1A0 treatment, the chlorophyll a+b and carotenoid contents in the

P1A1 group increased remarkably (16.7% and 26.9%, respectively)

(Figure 2). These results implied that A. aculeatus promoted the

biosynthesis of chlorophyll a+b and carotenoid contents through its

P- or K-releasing characteristics.
3.3 Forage quality

The A. aculeatus treatment obviously increased the crude fat

content of bermudagrass by 38.6% compared with the K0A0

treatment and had no effect on crude protein content under K

deficiency stress (Figure 3). However, A. aculeatus inoculations

combined with K-feldspar (K1A1 regime) remarkably elevated the

crude protein and crude fat content by 14.9% and 65.7%,
BA

FIGURE 1

Effects of Aspergillus aculeatus on growth biomass (A) and death leaf rate (B) of bermudagrass under K or P deficiency stress. K0A0 represents no
potassium feldspar and A. aculeatus treatment; K1A0 represents only potassium feldspar treatment; K0A1 represents only A. aculeatus treatment; K1A1

represents potassium feldspar + A. aculeatus treatment; P0A0 represents no tricalcium phosphate and A. aculeatus treatment; P1A0 represents only
tricalcium phosphate treatment; P0A1 represents only A. aculeatus treatment; P1A1 represents tricalcium phosphate + A. aculeatus treatment.
Columns marked with the same small letter indicate insignificant differences between the four treatment groups (p < 0.05).
BA

FIGURE 2

Effects of Aspergillus aculeatus on chlorophyll (A) and carotenoid (B) contents of bermudagrass under K or P deficiency stress. K0A0 represents no
potassium feldspar and A. aculeatus treatment; K1A0 represents only potassium feldspar treatment; K0A1 represents only A. aculeatus treatment; K1A1

represents potassium feldspar + A. aculeatus treatment; P0A0 represents no tricalcium phosphate and A. aculeatus treatment; P1A0 represents only
tricalcium phosphate treatment; P0A1 represents only A. aculeatus treatment; P1A1 represents tricalcium phosphate + A. aculeatus treatment.
Columns marked with the same small letter indicate insignificant differences between the four treatment groups (p < 0.05).
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respectively, in bermudagrass, compared with the K-feldspar

treatment (K1A0 group). Similarly, under P-deficient conditions,

the P1A1 treatment significantly increased the crude protein and

crude fat contents by 21.8% and 377.7%, respectively, compared

with the P1A0 treatment. In the environment of K or P deficiency,

exogenous A. aculeatus effectively increased the contents of crude

protein and crude fat and then improved the forage quality

of bermudagrass.
3.4 Ion homeostasis

Compared with K0A0, the K1A0 and K0A1 treatments had no

obvious effect on the contents of N, P, and K in the leaves

(Figure 4). The K1A1 treatment markedly enhanced the contents

of N, P, and K in the leaves of bermudagrass by 14.9%, 13.2%,

and 16.1%, respectively, compared with the K1A0 treatment.

Under P-deficient conditions, the P1A1 treatment significantly

increased the contents of N, P, and K in the leaves of

bermudagrass by 21.8%, 14.4%, and 16.3%, respectively,

compared with the P1A0 group (Figure 4). These results

suggest that A. aculeatus can dissolve insoluble K and P into

soluble K and P, thereby promoting the uptake of K and P and

enhancing the contents of N, P, and K in the leaves

of bermudagrass.
3.5 Antioxidant system

Adverse environments can trigger the excessive accumulation of

ROS and aggravate lipid peroxidation in plants. Compared with

K0A0, the POD, CAT, and H2O2 of bermudagrass in the K1A0

treatment group were significantly reduced by 55.8%, 30.4%, and

37.8%, while in the K0A1 treatment group, the POD, CAT, and

H2O2 activities of bermudagrass were significantly reduced by

62.6%, 25.8%, and 184.2%, respectively (Figure 5). Compared

with the K1A0 treatment, the POD activity and H2O2 level were

significantly decreased by 49.5% and 51.5%, respectively, in the
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K1A1 treatment. Simultaneously, under P deficiency stress, the P1A1

treatment significantly decreased the POD activity and H2O2

content (by 61.6% and 59.0%, respectively), compared with the

P1A0 treatment. These results indicate that under the P- or K-

deficient conditions, A. aculeatus might decrease the activity of the

antioxidant enzymes CAT and POD and alleviate membrane

lipid peroxidation.
3.6 Correlation analysis

Two correlation plots were depicted for each K or P deficiency

stress treatment and are presented in Figures 6A, B, respectively.

These correlation plots provide an observation to visually compare

the correlation of measured traits. Under K or P deficiency stress,

the growth biomass was significantly positively correlated with

chlorophyll a+b, carotenoid, and P contents and negatively

correlated with the dead leaf rate (Figure 6). There was a

significant positive correlation between forage quality (crude

protein and crude fat) and chlorophyll a+b, carotenoids, P

content, K content, and N content in the leaves of bermudagrass.

However, the phenotypic indicators (growth biomass, chlorophyll a

+b, carotenoid, crude protein, crude fat, N content, P content, and K

content) showed a significant negative correlation with

H2O2 content.
4 Discussion

Nitrogen, phosphorus, and potassium play a fundamental role

in the growth and development of plants, and they are important

mineral nutrients involved in photosynthesis (Wang et al., 2012;

Ding et al., 2021). Under the conditions of P or K deficiency, the

accumulation of N, P, and K in plants decreases, thereby

inhibiting the absorption and utilization of nutrients and

impeding the photosynthesis of plants. Photosynthetic pigments

are one of the key factors affecting photosynthesis, and their

content can directly affect the photosynthesis of plants,
BA

FIGURE 3

Effects of Aspergillus aculeatus on crude protein (A) and crude fat (B) contents of bermudagrass under K or P deficiency stress. K0A0 represents no
potassium feldspar and A. aculeatus treatment; K1A0 represents only potassium feldspar treatment; K0A1 represents only A. aculeatus treatment; K1A1

represents potassium feldspar + A. aculeatus treatment; P0A0 represents no tricalcium phosphate and A. aculeatus treatment; P1A0 represents only
tricalcium phosphate treatment; P0A1 represents only A. aculeatus treatment; P1A1 represents tricalcium phosphate + A. aculeatus treatment.
Columns marked with the same small letter indicate insignificant differences between the four treatment groups (p < 0.05).
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particularly chlorophyll and carotenoid contents (Bode et al.,

2009). Our results showed that under P or K deficiency stress,

the contents of N, P, and K in the leaves increased significantly

when A. aculeatus was inoculated. Previous studies have

confirmed the P- and K-solubilizing activities of A. aculeatus (Li

et al., 2019; Li et al., 2021). In addition, the chemical

characteristics of soils with poor fertility have also been
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measured. We found that the content of available P, K, total N,

and total K in the soil was significantly increased after inoculating

A. aculeatus into the soil with poor fertility (unpublished data).

The beneficial effect of A. aculeatus amendment on bermudagrass

under P or K deficiency supports earlier studies. The research

reported that co-inoculation of P- and K-solubilizing

microorganisms in conjunction with the direct application of
B

C

A

FIGURE 4

Effects of Aspergillus aculeatus on N content (A), P content (B) and K content (C) of bermudagrass under K or P deficiency stress. K0A0 represents no
potassium feldspar and A. aculeatus treatment; K1A0 represents only potassium feldspar treatment; K0A1 represents only A. aculeatus treatment; K1A1

represents potassium feldspar + A. aculeatus treatment; P0A0 represents no tricalcium phosphate and A. aculeatus treatment; P1A0 represents only
tricalcium phosphate treatment; P0A1 represents only A. aculeatus treatment; P1A1 represents tricalcium phosphate + A. aculeatus treatment.
Columns marked with the same small letter indicate insignificant differences between the four treatment groups (p < 0.05).
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insoluble P and K into the soil enhanced N, P, and K uptake of

plants grown on P- and K-limited soils (Meena et al., 2016). As we

observed, the contents of chlorophyll a+b and carotenoids were

distinctly increased in A. aculeatus-inoculated bermudagrass

(P1A1 and K1A1 groups) compared with the other groups and

were significantly positively correlated with N, P, and K, as well as

significantly negatively correlated with the dead leaf rates. The
Frontiers in Plant Science 07
correlation between these functional traits could provide a

relatively comprehensive evaluation of plant adaptability to P or

K deficiency stress. This is fully aligned with a previous study,

which documented that inoculation with a P-solubilizing strain

stimulates an increase in chlorophyll (chl a and b) content and

nutrient uptake (N, P, and K) in plants (Marathe et al., 2017).

Overall, we suggested that A. aculeatus could contribute to better
B

C

A

FIGURE 5

Effects of Aspergillus aculeatus on POD activity (A), CAT activity (B) and H2O2 content (C) of bermudagrass under K or P deficiency stress. K0A0

represents no potassium feldspar and A. aculeatus treatment; K1A0 represents only potassium feldspar treatment; K0A1 represents only A. aculeatus
treatment; K1A1 represents potassium feldspar + A. aculeatus treatment; P0A0 represents no tricalcium phosphate and A. aculeatus treatment; P1A0

represents only tricalcium phosphate treatment; P0A1 represents only A. aculeatus treatment; P1A1 represents tricalcium phosphate + A. aculeatus
treatment. Columns marked with the same small letter indicate insignificant differences between the four treatment groups (P < 0.05).
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photosynthetic activity (increased chlorophyll a and b content)

and growth characteristics when plants are exposed to P or K

deficiency stress.

Forage quality is one of the indicators for evaluating the value of

forage utilization. A higher feed value was accompanied by a higher

crude protein and crude fat content in pasture (Li et al., 2018).

Studies have demonstrated that N, P, and K effectively enhanced the

content of crude protein and crude fat in plants (Osuagwu and

Edeoga, 2013; Ogunyemi et al., 2018). Compared with P- or K-

deficient treatments, the contents of crude protein and crude fat

were markedly enhanced in the leaves of bermudagrass inoculated

with A. aculeatus and were significantly positively correlated with

the N and P contents. Nitrogen is an important component of

chlorophyll and protein in plants, and a sufficient nitrogen supply

can increase the content of chlorophyll and soluble protein (Amy

et al., 2006; Fredeen et al., 2010), which is consistent with our

results. In addition, P is a component of a series of important

biochemical substances, such as nucleic acids, coenzymes,

phosphoproteins, and phospholipids, and its deficiency affects

nitrogen metabolism. According to Baier and Kristan (1986), the

application of P could increase the uptake of N by plants, thereby

enhancing the content of crude protein and forage quality (Baier

and Kristan, 1986). In the same way, K deficiency could reduce the

energy conversion rate and, thus, decrease the crude protein content

of herbage, leading to the degradation of forage quality. Combining

the above results, we concluded that the inoculation of A. aculeatus

enhanced plant forage quality by improving P and K solubilizers.

Enhancement of plant forage quality by improving P and K

solubilizers is another beneficial effect of microorganisms with P-

and K-solubilizing potential characteristics.

In this study, important indicators such as POD, CAT, and

H2O2 were assessed to investigate the role of A. aculeatus for P or K

deficiency stress tolerance in bermudagrass. When plants are

exposed to abiotic stresses, increased cellular damage is associated

with the production of ROS (Fadzilla et al., 1997). In our results, we

found that inoculated bermudagrass showed remarkably lower

H2O2 levels than uninoculated bermudagrass under P- or K-
Frontiers in Plant Science 08
deficient conditions, indicating that A. aculeatus could

significantly attenuate stress-induced oxidative damage. Although

plants cannot escape from deleterious environments, they have

already developed and established a mathematical regulatory

mechanism to cope with stress damage (Abeed et al., 2022).

Usually, stress-induced ROS accumulation is scavenged by diverse

enzymatic scavengers, such as POD, CAT, SOD, or other

antioxidants (Apel and Hirt, 2004). H2O2 is an important ROS

produced in the catalytic process of SOD, resulting in oxidative

damage (Mittler, 2002). CAT and POD are the major antioxidant

enzymes in plants, and CAT could degrade H2O2 into water and

oxygen to scavenge H2O2. Our results indicated that inoculation

with A. aculeatus significantly decreased the CAT and POD

activities and the concentration of H2O2 in the P1A1 and K1A1

groups compared with the P1A0 and K1A0 groups. These studies

reveal that A. aculeatus can alleviate the antioxidant damage caused

by low phosphorus or potassium stress by decreasing ROS

accumulation and altering the activity of antioxidant enzymes.

Therefore, our results demonstrated the regulatory

mechanism of A. aculeatus on K or P deficiency stresses in

bermudagrass. First, A. aculeatus increases the contents of N, P,

and K in the leaves of bermudagrass and enhances the

accumulation of chlorophyll and carotenoids, thereby promoting

plant photosynthesis. Second, A. aculeatus increases the content of

crude protein and crude fat accompanied by the growing N and P

contents in the leaves of bermudagrass. Finally, A. aculeatus could

mitigate membrane lipid peroxidation and decrease the activities

of the antioxidant enzymes CAT and POD. Therefore, A.

aculeatus has great promotion value and economic benefit in K-

or P-deficient soil as a microbial agent.
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FIGURE 6
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