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Introduction: Conductance-photosynthesis (Gs-A) models, accompanying

with light use efficiency (LUE) models for calculating carbon assimilation, are

widely used for estimating canopy stomatal conductance (Gs) and transpiration

(Tc) under the two-leaf (TL) scheme. However, the key parameters of

photosynthetic rate sensitivity (gsu and gsh) and maximum LUE (ϵmsu and ϵmsh)

are typically set to temporally constant values for sunlit and shaded leaves,

respectively. This may result in Tc estimation errors, as it contradicts field

observations.

Methods: In this study, the measured flux data from three temperate deciduous

broadleaved forests (DBF) FLUXNET sites were adopted, and the key parameters

of LUE and Ball-Berry models for sunlit and shaded leaves were calibrated within

the entire growing season and each season, respectively. Then, the estimations

of gross primary production (GPP) and Tc were compared between the two

schemes of parameterization: (1) entire growing season-based fixed parameters

(EGS) and (2) season-specific dynamic parameters (SEA).

Results: Our results show a cyclical variability of ϵmsu across the sites, with the

highest value during the summer and the lowest during the spring. A similar pattern

was found for gsu and gsh, which showed a decrease in summer and a slight increase

in both spring and autumn. Furthermore, the SEA model (i.e., the dynamic

parameterization) better simulated GPP, with a reduction in root mean square

error (RMSE) of about 8.0 ± 1.1% and an improvement in correlation coefficient (r)
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of 3.7 ± 1.5%, relative to the EGS model. Meanwhile, the SEA scheme reduced Tc
simulation errors in terms of RMSE by 3.7 ± 4.4%.

Discussion: These findings provide a greater understanding of the seasonality of

plant functional traits, and help to improve simulations of seasonal carbon and

water fluxes in temperate forests.
KEYWORDS

two-leaf scheme, ball-berry model, stomatal conductance, transpiration, light use
efficiency, seasonal variability, temperate deciduous forests
1 Introduction

Transpiration (Tc) accounts for a major fraction, about 80%, of

land surface evapotranspiration, playing a crucial role in the water

cycle (Jasechko et al., 2013). Accurately determining Tc is critical for

comprehending the regional water and energy budget as well as for

understanding ecological processes (Shen et al., 2015; Li et al., 2018;

Ding et al., 2022). Although direct observation methods, such as stem

flow meters and infiltrators, can provide relatively reliable data, their

scope of observation is limited, only allowing for Tc estimation at a

single plant or field scales, making it difficult to estimate Tc at regional

and global scales (Wang and Dickinson, 2012). With the

advancement of remote sensing technology, indirect estimation of

Tc has drawn extensive attention (Chen and Liu, 2020). By

integrating satellite observations with mechanistic models, Tc can

be detected at a larger scale, providing a valuable insight of

hydrological processes (Liu et al., 2022).

The Penman-Monteith (P-M) equation, which integrates

available energy, surface resistances and environmental variables

(e.g., dryness of the atmosphere), is widely used to estimate Tc

(Monteith and Unsworth, 2013). Canopy stomatal conductance (Gs,

the inverse of resistance) is particularly critical in the calculation of Tc

because of its sensitivity to environmental (e.g., air temperature,

relative humidity, CO2 concentration, etc.) and phenological (e.g.,

leaf ontogeny and canopy development) variables (Zhang K. et al.,

2019; Jin et al., 2022). Hence, how to determine Gs is an important

prerequisite for accurate estimation of Tc. Stomata are the main

channel of transpiration, controlling the water vapor flow from soil to

atmosphere through vegetation, as well as the rate of carbon dioxide

(CO2) entering leaf flesh tissue from the atmosphere (Hetherington

andWoodward, 2003). Leaf stomatal conductance (gs) is regulated by

a combination of abiotic and biotic factors, and Gs can be recognized

as the sum of all leaf conductance in the entire canopy (Luo et al.,

2018). That is, both gs calculation and the scaling transformation from

leaf to canopy level are necessary to obtain Gs.

Ball et al. (1987) related stomatal conductance and leaf

photosynthesis rate through the linear relationship, and proposed

the Ball-Barry (B-B) model, which considers the effects of

atmospheric humidity and CO2 concentration on stomatal

conductance, to estimate gs. This conductance-photosynthesis (gs-

A) model requires fewer empirical parameters, and is widely used at
02
diverse scales (Miner et al., 2017), accompanying with photosynthesis

models for calculating carbon assimilation (Ryu et al., 2011; Zhang Y.

et al., 2019), e.g., light use efficiency (LUE) models (Pei et al., 2022).

For scaling from leaf to canopy, the typical approach was the big-leaf

(BL) scheme, in which the canopy is assumed to be a large leaf and gs
is multiplied by leaf area index (LAI) (Kimball et al., 1997). However,

the real canopy has more than one layer of leaves, and the leaves

shade each other. Sellers et al. (1992) took into account the variation

of light in the canopy and then improved the big-leaf scheme with an

exponential function of LAI to calculate the Gs. However, the gs of the

top leaves is limited by the carboxylation capacity, and that of the

bottom leaves is mainly limited by radiation. This improvement

cannot express the actual condition of canopy. The two-big-leaf

(TBL) scheme was proposed to improve this issue by dividing the

canopy into two large leaves, sunlit and shaded leaves, and requires an

artificial upscaling of leaf-scale physiological parameters to their

counterparts to obtain Gs for each leaf group, respectively (Wang

and Leuning, 1998; Dai et al., 2004). The TBL scheme reflects the

difference in radiation between sunlit and shaded leaves in the canopy

and is more realistic than the BL scheme. However, the TBL model

scales gs to Gs through LAI with certain incompatibilities, and Luo

et al. (2018) showed that Gs and the product of gs and LAI were not

equivalent, and thereby this up-scaling approach also brings

uncertainty. Chen et al. (1999) proposed the two-leaf (TL) scheme,

in which physiological parameters are calculated for a representative

sunlit leaf and a representative shaded leave, respectively, and

multiplied by the corresponding LAI values to upscale to canopy-

scale counterparts for estimating Gs. The TL model uses leaf-scale

stomatal conductance and photosynthetic capacity (e.g., LUE) to

ensure the consistency of the parameters inherent in the gs-A model.

Model theory and parametrization together determine

modeling accuracy. The current theoretical development of the

gs-A models has become more prominent (Leuning et al., 1995;

Katul et al., 2010; Medlyn et al., 2011). However, the parametrized

schemes remain less robust. Generally, the key parameters in the gs-

A models are temporal constant (Miner et al., 2017), especially the

model with the two-leaf scheme (Lawrence et al., 2011; Li et al.,

2019). Previous studies have reported that hydraulic and

photosynthetic parameters varied with time, showing a higher

value in mature leaves relative to young and old leaves (Wilson

et al., 2001; Albert et al., 2018; Chavana-Bryant et al., 2019).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1164078
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jin et al. 10.3389/fpls.2023.1164078
Therefore, the fixed parametrization may hamper the ability to

accurately estimate Tc.

Considering the seasonality of the physiological variables, this

study aimed to investigate performances of the TL-based gs-A

models with different parametrization schemes (i.e., the fixed vs.

dynamic parametrization schemes). Towards this aim, the TL-LUE

(He et al., 2013) and TL B-B model (Li et al., 2019) were adopted, as

well as flux- and satellite-based observations at three temperate

deciduous broadleaf forests (DBF) FLUXNET sites. Two specific

questions are answered in this study: (1) Do the key parameters of

photosynthesis and stomatal conductance modeling vary with

season? (2) Could the seasonal dynamic parametrized scheme

effectively improve the estimations of GPP, Gs and thereby Tc.
2 Materials and methods

2.1 Flux data

Three typical DBF sites from the FLUXNET2015 dataset (i.e.,

DE-Hai, DK-Sor and US-MMS) were used in this study, and the

spatial distribution and details of the sites are shown in Figure 1 and

Table 1, respectively. DBF is a widespread vegetation type in the

temperate zone, with significant seasonal variation in phenology. The

site selection considered the length and quantity of the data records

and vegetation growth conditions (Zhang et al., 2018). In this paper,

half-hourly/hourly flux and climate data were obtained, including

incoming/outgoing short/long-wave radiation, temperature,

precipitation, wind speed, vapor pressure deficit (VPD), relative

humidity, ground/latent/sensible heat fluxes, CO2, and GPP

(“GPP_DT_VUT_REF”) derived from the net ecosystem exchange

(NEE) (Reichstein et al., 2005). Half-hourly/hourly observations were
Frontiers in Plant Science 03
subjected to strict quality control following that described in Jin et al.

(2022), and only daytime observations with a shortwave incident

radiation > 5 W/m² were used for analysis (Yebra et al., 2013). The

resulting daytime data was then integrate into daily data. The method

for calculating daily Tc was also consistent with that of Jin et al.

(2022), in which the underlying water-use efficiency (uWUE) is used

to identify the ratio of Tc to ET (Zhou et al., 2015, 2016a). More

details of the theory and the applications are described in Zhou et al.

(2015; 2016a) and Jin et al. (2022).
2.2 Remote sensing data

The LAI and fraction of absorbed photosynthetically active

radiation (FPAR) data used in this study were obtained from version

4 of the Global Land Surface Satellite (GLASS) products with a spatial

resolution of 0.05° and a temporal resolution of 8 days (Liang et al.,

2021). The LAI data were generated by applying generalized regression

neural networks on multiple satellite LAI time series and MODIS

surface reflectance data (Xiao et al., 2014). The FPAR were derived

from the LAI using a table lookupmethod (Xiao et al., 2015). To ensure

consistency with the observed data, the 8-day LAI and FPAR data were

interpolated to daily-scale using linear interpolation and improved by

Savitzky-Golay filtering (Chen et al., 2004).
2.3 Model description

This study used the two-leaf (TL) Ball-Berry model (B-B) (Li

et al., 2019) to calculate Gs, accompanying with the TL light use

efficiency model (TL-LUE, He et al., 2013) for calculating GPP of

sunlit and shaded leaves. After that, the P-M equation was utilized

to estimate Tc (Mu et al., 2011).
FIGURE 1

Spatial distribution of the study sites. Details of the sites are described in Table 1.
TABLE 1 Summary of the three deciduous broadleaf forest (DBF) FLUXNET sites.

Site ID LAT LON H Z Period of Record Spring Summer Autumn Refs.

DE-Hai 51.08 10.45 23 44 2003-2009 56-156 157-250 251-336 Knohl et al. (2003)

DK-Sor 55.49 11.64 25 43 2006-2013 62-163 164-255 256-341 Pilegaard et al. (2011)

US-MMS 39.32 -86.41 27 48 2002-2014 58-157 158-250 251-317 Schmid et al. (2000)
For each site, Latitude (LAT, °N), Longitude (LON, °E), heights of canopy (H, m) and measurement (Z, m), period of record, and start and end dates of the three seasons (day of year, doy).
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The details of the technical flow are presented in Figure 2. LAI and

absorbed photosynthetically active radiation (APAR) were calculated

under the TL scheme for both sunlit and shaded leaves. The growing

season was identified by multi-year temperature and were divided into

three seasons (spring, summer and autumn) for each site (Park et al.,

2018). We conduct 1000 randomized experiments for model

calibration and validation. In each experiment, 70% of each seasonal

data was selected as the training group, and the remaining data served

as the testing group. The physiological parameters of the model were

calibrated using two parameterized schemes: the entire growth

season-based fixed parameterization (EGS) and season-specific

dynamic parameterization (SEA). Estimated GPP, Gs and Tc with

the two parameterization schemes were evaluated using the

independent observations.

2.3.1 P-M equation
The P-M equation introduces aerodynamic conductivity and

surface conductivity to control the evaporation process and

integrates biological and physical mechanisms (Monteith and

Unsworth, 2013). It is formulated as Eq. (1) in this study:

Tc =
(s · Ac + r · Cp · FPAR · VPD · Ga) · (1 − Fwet)

s · g · (1 + Ga
Gs
)

·
1
l

(1)

where s is the slope of the saturation water vapor pressure vs.

temperature curve (kPa·°C
-1); Ac is the energy allocated to the

canopy; r is the air density (kg·m-3); CP is the constant pressure

specific heat (MJ·kg-1·°C-1); Fwet is the water coverage, which is zero

for relative humidity (RH) less than 70% and RH4 for greater than

70% (Mu et al., 2011); g is the wet and dry meter constant (kPa·°C
-1);

lis the latent heat of vaporization (MJ·kg-1); Ga and Gs are air

conductivity and canopy stomatal conductivity, respectively, where

Ga (mol·m-2·s-1) can be quantified by the method proposed by Allen

et al. (1998). The corresponding measurement and canopy heights

for each site are shown in Table 1.

2.3.2 TL B-B model
The B-B model (Ball et al., 1987), which originally estimated gs

based on leaf photosynthesis rates, was also used to estimate Gs in
Frontiers in Plant Science 04
vegetated areas (Luo et al., 2018). Li et al. (2019) proposed a new Gs

model for estimating gs of sunlit and shaded leaves (Eq. (2)):

Gs = gsh ·
GPPshaded · RH

Ca
+ gsu ·

GPPsunlit · RH
Ca

+ Gs,min (2)

where gsh and gsu are empirical parameters of photosynthetic rate

sensitivity for shaded and sunlit leaves, respectively, ranging from

0-60 (Li et al., 2019); GPPsunlit and GPPshaded (umol CO2·m
-2·s-1)

are photosynthetic rates of sunlit and shaded leaves, respectively;

RH is the canopy surface relative humidity; Ca (umol CO2·mol-1)

is the concentration of carbon dioxide in air; and Gs,min

(= 0.001mol·m-2·s-1) is the surface conductance of soil evaporative.
2.3.3 TL-LUE model
Initially, He et al. (2013) developed a TL-LUE model based on

the MOD17 algorithm, which divides the tree canopy into sunlit

leaves and shaded leaves and calculates the respective GPP

considering the differences in light absorption and LUE between

the two groups of leaves. Similar to the MOD17 algorithm, the TL-

LUE model only captures the constraint of low temperature and

ignores the effect of high temperature on GPP. The modified TL-

LUE model integrates the temperature scalar from the Terrestrial

Ecosystem Model (TEM) to describe the effects of low and high

temperatures on GPP (Raich et al., 1991; Li et al., 2019). The main

algorithms is formulated as Eq. (3-5):

GPP = GPPsunlit + GPPshaded (3)

GPPsunlit = ϵmsu · APARsunlit · f (VPD) · f (T) (4)

GPPshaded = ϵmsh · APARshaded · f (VPD) · f (T) (5)

APARsunlit = (1 − a)� ½PARdir �
cos b
cos q

+
PARdir − PARdif ,u

LAI

+ C� � LAIsunlit (6)

APARshaded = (1 − a)� ½PARdif − PARdif ,u

LAI
+ C� � LAIshaded (7)
FIGURE 2

Improved algorithms for transpiration estimation based on the two-leaf scheme. EGS and SEA indicate the entire growth season-based fixed
parameters and season-specific dynamic parameters, respectively.
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LAIsunlit = 2 cos (q)� ½1 − exp ( −
0:5W � LAI

cos (q)
)� (8)

LAIshaded = LAItot − LAIsunlit (9)

where ϵmsu and ϵmsh are the maximum LUE for sunlit and shaded

leaves, ranging 0.34-1.50 and 2.71-4.79 gC/MJ, respectively (Bi

et al., 2022); the subscripted “sunlit” and “shaded” denote the

sunlit and shaded leaves, respectively; f(VPD) and f(T) are the

limiting functions. PARdir and PARdif denote the direct and diffuse

photosynthetically active radiation (PAR), and PARdif,u denotes

PARdif under the canopy; a, b, q, C and W denote the canopy

albedo, leaf angle, solar zenith angle, contribution of multiple

scattering of direct radiation per unit leaf area and the clumping

index, respectively. The details of the equations and parameters are

described in He et al. (2013) and Li et al. (2019).
2.4 Identification of the seasons

Three seasons were identified to present the temporal variability

of the empirical parameters in the TL-LUE and TL B-B models. The

seasonal thresholds of temperature were determined following the

method of Park et al. (2018), which are the 25th and 75th

percentiles of the average daytime temperature over the valid

years of flux data for each of the study sites. Winter was defined

as the days when the temperature was below the 25th percentile

threshold, while summer was the period when the temperature was

above the 75th percentile threshold. Spring and autumn were

defined as the transitional periods between winter and summer,

with increasing and decreasing temperatures, respectively.
2.5 Parameterization and evaluation

The key parameters in the TL-LUE model (ϵmsu and ϵmsh) and

TL B-B model (gsh and gsu) needed to be calibrated for each site

under two parametrization schemes: (1) calibrated by all of the data

during the entire growing season (from spring to autumn) of valid

years (termed EGS), and (2) calibrated by the season-specific data of

valid years (termed SEA). The shuffled complex evolution method

of the University of Arizona (SCE-UA) was applied for the

calibration, and the performance was evaluated using the

agreement index (d, Eq. (10)) (Zhou et al., 2016b):

d = 1 − oN
i=1(Pi − Oi)

2

oN
i=1( jPi − �Oj j + jOi − �Oj j)2 (10)

where N is the total number of simulated experimental data points;

Pi and Oi represent the predicted and observed values, respectively;

P and O is the average of predicted and observed values for all

experimental data points. Additionally, the estimated GPP, Gs and

Tc using the two parametrized schemes were evaluated against the

measured data using three indicators, i.e., the Akaike information
Frontiers in Plant Science 05
criterion (AIC), root-mean square error (RMSE) and correlation

coefficient (r).
3 Results

3.1 Calculations of APAR

The accuracy of calculated APAR is the key to estimate GPP and

Tc, which depends on the precise of photosynthetically active

radiation (PAR) data and FPAR. On the one hand, PARSW, the

shortwave incident radiation (“SW_IN_F”) multiplied by 0.45, is

compared with the GLASS PAR product (PARGLASS). The two PAR

data sets showed a similar temporal variability (Figure 3) with a

high r (0.91 ± 0.04) and a low RMSE (1.31 ± 0.22 MJ·m-2·d-1). On

the other hand, APARFPAR was calculated by multiplying PARSW by

GLASS FPAR. The APAR of sunlit and shaded leaves calculated

under the TL scheme were summed to obtain the total APAR

(APARTL). Comparing the two APAR data, the results indicated a

high agreement, with a strong r (> 0.96) and low RMSE (< 0.82

MJ·m-2·d-1). These findings indicate that both PAR calculated using

the flux tower shortwave incident radiation and APAR calculated

under the TL scheme showed a good accuracy for further analyses.
3.2 Estimations of GPP

The maximum LUE (ϵmsu and ϵmsh) of the representative sunlit

and shaded leaves under the two parameterization schemes for each

of the study sites are presented in Table 2. The results showed a

significantly seasonal difference in ϵmsu with a minimum in spring

(0.50 ± 0.28 gC/MJ) and maximum in summer (0.78 ± 0.33 gC/MJ).

The daily GPP time series estimated with the two parameterization

scheme models are shown in Figure 4. Overall, the estimated GPP

under the two schemes were generally consistent with the field

observations and well captured the temporal variation of GPP at

each study site. The statistical results are shown in Table 3. It shows

the model with SEA better simulated GPP with a higher r (0.85 ±

0.08) than that with EGS (0.81 ± 0.09). Moreover, in the calibration

groups, the average RMSE for the SEA model (2.10 ± 0.29 gC·m-2·d-

1) was 8.2 ± 1.3% lower than that for the EGS model (2.28 ± 0.31

gC·m-2·d-1) across the sites. Meanwhile a lower AIC value of the

SEA model (AICSEA = 731.37 ± 132.30) indicated that the seasonal

dynamic parameters could improve the GPP estimation. The better

performances of the SEA were also observed in the validation group.

Across all sites, the average RMSE of the SEA model (2.11 ± 0.29

gC·m-2·d-1) was 8.0 ± 1.1% lower than that of the EGS model (2.29 ±

0.30 gC·m-2·d-1), and the average value of r of the SEAmodel (0.84 ±

0.08) was 3.7 ± 1.5% higher than that of the EGS model (0.81 ±

0.09). Furthermore, the model with SEA was able to better capture

the seasonal variation of GPP and effectively reduce the

overestimation of GPP in spring and autumn. The greatest

decrease in RMSE was observed in spring at the DE-Hai site

(21.4%) and in autumn at the DK-Sor site (27.7%).
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3.3 Estimations of Gs

The parameters gsh and gsu calibrated using the two

parameterization schemes are displayed in Table 4. Obviously
Frontiers in Plant Science 06
seasonal variations in gsh and gsu were observed at each study site,

with the lower values in summer and slightly higher values in spring

and autumn. Overall, the seasonal dynamic parameters gsh and gsu
of the SEA scheme improved the estimations of Gs relative to the
TABLE 2 Average (standard deviation) of the calibrated maximum light use efficiency (ϵmsu and ϵmsh (gC·MJ-1) for sunlit and shaded leaves,
respectively) under the two parameterized schemes.

Site ID
ϵmsu ϵmsh

Seasons
EGS SEA EGS SEA

DE-Hai 0.34
(0.000065)

0.34
(0.000022)

4.16
(0.028)

3.34
(0.067)

Spring

0.46
(0.064)

4.12
(0.11)

Summer

0.36
(0.039)

4.74
(0.061)

Autumn

DK-Sor 1.05
(0.012)

0.83
(0.027)

4.79
(0.00028)

4.79
(0.00032)

Spring

1.12
(0.013)

4.79
(0.00026)

Summer

1.50
(0.000085)

4.79
(0.00017)

Autumn

US-MMS 0.41
(0.051)

0.34
(0.0027)

3.47
(0.10)

3.10
(0.046)

Spring

0.75
(0.094)

3.05
(0.18)

Summer

0.49
(0.11)

2.99
(0.24)

Autumn
fro
EGS and SEA denote the entire growth season-based fixed parametrization and season-specific dynamic parametrization, respectively.
FIGURE 3

Intra-annual variability of daily photosynthetically active radiation (PAR) obtained from GLASS and flux data (SW), and absorbed PAR (APAR) calculated
by the fraction of APAR (FPAR) and the two-leaf (TL) scheme at the study sites of (A) DE-Hai, (B) DK-Sor and (C) US-MMS.
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FIGURE 4

Comparisons between daily gross primary productivity (GPP) derived from the flux observations (FLUX) and the two-leaf-based (TL) simulations with
the two parametrization schemes. EGS and SEA denote entire growth season-based fixed parametrization and season-specific dynamic
parametrization, respectively. The left panels (A, C, E) show the inner-annual variabilities of the difference between observed and estimated GPP. The
right panels (B, D, F) show the RMSE between estimated and observed GPP.
TABLE 3 Calibration and validation performances of the two-leaf light use efficiency model with the two parameterized schemes in estimating gross
primary productivity (GPP).

Site ID
EGS SEA

AIC RMSE r d AIC RMSE r d

DE-Hai

Calibration

851.81
(15.46)

2.44
(0.04)

0.79
(0.01)

0.88
(0.01)

763.95
(17.41)

2.21
(0.04)

0.83
(0.01)

0.90
(0.005)

DK-Sor 660.76
(15.99)

1.93
(0.03)

0.91
(0.004)

0.96
(0.002)

581.40
(18.19)

1.77
(0.03)

0.93
(0.003)

0.96
(0.002)

US-MMS 914.82
(19.67)

2.48
(0.05)

0.74
(0.01)

0.81
(0.01)

848.76
(21.50)

2.31
(0.05)

0.78
(0.01)

0.85
(0.01)

DE-Hai

Validation

369.36
(15.39)

2.44
(0.09)

0.79
(0.02)

0.88
(0.01)

339.15
(16.72)

2.22
(0.09)

0.83
(0.02)

0.90
(0.01)

DK-Sor 290.20
(16.43)

1.94
(0.07)

0.91
(0.01)

0.95
(0.005)

261.88
(17.61)

1.78
(0.07)

0.93
(0.01)

0.96
(0.004)

US-MMS 399.14
(17.96)

2.49
(0.10)

0.74
(0.03)

0.81
(0.02)

377.71
(18.62)

2.32
(0.10)

0.77
(0.02)

0.85
(0.01)
F
rontiers in Plant
 Science
 07
 f
EGS and SEA denote the entire growth season-based fixed parametrization and season-specific dynamic parametrization, respectively. AIC, RMSE (gC·m-2·d-1), r and d indicate the Akaike
information criterion, root-mean square error, correlation coefficient, and agreement index, respectively. The average (standard deviation) values of the evaluation indicators from the
randomized experiments are shown in the table.
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fixed parameters of the EGS scheme (Table 5). In the calibration

group, the average RMSE of the Gs estimated with the SEA scheme

(0.083 ± 0.067 mol·m-2·s-1) was 6.5 ± 4.6% lower than that estimated

with the EGS scheme (0.093 ± 0.076 mol·m-2·s-1), as well as the AIC

values (AICEGS = -2517.62 ± 690.81 vs. AICSEA = -2568.11 ±

740.32). In the validation group, the SEA model also performed

better than the EGS model, with an average RMSE of 0.086 ± 0.066

mol·m-2·s-1 and 0.094 ± 0.075 mol·m-2·s-1, respectively, across the

study site. However, when considering the AIC, the SEA model

(-1162.79) did not perform as well as the EGS model (-1172.67) at
Frontiers in Plant Science 08
DE-Hai. Although the r of the SEAmodel was lower than that of the

EGS model at the DK-Sor site, the TL B-B model with the dynamic

parameterization effectively reduced the errors of estimated Gs

compared to that with fixed parameterization.
3.4 Estimations of Tc

Tc was estimated using the P-M model combined with the two

parameterization schemes. Figure 5 shows the daily Tc estimations
TABLE 4 Average (standard deviation) of the calibrated slope parameter of the Ball-Berry model (gsu and gsh for sunlit and shaded leaves,
respectively) under the two parameterized schemes.

Site ID
gsh gsu

Seasons
EGA SEA EGA SEA

DE-Hai 7.15
(0.066)

8.30
(0.15)

0.0023
(0.0025)

0.0015
(0.0017)

Spring

6.98
(0.19)

0.0022
(0.0026)

Summer

7.95
(0.25)

0.33
(0.95)

Autumn

DK-Sor 18.51
(0.24)

15.70
(0.51)

0.0012
(0.0014)

0.63
(0.98)

Spring

15.60
(1.40)

0.00074
(0.0010)

Summer

39.68
(1.70)

0.00051
(0.00065)

Autumn

US-MMS 6.08
(0.18)

7.32
(0.20)

0.094
(0.23)

0.28
(0.61)

Spring

6.59
(0.39)

0.16
(0.24)

Summer

7.50
(0.59)

0.043
(0.22)

Autumn
EGS and SEA denote the entire growth season-based fixed parametrization and season-specific dynamic parametrization, respectively.
TABLE 5 Calibration and validation performances of the two-leaf Ball-Berry model with the two parameterized schemes in estimating canopy
conductance (Gs).

Site ID
EGA SEA

AIC RMSE r d AIC RMSE r d

DE-Hai

Calibration

-2690.09
(20.70)

0.06
(0.001)

0.65
(0.01)

0.80
(0.01)

-2735.78
(21.93)

0.05
(0.001)

0.69
(0.01)

0.82
(0.01)

DK-Sor -1706.28
(26.59)

0.18
(0.005)

0.40
(0.02)

0.64
(0.01)

-1808.90
(59.38)

0.16
(0.01)

0.51
(0.04)

0.71
(0.03)

US-MMS -3156.48
(20.77)

0.04
(0.0009)

0.68
(0.01)

0.82
(0.01)

-3159.65
(20.81)

0.04
(0.009)

0.68
(0.01)

0.82
(0.01)

DE-Hai

Validation

-1172.67
(22.03)

0.06
(0.003)

0.69
(0.03)

0.82
(0.02)

-1162.79
(20.53)

0.06
(0.003)

0.69
(0.03)

0.82
(0.02)

DK-Sor -731.41
(25.37)

0.18
(0.01)

0.39
(0.05)

0.64
(0.03)

-762.90
(25.48)

0.16
(0.01)

0.51
(0.04)

0.71
(0.03)

US-MMS -1339.47
(23.41)

0.04
(0.002)

0.68
(0.03)

0.79
(0.02)

-1349.22
(19.54)

0.04
(0.002)

0.68
(0.03)

0.82
(0.02)
fr
EGS and SEA denote the entire growth season-based fixed parametrization and season-specific dynamic parametrization, respectively. AIC, RMSE (mol·m-2·s-1), r and d indicate the Akaike
information criterion, root-mean square error, correlation coefficient, and agreement index respectively. The average (standard deviation) values of the evaluation indicators from the randomized
experiments are shown in the table.
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with the corresponding measured values. The results of the two

schemes were generally consistent with the observed values of Tc

and well captured the temporal variation of that. The statistical

results (Table 6) showed improvements of the SEA-based Tc

estimation relative to the EGS-based one. In the calibration

group, the average RMSE of the SEA model (0.75 ± 0.06 mm·d-1)

was 3.7 ± 4.4% lower than that of the EGS model (0.78 ±

0.07 mm·d-1) across the study sites. While for the US-MMS site,

the EGS model outperformed. Similarly, in the validation group, the

SEA model (with an average RMSE of 0.76 ± 0.07 mm·d-1)

performed better than the EGS model (with an average RMSE of

0.82 ± 0.12 mm·d-1) at all of the study sites except DE-Hai.

However, the correlations between the observed and estimated Tc

of the SEA model were slightly lower than that of the EGS model.

Moreover, the improvement of the SEA model was mainly found in

spring and autumn across the sites, with a lower RMSE of 7.9 ±

2.8% and 17.6 ± 16.8% relative to the EGS model, respectively.

However, the improvement in summer was not significant, with

only a 0.7% and 0.6% reduction at DE-Hai and DK-Sor,

respectively, while even a 4.4% increase at the US-MMS site.
4 Discussion

Improving the accuracy of Tc estimates requires refinement of the

key parameters in the photosynthesis and gs-A models. Previous

studies have demonstrated that photosynthetic and hydraulic

indicators exhibit significant seasonal variability. However, the

empirical parameters (e.g., ϵmsu and ϵmsh of the TL-LUE model, and

gsu and gsh in the TL B-B model) are commonly set to biome-specific

constants in current GPP and Gs modelling (Miner et al., 2017; Pei

et al., 2022). In this study, we hypothesize that considering the seasonal

dynamics of the physiological parameters will improve Tc estimations.

To test this hypothesis, we assume that these parameters are subject to

seasonal variability in both the TL-LUE and B-B models.

Our results showed that sunlit leaves exhibited a lower maximum

LUE (ϵmsu) relative to shaded leaves (ϵmsh) at both the entire growing

season and each season. This is because sunlit leaves are able to absorb

both direct and scattered radiation, but are susceptible to light

saturation in instances of intense radiation. In contrast, shaded leaves

only receive scattered radiation (including multiple scattering of direct

solar radiation within the canopy), and their absorbed radiation

intensity is typically between the light compensation and saturation

points, resulting in a higher LUE (Mercado et al., 2009; Oliphant et al.,

2011). Similarly, an obviously higher value of gsh relative to gsh was also

observed in each season, which is in line with Li et al. (2019).

Additionally, previous studies reported that the BL scheme may

induce negative biases in estimated Tc compared to the TL scheme

when the LAI was large (Chen and Liu, 2020), which also supported by

our results. This is because TL scheme performs better in the

calculation of the portions of light-saturated and light-unsaturated

leaves in the canopy (Luo et al., 2018).

Moreover, a seasonality of ϵmsu was found in this study, with the

lowest value in spring and the highest in summer. Similarly, the

results showed an explicitly seasonal variation in gsh and gsu, of

which the average was the lowest in summer and slightly higher in
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spring and autumn. These are consistent with previous studies that

shown temporal variation in optimal LUE and the slope parameter

of gs-A models (Wolf et al., 2006; Chen et al., 2011; Ryu et al., 2011;

Franks et al., 2017; Jin et al., 2022). We infer that leaf phenology and

environmental variables mutually determine the seasonal variability

of the physiological parameters. Previous studies have established

that leaf age plays a significant role in photosynthesis in temperate

zones, showing a highest photosynthetic capacity and intrinsic

water use efficiency of mature leaves (Wilson et al., 2001; Pantin

et al., 2012; Albert et al., 2018). Additionally, plant photosynthetic

and hydraulic traits can acclimate the environment in coordination

over weeks to months according to the evolutionary optimality

hypothesis (Wang et al., 2017).

Furthermore, the dynamic parameterization scheme (i.e., SEA)

showed have a significant improvement in the GPP and Gs estimation

compared to the fixed parameterization scheme (i.e., EGS) in each site.

Although a better performance of SEA in both the calibration and

validation of Tc was seen only in DK-Sor, the average error of estimated

Tc using SEA was lower than that using EGS across the study sites.

Previous studies on improvements of empirical or process models with

dynamic parametrizations also supported our results. For example,

Zhang et al. (2010) established the relationship between the optimal Gs

and NDVI using a sigmoid response function by which the estimation

of canopy conductance was remarkably improved. In addition, a recent

study of Jin et al. (2022) estimated Gs by incorporating a LAI-based

dynamic parametrization of G1 (the slope parameter of the optimality-

based unified stomatal optimization model), showing a significantly

increasing accuracy of modelling Tc at both daily and seasonal scales.

Some limitations should be noted in our present work. The growing

season and sub-periods were identified by multi-year average

temperatures (Park et al., 2018) rather than plant phenology. Hence,

this study ignored variabilities of phenology with climatic variables

(Wang et al., 2020; Lin et al., 2022), which may directly and/or

indirectly impact the physiological parameters in the seasons

(Richardson et al., 2013). Besides, the Tc data were derived from the

observed latent heat fluxes by an uWUE-based method (Zhou et al.,

2015, 2016a) and ignored the effects of water fluxes from understory

plants, which may lead to errors in the model calibration and

validation. Additional direct measurements of Tc, e.g. the lysimeter

and isotope measurements, should be take into account to reduce the

uncertainties in further studies. Nevertheless, the achievements of this

study highlight the importance of considering seasonal variation in key

parameters in Tc modelling, and the methods proposed here are

applicable to species of which leaf development or canopy activity

shows an explicit seasonal variability in a year.
5 Conclusion

This study highlighted the importance of incorporating seasonal

variations in the key parameters of two-leaf conductance-

photosynthesis models to improve estimations of Tc. The results

indicate that ϵmsu showed a clear seasonal pattern, with the highest

value in summer. Meanwhile, both gsu and gsh appeared slightly higher

values in spring and autumn than that in summer. Relative to the fixed

parameterized scheme, our findings suggested that applying the
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FIGURE 5

Comparisons between daily transpiration (Tc) derived from the flux observations (FLUX) and the two-leaf-based simulations with the two parametrization
schemes. EGS and SEA denote entire growth season-based fixed parametrization and season-specific dynamic parametrization, respectively. The left
panels (A, C, E) show the inner-annual variabilities of the difference between observed and estimated Tc. The right panels (B, D, F) show the RMSE
between estimated and observed Tc.
TABLE 6 Calibration and validation performances of the two-leaf Penman-Monteith model with the two parameterized schemes in estimating
transpiration (Tc).

Site ID
EGA SEA

AIC RMSE r d AIC RMSE r d

DE-Hai

Calibration

-313.39
(19.13)

0.71
(0.01)

0.86
(0.01)

0.92
(0.004)

-338.11
(19.17)

0.68
(0.01)

0.87
(0.01)

0.93
(0.003)

DK-Sor -155.04
(17.56)

0.85
(0.01)

0.90
(0.0040)

0.91
(0.0029)

-220.64
(47.96)

0.78
(0.04)

0.88
(0.01)

0.92
(0.01)

US-MMS -234.90
(15.32)

0.78
(0.01)

0.82
(0.01)

0.89
(0.005)

-208.36
(15.38)

0.79
(0.01)

0.81
(0.01)

0.88
(0.01)

DE-Hai

Validation

-148.06
(18.78)

0.68
(0.03)

0.88
(0.01)

0.93
(0.01)

-130.17
(18.92)

0.68
(0.03)

0.87
(0.01)

0.93
(0.01)

DK-Sor -61.91
(18.94)

0.85
(0.04)

0.90
(0.01)

0.91
(0.01)

-76.83
(24.72)

0.79
(0.05)

0.88
(0.02)

0.92
(0.02)

US-MMS -27.72
(26.79)

0.92
(0.06)

0.82
(0.02)

0.84
(0.02)

-73.42
(16.92)

0.80
(0.03)

0.81
(0.02)

0.88
(0.01)
F
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EGS and SEA denote entire growth season-based fixed parametrization and season-specific dynamic parametrization, respectively. AIC, RMSE (mm·d-1), r and d indicate the Akaike information
criterion, root-mean square error, correlation coefficient, and agreement index respectively. The average (standard deviation) values of the evaluation indicators from the randomized
experiments are shown in the table.
rsin.org

https://doi.org/10.3389/fpls.2023.1164078
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jin et al. 10.3389/fpls.2023.1164078
seasonal dynamic parameterization can effectively reduce errors in the

simulation of GPP and Tc at a daily scale.We therefore recommend the

consideration of seasonal dynamic parameterizations in ecosystem

models to more accurately simulate carbon and water fluxes under a

changing climate.
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