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Image-based phenotyping
to estimate anthocyanin
concentrations in lettuce
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Anthocyanins provide blue, red, and purple color to fruits, vegetables, and

flowers. Due to their benefits for human health and aesthetic appeal,

anthocyanin content in crops affects consumer preference. Rapid, low-cost,

and non-destructive phenotyping of anthocyanins is not well developed. Here,

we introduce the normalized difference anthocyanin index (NDAI), which is

based on the optical properties of anthocyanins: high absorptance in the

green and low absorptance in the red part of the spectrum. NDAI is

determined as (Ired - Igreen)/(Ired + Igreen), where I is the pixel intensity, a

measure of reflectance. To test NDAI, leaf discs of two red lettuce (Lactuca

sativa) cultivars ‘Rouxai’ and ‘Teodore’ with wide range of anthocyanin

concentrations were imaged using a multispectral imaging system and the red

and green images were used to calculate NDAI. NDAI and other commonly used

indices for anthocyanin quantification were evaluated by comparing to with the

measured anthocyanin concentration (n = 50). Statistical results showed that

NDAI has advantages over other indices in terms of prediction of anthocyanin

concentrations. Canopy NDAI, obtained usingmultispectral canopy imaging, was

correlated (n = 108, R2 = 0.73) with the anthocyanin concentrations of the top

canopy layer, which is visible in the images. Comparison of canopy NDAI from

multispectral images and RGB images acquired using a Linux-based

microcomputer with color camera, showed similar results in the prediction of

anthocyanin concentration. Thus, a low-cost microcomputer with a camera can

be used to build an automated phenotyping system for anthocyanin content.

KEYWORDS

anthocyanins, remote sensing, anthocyanin index, non-destructive measurement, low-
cost plant phenotyping, controlled environment agriculture (CEA)
1 Introduction

Anthocyanins are water-soluble pigments that provide red, purple, or blue color to

leaves, fruits, and flowers. Anthocyanins accumulate in response to various abiotic and

biotic stresses and provide protection to plants against these stressors (Boldt et al., 2014; Liu

et al., 2018). Benefits of anthocyanins for human health include anti-cancer activity and

alleviating cardiovascular disease and diabetes (Khoo et al., 2017). Due to their benefits and
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aesthetic appeal, anthocyanins can influence consumer preference.

Therefore, rapid phenotyping for anthocyanin content is important

in horticultural production and breeding programs, as well as in

ecophysiological studies.

Non-destructive estimation of traits using imaging is an ideal

approach to phenotyping. Image-based plant phenotyping

quantifies reflected light from plants in a non-destructive manner,

while the reflected light has unique spectral responses to plant

pigments. Multispectral or hyperspectral imaging sensors detect

reflected light from plants, and that information is stored as pixels

with spatial and quantitative information regarding reflected light

intensity and color. Image-based phenotyping can provide reliable

data to characterize traits of interest in a non-destructive, rapid, and

high-throughput manner, without sampling bias (Del Valle et al.,

2018; Costa et al., 2019). These advantages led to an emergence of

image-based phenotyping in the early 2010s and many researchers

have adopted such systems to screen for traits of interest (Das

Choudhury et al., 2019; Maes and Steppe, 2019).

Reflectance imaging can be applied at various scales, including

satellites, and plant phenotyping has benefitted from prior work

using satellite imaging. Commonly, reflectance indices are

calculated using normalization equations, which constrain the

index values between -1 and 1. Common indices to quantify

vegetation cover, plant health, or physiological status include the

normalized difference vegetation index (NDVI) and photochemical

reflectance index (PRI) (Rouse et al., 1974; Gamon et al., 1997).

Such indices are derived from changes in reflectance based on

canopy size or the nutritional and/or physiological status of plants.

Prior work resulted in indices to estimate anthocyanin

concentrations: the red to green ratio (Gamon and Surfus, 1999),

anthocyanin reflectance index (Gitelson et al., 2001), and modified

anthocyanin reflectance index (Gitelson et al., 2006). Bayle et al.

(2019) reported the normalized anthocyanin reflectance index

(NARI), which is a modified version of the anthocyanin

reflectance index. These indices are based on the higher

absorptance (or lower reflectance) in the green part of the

spectrum (500 – 550 nm) of plants with higher anthocyanin

concentrations (Neill and Gould, 2000; Gitelson et al., 2001;

Merzlyak et al., 2008). These indices also include red or red-edge

reflectance to adjust for the presence of chlorophylls. Most of these

indices use reflectance in the red edge (700 - 705 nm) for

chlorophyll corrections, due to the strong correlation between the

reflectance in the red edge and chlorophyll concentration (Gitelson

et al., 1996). At the same time, Gitelson et al. (2001) and Gamon and

Surfus (1999) also reported a correlation between chlorophyll

concentrations and reflectance in a wide range of the red

spectrum (600 - 700 nm). Therefore, anthocyanin predictions

may be achieved using reflectance in a wide range of the green

and red spectrum, which can be easily acquired by low-cost color

(RGB) imaging. However, little is known about the feasibility of

predicting anthocyanin concentration using reflectance indices with

spectral images acquired by low-cost imaging systems.

With the advance in computing power and better imaging

sensors, image-based phenotyping tends to use hyperspectral

imaging and machine learning algorithms to process high-

throughput data. At the same time, the development of simple
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indices has become less popular. It is understandable that machine

learning approaches have become popular in plant science, because

the amount of data generated by hyperspectral imaging system is

large, so identification of traits of interest based on relatively simple

analyses may not be feasible. However, machine learning may not

always provide ideal solutions and may result in errors when the

conditions during image acquisition differ from those under which

machine learning algorithms were developed. Additionally,

machine learning-based models cannot provide underlying

physiological meaning to these models.

Using hyperspectral imaging systems to quantify phenotypic

traits of interest can be useful, but is not always necessary.

Hyperspectral imaging can be expensive and simple alternative

approaches may make imaging accessible to many more scientists,

as well as horticultural producers. For example, image-based

phenotyping of anthocyanin concentrations only requires

information in the red and green wavebands based on the optical

characteristics of anthocyanins and chlorophyll, so hyperspectral

imaging may not be necessary. Furthermore, color imaging

provides quantitative information on reflectance in the red, green,

and blue wavebands, which may satisfy the requirements for

anthocyanin prediction. Therefore, we hypothesized that simple

color cameras or multispectral imaging systems can provide

quantitative information regarding anthocyanin concentrations.

Here, we introduce a new reflectance index, the normalized

difference anthocyanin index (NDAI), for predicting anthocyanin

concentration using the images of anthocyanin-rich lettuce

cultivars. We evaluated the performance of NDAI by comparing

it with other anthocyanin indices in use. We developed a Python

script to calculate these indices using multispectral images of leaf

discs from two red lettuce cultivars, ‘Rouxai’ and ‘Teodore’ and

compared those values to measured anthocyanin concentrations.

We also tested whether a low-cost RGB camera, connected to a

Raspberry Pi microcomputer can be used to determine the NDAI.

Our objectives were (1) to evaluate the performance of different

indices, including NDAI, in terms of the prediction of the leaf disc

anthocyanin concentration, (2) to validate the best performing

index for prediction of anthocyanin concentration at the whole

plant scale, and (3) to develop a low-cost RGB imaging system that

can predict anthocyanin concentrations.
2 Materials and methods

2.1 Plant materials

Red-leaf lettuce (Lactuca sativa) cultivars ‘Rouxai’ and

‘Teodore’ were grown in a walk-in growth chamber from April 14

to May 14, 2021. Seeds were planted in 10 cm square pots

containing a soilless substrate (Fafard 2P Mix; Sun Gro

Horticulture, Agawam, MA, USA). The plants were subirrigated

biweekly with a water-soluble fertilizer (15N-2.2P-12.5K; Peters

Excel 15-15-15 Cal-Mag special Fertilizer, ICL Fertilizers, Dublin,

OH, USA). The approximate environmental conditions of the walk-

in chamber were a photoperiod of 16 hours, photosynthetic photon

flux density (PPFD) of 250 µmol m-2 s-1, daily light integral of 14.4
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mol m-2 d-1, a temperature of 20 °C, a vapor pressure deficit of 1.2

kPa, and CO2 concentration of 800 µmol mol-1. After 30 days, the

plants were transferred to growth chambers with temperatures of 4,

12, and 20 °C for 0, 12, 24, or 36 hours to induce a wide range of

anthocyanin concentrations. The other environmental conditions

in these growth chambers were similar to those of the walk-in

cooler. Each combination of the temperature, exposure time, and

cultivar was repeated three times with three biological replications.
2.2 Sample collection and multispectral
imaging

A randomly-selected plant from each exposure time and

temperature combination was used for leaf disc imaging and

anthocyanin extraction. Two positions on leaves near the top of

the plant were selected based on visual assessment of homogeneous

anthocyanin distribution. A cardboard piece with a hole with 1-cm

radius was clamped on the leaves. The 1-cm exposed leaf discs were

imaged using a commercial imaging system (TopView, ARIS,

Eindhoven, The Netherlands). To acquire spectral images, the

monochrome camera of the imaging system captures one

monochrome image at a time under illumination of a

monochrome light-emitting diodes (LED) and repeats the process

with sequential illumination of seven wavelengths of LED (450, 516,

593, 625, 664, 730, and 861 nm peaks) (Figure 1A). We only used

the images taken under the green (peak at 516 nm), red (peak at 664

nm), and near infrared (NIR, peak at 861 nm) LEDs (Figure 1B),

following previous studies of anthocyanin prediction (Gamon and

Surfus, 1999; Gitelson et al., 2006; Gitelson et al., 2009; Steele et al.,

2009). The full width at half maximum (FWHM) of the green, red,

and NIR LEDs was 40, 25 and 28 nm, respectively. During the NIR

imaging, the imaging system could not achieve perfect focus.

Therefore, image indices using NIR image resulted in a relatively

poor spatial resolution (Spectrum of NIR in Figure 1B).
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Before taking plant images, a middle-gray card (50% reflection

at all wavebands) was imaged as a reference to calibrate exposure

times of each LED. We measured the pixel intensity of the gray card

using Image J software (NIH, Bethesda, MD, USA). Since the

middle-gray card should result in an intensity of 127 in a scale of

255 (8-bit resolution of the images), we adjusted the exposure time

based on the ratio between 127 and the measured pixel intensity.

The calibration with the gray card ensures that images taken under

different colors of LEDs are directly comparable and accurate

measures of reflectance.

After the multispectral imaging, the 1-cm radius leaf discs were

dissected and frozen in liquid nitrogen before anthocyanin

extraction and quantification, following a modified protocol of

Lee et al. (2005). A leaf disc was weighed and ground with liquid

nitrogen. The ground sample was then precipitated in 5 ml of

methanol with 2% HCl. After centrifugation, 0.5 ml of the

supernatant was transferred to a buffer solution containing 2 ml

of 0.025 M KCl (pH 1.0) and 2 ml of 0.4 M sodium acetate (pH 4.5).

Absorbance of the solution at 520 and 720 nm was measured using

a spectrophotometer (GENESYS 10S UV-Vis spectrophotometer,

Thermo Scientific™, Waltham, MA, USA) with three subsamples

per the solution. The measured absorbance and the fresh weight

(FW) were then used to compute the anthocyanin concentration of

the leaf disc per unit FW. A total of 50 leaf discs were used for

anthocyanin extraction to evaluate the performance of NDAI and

other indices from literatures regarding prediction of

anthocyanin concentration.

To test feasibility of predicting anthocyanin concentration in

canopy layer using a best performing index in the leaf discs, the

intact canopy of 108 lettuce plants was also imaged using the

TopView system and used for anthocyanin extraction. Two

randomly selected plants from each exposure time and

temperature combination were imaged. Since these images only

capture the top part of the plant canopy, we collected only the leaves

from the top layer of the canopy for anthocyanin extraction
A B

FIGURE 1

Schematic representation of the acquisition process of green, red, and near-infrared (NIR) spectral images by the TopView multispectral imaging
system (A) and the normalized spectrum of the LEDs of the system used for capturing each monochrome image (B). The peak and full width at half
maximum of green, red, and NIR LEDs were 516 and 40 nm, 664 and 25 nm, and 861 and 28 nm, respectively.
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following the same protocol. The leaves were ground and

homogenized, and approximately 500 mg of the homogenized leaf

tissue was used for the extraction.
2.3 Anthocyanin index comparisons

The new Normalized Difference Anthocyanin Index (NDAI) is

defined as:

NDAI = (Ired − Igreen)=(Ired + Igreen) (1)

where I is the pixel intensity, a measure of reflectance, and the

subscript indicates the color of the image, while peak and FWHM of

the light color vary depending on the light spectrum during

imaging. This index uses the same basic equation as the

normalized difference vegetation index (Rouse et al., 1974) and

photochemical reflectance index (Gamon et al., 1997), which are

commonly used normalized indices in remote sensing. We used the

green and red wavebands based on the optical properties of

anthocyanins in situ; higher anthocyanin concentrations result in

higher absorptance in the green part of the spectrum, while the

absorptance in the red part of the spectrum is related to chlorophyll

content (Lichtenthaler, 1987; Gitelson et al., 2001). Therefore, we

speculate that NDAI has an advantage over indices that do not use

the red part of the spectrum by accounting for chlorophyll content.

Indices that use NIR, instead of red, cannot do so.

Bayle et al. (2019) developed the normalized anthocyanin

reflectance index (NARI):

NARI = ((R550)
−1 − (R700)

−1)=((R550)
−1 + (R700)

−1 (2)

where R is reflectance, and the subscript indicates the wavelength

(nm). The equation of NARI is mathematically identical to the

NDAI. However, the NARI requires narrow green (550 nm) and red

edge (700 nm) reflectance that can be acquired from satellite

imagery. In contrast, the NDAI uses a wide range of green and

red wavebands in the index calculation. We did not include NARI

in the evaluation of the performance of various indices, since our

equipment does not measure red-edge reflectance and substituting

red for red-edge makes NARI identical to NDAI.

To assess the performance of NDAI in the prediction of

anthocyanin content, we compared it to previously-developed

indices. Gitelson et al. (2001) suggested the anthocyanin

reflectance index (ARI):

ARI = (R550)
−1 − (R700)

−1 (3)

where R is reflectance, and the subscript indicates the wavelength

(nm). The ARI described anthocyanin concentrations in maple

(Acer platanoides), dogwood (Cornus alba), geranium (Pelargonium

zonale), and cotoneaster (Cotoneaster alaunica) leaves, with a

coefficient of determination (R2) great than 0.8 in each species.

To calculate the ARI, the pixel intensities in each image were

divided by 255, to convert them into reflectance values. Since the

TopView system does not use the same wavelengths as the ARI, we

used the green and red image, taken under the peak at 516 and 664
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nm, the closest spectral images to the wavebands suggested for

ARI (Figure 1).

Steele et al. (2009) introduced the modified anthocyanin

content index (mACI):

mACI = R940=R530 (4)

where R is reflectance, and the subscript indicates the wavelength.

Due to the availability of spectral images from the TopView system,

we calculated mACI using the NIR and green image taken under the

peaks at 861 and 516 nm (Figure 1B).

Gitelson et al. (2006) presented the modified anthocyanin

reflectance index (mARI):

mARI = ((R530� 570)
−1 − (R690� 710)

−1)� Rlonger than 760 (5)

where R is reflectance and the subscript indicates the range of

wavelengths. The ranges in Eq. 5 represent the green, red, and near

infrared spectrum, respectively. Due to the limitations of the

TopView system, images taken under the LEDs with peaks at 516,

664, and 861 nm were used to calculate mARI.

Gamon and Surfus (1999) proposed the Red : Green ratio index

(RGI) for anthocyanin prediction:

RGI = (R600� 699)=(R500� 599) (6)

where R is reflectance and the subscript indicates the range of

wavelengths. The RGI was calculated from the green and red images

taken under the LEDs with peaks at 516 and 664 nm (Figure 1). The

RGI was correlated with anthocyanin concentration (R2 = 0.92) in

Quercus agrifolia.

A hand-held anthocyanin content meter (ACM-200 plus; Opti-

Science, Inc., Hudson, NH, USA) was also used to measure the

anthocyanin content index (ACI). This meter measures absorptance

in the green (peak at 530 nm) and NIR (peak at 931 nm) to estimate

anthocyanin concentrations (van den Berg and Perkins, 2005),

likely with similar results as the mACI.
2.4 Automated image analysis

We wrote a program in Python (v. 3.8) using the OpenCV

library (v. 4.5.4) to process multispectral images and calculate

indices for anthocyanin content (see Script S1). The program

reads monochrome images taken under different LED spectrums

and extracts the intensity of each pixel from those images (0 to 255).

The pixel intensities were then used to calculate anthocyanin

content indices directly or after converting the pixel intensities

into reflectance values by dividing by 255. The program creates a

two-dimensional matrix, containing x- and y- coordinates and the

corresponding index value. The matrix was then visualized as an

index image of plant objects after background removal using

intensity-based thresholding, followed by despeckling. The

program generates a histogram, an average, and a standard

deviation of all index values from only plant objects. The

standard deviation is a measure of anthocyanin variability within

the plant objects.
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2.5 A low-cost phenotyping system for
anthocyanin prediction

To evaluate the feasibility of using the NDAI for predicting

anthocyanin concentration in a cost-effective manner, a Linux-

based microcomputer (Raspberry Pi 4 model B, Raspberry Pi

Foundation, Cambridge, UK) and an RGB camera (Raspberry Pi

Camera Module v2.1, Raspberry Pi Foundation, Cambridge, UK)

were used. The low-cost and automated imaging systems were

installed in the growth chambers during the temperature/

exposure time study to acquire top-view images of the lettuce

plants at each harvest. Color images were taken every 10 minutes

through the ‘Crontab’ command in Terminal in Raspberry Pi OS,

which enables scheduling of a periodic task such as running a

Python script at a given interval. The Python script for the camera

operation was from the website of the Raspberry Pi Foundation

(projects.raspberrypi.org/en/projects/getting-started-with-

picamera) (Figure 2A). No gray-scale, or other calibration was used

for this camera, to keep the method as simple as possible. The light

spectrum in the growth chambers, spectral responses of the RGB

camera, and combination of the spectral sensitivity of the RGB

camera and the light spectrum in the growth chambers are

visualized in Figure 2. The combination of them estimates the
Frontiers in Plant Science 05
spectral response of each color channel during image acquisition

under this particular light spectrum. Peak sensitivities of the system

in the blue, red, and green color channels were 450, 560, and 597

nm, respectively. The spectral response of each color channel was

broad compared to the LED spectrum in the TopView system. The

red, green, and blue channels all have at least some sensitivity across

the entire 400 – 700 nm range (Figure 2).

The images were analyzed with a modified program of the

multispectral image analysis program that reads RGB images and

extracts the pixel intensity of each color channel (see Script S2). The

plant segmentation was established based on the red to blue ratio

that showed strong contrast in the pixel intensity between plant

objects and the background. The pixel intensity of plants in the blue

was lower than that in the red, due to the higher absorptance in the

blue spectrum. The background (metallic bottom of the growth

chamber) did not show such differences in pixel intensity in the blue

and red channels. With intensity-based thresholding based on the

red to blue ratio, the program could separate plant objects from

background and binary images were created. These binary images

were then processed using erosion and dilation to improve plant

segmentation. The algorithm for this segmentation will likely need

to be modified for images taken under different conditions. The

pixel intensity values of the pixels representing plants and for each
A B

DC

FIGURE 2

Schematic representation of acquisition process of green and red spectral images by the Raspberry Pi Camera Module V2.1 (A), the normalized
spectrum of the warm-white LED light fixtures in the growth chambers (B), the spectral sensitivity of the camera module (Pagnutti et al., 2017) (C),
and the combination of the spectral sensitivity of the camera and the light spectrum in the growth chambers, showing the spectral sensitivity during
acquisition of each spectral image (D).
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color channel were then used to calculate NDAI. The NDAI from

the RGB images was compared to the anthocyanin concentrations

of the top layer of the lettuce plants. The canopy NDAI from the

RGB images also was compared with the canopy NDAI from

multispectral images to assess the performance of the low-cost

anthocyanin phenotyping system.
2.6 Statistical analyses

The performance of NDAI for anthocyanin prediction was

evaluated by comparing it with other reflectance indices derived

from multispectral images of leaf discs and plant canopy and the

corresponding anthocyanin concentrations. Anthocyanin indices of

leak discs, derived from equations 1 and 3 to 6, and ACI from the

hand-held meter were compared with the measured anthocyanin

concentrations. The coefficient of determination (R2), root mean

square error (RMSE), and Akaike information criterion (AIC) were

calculated from the regression analyses between the indices and

anthocyanin concentrations (R Core Team, 2022).

In general, an R2 value higher than 0.7 is considered indicative

of a good model that can explain significant amount of variance,

while a higher value indicates a better model fit (Frost, 2019). A

lower RMSE or AIC value indicates a better model fit, but the

absolute value of RMSE or AIC is not informative in determining

whether a particular value indicates a good model fit (Baguley,

2018). Following the criteria of a better model in these statistical

metrics, we selected the best performing model for prediction of

anthocyanin concentration in the leaf discs.

Using the best-performing index model, we also tested its

feasibility in prediction of anthocyanin concentration of a canopy

layer using the multispectral images acquired by the TopView

system and RGB images taken by the Raspberry Pi-RGB camera

imaging system. To evaluate the correlation between the canopy

anthocyanin concentration and the index values derived from each

imaging system, we calculated R2 and RMSE.
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3 Results

3.1 Evaluation of anthocyanin content
indices

Anthocyanin concentrations of the 50 leaf discs ranged from

108 to 1673 µg g-1 of fresh weight. Higher anthocyanin

concentrations of the leaf discs coincided with higher values of all

image-derived indices, and can be observed within the false color

images representing each index (Figure 3). The anthocyanin

concentrations in these example images differed by a factor of

3.94 and the range of values obtained from the various indices

differed greatly. Although the average RGI of the high-anthocyanin

leaf discs was higher than that of the low-anthocyanin leaf discs, the

difference was relatively small (1.38×). For the other indices, the

index values for the low- and high-anthocyanin leaf discs differed by

2.05 to 5.00× (Figure 3).

These index images show that the distribution of anthocyanins

within leaf discs was not uniform (Figure 3), although the leaf discs

were small (3.1 cm2). Especially, the NDAI, ARI, and mARI images

were able to display non-uniformity that was not visible in the

corresponding RGB image. On the other hand, the mACI and RGI

image had a somewhat limited depiction of the heterogeneous

anthocyanin distribution in the leaf discs, resulting in a low

coefficient of variation. The coefficient of variation in the mACI

and RGI images was 0.33 and 0.15 for the higher anthocyanin

concentration leaf disc and 0.13 and 0.21 for the lower anthocyanin

concentration leaf disc, respectively. Images of the other indices,

had coefficients of variation of 0.57 to 0.82 and 1.94 to 2.58, in the

higher and low anthocyanin concentration, respectively.

An increase in anthocyanin concentration was associated with a

linear or quadratic increase in all anthocyanin indices (Figure 4). As

anthocyanin concentrations of the leaf discs increased from 108 to

1673 µg g-1 of FW, the average NDAI, ARI, mACI, mARI, and RGI

ranged from -0.062 to 0.192, -0.950 to 3.680, 1.600 to 6.786, -0.508

to 1.909, and 0.900 to 1.496, respectively.
FIGURE 3

Images of various indices of anthocyanin concentration based on multispectral images. The leaf disc at the top had a higher anthocyanin
concentration than the bottom one. From left to right: RGB (color) image, normalized difference anthocyanin index (NDAI; Eq. 1), anthocyanin
reflectance index (ARI; Eq. 3), modified anthocyanin content index (mACI; Eq. 4), modified anthocyanin reflectance index (mARI; Eq. 5), and red to
green ratio index (RGI; Eq. 6). The values in each image represents the average ± standard deviation of the corresponding index value, while the RGB
images show the anthocyanin concentration of the leaf discs.
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The NDAI, ARI, mARI, and RGI (Figure 4 and Table 1) had

higher R2 than other indices (0.80< R2< 0.89). These indices also

had lower RMSE and AIC values (0.02< RMSE< 0.52, -237.6< AIC<

82.1). The NDAI had the highest R2 (0.89), lowest RMSE (0.02) and

lowest AIC (-237.6) among the indices for predicting anthocyanin

concentration. At the same time, the RGI had R2 of 0.89, RMSE of

0.05, and AIC of -149.7. The ACI and mACI resulted in lower

values of these evaluation metrics (Figure 4 and Table 1), resulting

in R2 values of 0.36 and 0.34, RMSEs of 2.04 and 0.94, and AICs of
Frontiers in Plant Science 07
217.4 and 140.8 (Table 1), respectively. Changing the units of

anthocyanin concentration to an area-based unit (mg m-2) did

not affect the trends in the statistical metrics.

Differences in the statistical metrics can be used to determine

which wavelengths to use for an anthocyanin index. The NDAI,

ARI, and RGI all use reflectance in the green and red, while mARI

also uses NIR, whereas ACI and mACI use reflectance in the green

and NIR. This suggests that the use of the red waveband is
A B

D

E F

C

FIGURE 4

The relationship between the anthocyanin concentration of leaf discs and the corresponding anthocyanin content index of a hand-held anthocyanin
content meter (ACI) (A), anthocyanin content index (B), anthocyanin reflectance index (ARI) (C), modified anthocyanin reflectance index (mARI) (D),
modified anthocyanin content index (mACI) (E), and red to green ratio index (RGI) (F) (n = 50). The regression summaries include the regression
equation, coefficient of determination, root mean square error, and p-value. The blue curves show the regression equations.
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preferable to the use of NIR, likely because the red reflectance can

help account for different chlorophyll concentrations.

The NDAI predicted anthocyanin concentration slightly better

than the RGI, based on its lower AIC value and RMSE (Table 1).

Based on these results, the best index for image-based anthocyanin

phenotyping is NDAI, while RGI also performs well. Note that all

indices, except for ACI, had a non-linear relationship with the

measured anthocyanin concentration. Interestingly, the
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commercially-available anthocyanin meter, which measures ACI,

performed poorly (R2 = 0.36).
3.2 Canopy NDAI imaging

Canopy NDAI images were obtained by using the pixel

intensities from canopy images taken under red and green light

(Figure 5). Canopy NDAI images of ‘Rouxai’ and ‘Teodore’ clearly

showed the difference in their anthocyanin concentrations

(Figure 5C). The canopy ACI images provide spatial information

by depicting the distribution of anthocyanins within the canopy.

The anthocyanin concentrations of top canopy layer the red

lettuce cultivars ranged from 251 to 928 µg g-1 of FW, while the

average canopy NDAI increased from -0.062 to 0.211 with increases

in the anthocyanin concentrations (Figure 6). Anthocyanin

concentrations in the top canopy layer had a positive correlation

(R2 of 0.73 and RMSE = 0.04) with the average canopy NDAI. This

relationship was not a strong as that for the leaf discs, likely because

of the non-uniform distribution of the anthocyanins. Anthocyanins

were extracted from the top layer of the canopy, but it was not

possible to sample the exact same part of the canopy that was visible

in the images. However, the high R2 and low RMSE of the canopy

NDAI versus extracted anthocyanin concentration indicate that this

method is useful to predict anthocyanin concentrations using

canopy multispectral images.
TABLE 1 Statistical summaries of various indices for anthocyanin
content (n = 50).

Index R2 RMSE AIC p-Value

ACI 0.36 2.04 217.4 < 0.001

NDAI 0.89 0.02 -237.6 < 0.001

ARI 0.82 0.52 82.1 < 0.001

mACI 0.34 0.94 140.8 0.015

mARI 0.80 0.28 19.6 < 0.001

RGI 0.89 0.05 -149.7 < 0.001
ACI, Anthocyanin content index measured by hand-held anthocyanin content meter; NDAI,
normalized difference anthocyanin index; ARI, anthocyanin reflectance index; mACI,
modified anthocyanin content index; mARI, modified anthocyanin reflectance index; and
RGI, red and green ratio index.
A B C

FIGURE 5

Canopy RGB (A) and normalized difference anthocyanin index (B; NDAI) images of red lettuce cultivars ‘Rouxai’ (top) and ‘Teodore’ (bottom) and
their corresponding histograms (C). The scale bar on the right side represents the NDAI values within these NDAI images. Values below the NDAI
images represent mean ± standard deviation of NDAI within the NDAI images, while values below the RGB images represent the anthocyanin
concentration.
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3.3 A low-cost imaging system for
canopy NDAI

The red and green pixels of the RGB camera under the white

LED fixtures in the growth chambers were used as proxies for the

green and red images from the TopView multispectral imaging

system. The green and red channels of the TopView system had

peaks at wavelengths of 516 and 664 nm, respectively (Figure 1).

The red channel of the RGB camera had a sensitivity of >50% at

wavelengths from 580 to 700 nm with a peak at 596 nm, but was

also sensitive to wavelengths below 580 nm (Figure 2B). The green

channel had a sensitivity above 50% at wavelengths from 477 to 595

nm with a peak at 521 nm (Figure 2B). Because of the different

spectral responses of the RGB camera and multi-spectral imaging

system, we tested whether the canopy NDAI from the multispectral

images and RGB camera are correlated. Given the different spectral

response of the two systems, we did not expect the values to

be identical.

The average canopy NDAI based on the RGB images was

positively correlated with the anthocyanin concentration (R2 =

0.75, RMSE = 0.04; Figure 7). The average canopy NDAI from

the RGB images ranged from -0.088 to 0.216, similar to the range of

the canopy NDAI from the multispectral images, which ranged

from -0.061 to 0.211.

Likewise, the canopy NDAI from the multispectral images and

from the RGB images were positively correlated (R2 = 0.87, RMSE =

0.03; Figure 8). Comparing the regression model (black line) to the

1:1 line (blue line) suggests that the NDAI from RGB images was

slightly overestimated at NDAI values< 0.05 and underestimated at

NDAI > 0.05. Such differences might be associated with errors in

background removal during the RGB image processing, differences

in the light spectrum during the RGB image acquisition, angle of the

camera, and spectral sensitivity of the two methods. Despite these
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differences between the two imaging approaches, there was a strong

correlation between the two methods, indicating that the RGB

images can be used to estimate NDAI.
4 Discussion

Evaluation of the image-derived anthocyanin indices

demonstrates the feasibility of image-based phenotyping for

estimating anthocyanin concentrations in lettuce. Our initial

testing was conducted using leaf discs with the multispectral
FIGURE 6

Correlation between the canopy normalized difference anthocyanin
index (NDAI, averaged over the entire part of the canopy visible in
the images) derived from multispectral images and the anthocyanin
concentrations of the top layer of the canopy (n = 108). The blue
line is the regression line.
FIGURE 7

Correlation between the normalized difference anthocyanin index
(NDAI) derived from RGB images and averaged over the entire
visible part of the canopy and the canopy anthocyanin
concentration (n = 108) (A). The blue line is the regression line.
FIGURE 8

Correlation between canopy normalized difference anthocyanin
index (NDAI) derived from multispectral and RGB images (n = 108).
The black line is the regression line, while the blue line is a 1:1
relation line.
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imaging system. Because using a narrow area of leaf and a reliable

spectral imaging system can be considered a reference condition for

development of a precise prediction model for anthocyanin

concentration. The selected NDAI, therefore, resulted in R2 of

0.73 for the correlation between the canopy anthocyanin

concentration and the canopy NDAI using the multispectral

imaging system. Furthermore, the canopy NDAI derived from the

RGB images resulted in R2 of 0.75, demonstrating that a potential

method of whole plant or crop anthocyanin phenotyping at a

low cost.

In addition, NDAI values obtained from the multispectral

imaging system and RGB images were similar, indicating that a

regular digital camera, combined with a broad-band white light

source may be all that is required for NDAI imaging. All tested

anthocyanin indices showed a positive relationship with leaf disc

anthocyanin concentrations, but the performance of the different

indices varied greatly (Figure 4 and Table 1). Although our

multispectral images (Figure 1) do not use the same wavebands as

those typically used for ARI, mARI, and mACI (Eq. 3-5) (e.g. ARI

and mARI required 700 nm while we used 664 nm and mACI

required 940 nm while we used 861 nm) (Gitelson et al., 2006;

Gitelson et al., 2009; Steele et al., 2009), the image-derived indices

that used the green and red part of the spectrum (NDAI, ARI,

mARI, and RGI) achieved a reasonably good model fit in prediction

of anthocyanin concentrations (R2 ≥ 0.8, RMSE ≤ 0.52, AIC ≤ 82.1).

That success is associated with the role of the green and red

spectrum in the anthocyanin indices. The variation in reflectance in

the green part of the spectrum (510 to 550 nm) is partly determined

by anthocyanin concentration, because anthocyanins absorb green

photons effectively (Neill and Gould, 2000; Gitelson et al., 2001).

However, chlorophyll also absorbs green light. Reflectance in the

red part of the spectrum (660 nm to 710) can account for variability

in chlorophyll concentration due to the relationship between

chlorophyll concentration and absorptance in this part of the

spectrum (Lichtenthaler, 1987; Gitelson et al., 1996). The NDAI,

ARI, mARI, and RGI were able to quantify anthocyanin

concentration accurately by removing interference from variable

chlorophyll concentrations (Gitelson et al., 2009).

Not all indices attempt to correct for the influence of

chlorophyll. The ACI and mACI, use the green and NIR part of

the spectrum, resulting in R2 values of 0.36 and 0.34, respectively.

This was consistent with the report by Steele et al. (2009), who

reported a weak relationship between mACI and anthocyanin

content of grape vine leaves (R2 = 0.06). Slaton et al. (2001)

reported that the reflectance in the NIR is associated with

characteristics of leaf structure, such as leaf thickness, rather than

chlorophyll content. Therefore, using NIR instead of red has no

benefits in accounting for chlorophyll. The mARI uses NIR as a

third waveband to account for variability in leaf thickness and light

scattering within the leaf (Gitelson et al., 2006), but this did not have

any distinctive advantages over the indices using only green and

red, such as NDAI, ARI and RGI based on statistical metrics.

The form of the index equation determines the range of values

the index can have. NDAI, adopting the NDVI equation, is

constrained to the range between -1 and 1, but in reality ranged

only from -0.25 to 0.5 (Figure 5). The other indices do not have
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constrained ranges for their value. This could potentially result in

extreme values, making averaging of multiple readings potentially

meaningless. Since the NDAI had slightly better statistical

performance than RGI and the other indices (Table 1) and is

constrained between -1 and 1, we conclude that NDAI has

advantages over the other indices.

There are many successful examples of anthocyanin predictions

based on hyperspectral imaging combined with machine learning

techniques (Chen et al., 2015; Askey et al., 2019; Simko, 2020; Cho

et al., 2021; Kim et al., 2021). However, these machine learning

models require hyperspectral imaging systems with similar

wavelengths as used to develop the machine learning model.

Thus, such models may not perform well when applied to data

collected with different hyperspectral imaging systems or under

different lighting conditions. In addition, hyperspectral imaging

systems provide much more information than our NDAI

calculation requires, and are generally expensive. The high cost of

technical requirements of hyperspectral imaging and machine

learning makes widespread adoption difficult.

NDAI requires only red and green images, which can be

acquired from RGB images or simple multispectral imaging

systems. The NARI, having the identical equation as NDAI,

successfully detected variability in anthocyanin concentrations in

mountain shrublands (Bayle et al., 2019). However, it uses satellite

imagery as its source of spectral reflectance, and relies on narrow

green and red-edge wavebands. Furthermore, the NARI has not

been evaluated by comparing index values to measured

anthocyanin concentrations. On the other hand, the NDAI, with

the low-cost RGB imaging or the multispectral imaging, had a good

correlation with canopy anthocyanin concentrations. That suggests

that pictures taken by a cellular phone or any color camera, which

can capture red and green color channels, can be used to calculate

NDAI. Due to its simplicity and the lack of need for a narrow

specific waveband, RGB-derived NDAI can be easily implemented

at the single leaf or whole canopy scale, including in remote sensing

and indoor horticultural production. Such a system can be built

using an RGB camera and Raspberry Pi microcomputer, at a cost of

about $60. The simplicity, low cost, and automated processing can

make multispectral imaging available to a wide range of researchers

and growers, who need such technology but cannot afford

expensive systems.

Some limitations of this image-based phenotyping approach are

associated with imaging of plants from above. The images largely

capture the properties of the cell layers near the top of the canopy. If

anthocyanins are present on the bottom side of leaves, imaging may

not detect them. In addition, the camera can only see one layer of

leaves and the system thus provides no information regarding lower

leaves if they are obscured by the upper leaves. Segmentation of

plant objects is also a prerequisite to obtain anthocyanin indices.

Finally, NDAI values, as well as other indices, are affected by the

spectrum of the light under which the images are taken. As long as

the light spectrum is the same for all images, calculated NDAI

values will still reflect differences in anthocyanin content. However,

if the light spectrum changes, this poses a challenge for comparing

NDAI values. This might be solved by in situ spectral calibration

procedures using an in-scene reference card (Davies et al., 2022).
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The monitoring of the anthocyanin content using NDAI has a

wide range of agricultural and ecological applications. Not

surprisingly, the optical properties of anthocyanins in fruit and

vegetative tissues are similar. Therefore, NDAI may be used to

assess ripeness of fruits that accumulate anthocyanins during

ripening, such as grapes and strawberries. Indeed, Underhill et al.

(2020) showed that the RGB color space differentiated variability in

grape skin color, associated with different anthocyanin

concentrations. Strawberries with higher concentrations of

anthocyanin had lower pixel intensities in the green spectrum

(the lowest intensity was near 530 nm) based on hyperspectral

imaging (Cho et al., 2021). Monitoring anthocyanins in fruits and

vegetables will be beneficial not only in assessing phenotypic

variation in anthocyanins in a non-destructive manner, but also

in automating post-harvest quality evaluation or for robotic

harvesting. Finally, the integration of NDAI phenotyping and

environmental control systems used in controlled environment

agriculture may be used for dynamic environmental control to

stimulate anthocyanin production in many vegetables and fruits.
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