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Stress response in plant is regulated by a large number of genes co-operating in

diverse networks that serve multiple adaptive process. To understand how gene

regulatory networks (GRNs) modulating abiotic stress responses, we compare

the GRNs underlying drought and cold stresses using samples collected at 4 or

6 h intervals within 48 h in Chinese bayberry (Myrica rubra). We detected 7,583

and 8,840 differentially expressed genes (DEGs) under drought and cold stress

respectively, whichmight be responsive to environmental stresses. Drought- and

cold-responsive GRNs, which have been built according to the timing of

transcription under both abiotic stresses, have a conserved trans-regulator and

a common regulatory network. In both GRNs, basic helix-loop-helix family

transcription factor (bHLH) serve as central nodes. MrbHLHp10 transcripts

exhibited continuous increase in the two abiotic stresses and acts upstream

regulator of ASCORBATE PEROXIDASE (APX) gene. To examine the potential

biological functions of MrbHLH10, we generated a transgenic Arabidopsis plant

that constitutively overexpresses the MrbHLH10 gene. Compared to wild-type

(WT) plants, overexpressing transgenic Arabidopsis plants maintained higher APX

activity and biomass accumulation under drought and cold stress. Consistently,

RNAi plants had elevated susceptibility to both stresses. Taken together, these

results suggested that MrbHLH10 mitigates abiotic stresses through the

modulation of ROS scavenging.

KEYWORDS

Chinese bayberry, ROS scavenging, abiotic stress tolerance, bHLH transcription factor,
gene regulatory networks
Introduction

A disturbance in the environment triggers rapid and global reprogramming of cells,

which requires the spatial and temporal coordination of multiple TFs (Zhang et al., 2019;

Zhou et al., 2021). Transcriptional regulation occurs on a multitude of time scales, from

minutes to days, making temporally dynamic patterns possible (Wang et al., 2021). The
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regulation of phytohormone signaling pathways, light-signaling

pathways, circadian clock regulation, and reactive oxygen species

homeostasis at the transcriptional, epigenetic, and post-

translational levels have been identified during environmental

stress including heat, drought and cold stress (Ohama et al., 2017;

Li et al., 2018; Ding et al., 2020).

In the presence of excess ROS, for example due to environmental

stress, the cells are subjected to oxidative conditions that are

detrimental to them (Wang et al., 2008; Kuge et al., 2010). H2O2,

as ROS, is an important indicator of the generation of ROS

(Bhattacharjee, 2012; De la Garma et al., 2015; He et al., 2018).

Thus, the maintenance of steady state ROS by scavenging routes is

necessary in order to prevent oxidative damage due to adverse

environmental stress (Mittler et al., 2004; Miller et al., 2010; Jiang

and Jie, 2002). The AsA-GSH cycle and Superoxide Dismutase (SOD)

are both essential for scavenging ROS (Shi et al., 2013; Hernández

et al., 2015). Superoxide dismutase (SOD) is the primary defense

mechanism against ROS in plants, and it converts superoxide to

oxygen (O2) and H2O2 at the molecular level (Huang et al., 2016; He

et al., 2018; Wang et al., 2021). In the AsA-GSH cycle, APX uses AsA

to reduce H2O2 to H2O (Hernández et al., 2015; Xing et al., 2018). In

previous studies, APX is present in many organelles as well as in the

cytosol. It has a unique ability to adapt to stress in various

environments. (He et al., 2018; Xing et al., 2018). For example, it

has been shown that overexpression of APX2 gene increases tolerance

to exogenous hydrogen peroxide and assists in ROS detoxification

under both stress and normal conditions in A. thaliana (Mittler et al.,

2006; Rossel et al., 2007).

bHLH superfamily, a TF family with a large number of

members, is prevalent throughout eukaryotes (Pires and Dolan,

2010; Sánchez-Pérez et al., 2019; Guo et al., 2021). In general, bHLH

is composed of about 60 amino acids and has two functional areas: a

base area with 13 to 17 predominantly base amino acids for DNA

binding, and an HLH area capable of forming a homodimer or

heterodimer with one or more partners. (Tian et al., 2019; Guo et al.,

2021). bHLH TFs are important regulators in controlling responses

to environmental stresses, development processes (Sun et al., 2020),

and the biosynthesis of secondary metabolites (Groszmann et al.,

2010; Zhao et al., 2020) by targeting dehydration and cold

responsive genes (Guo et al., 2021). In Arabidopsis, AtAIB (ABA-

inducible bHLH-type transcription factor), which enhance drought

tolerance, control stomatal closure by modulating stomatal

movement associated with H2O2 signalling (Cui et al., 2015; Li

et al., 2017). In wheat, CBF (ICE1, bHLH116), a MYC-type bHLH

TFs, was upregulated by cold stress and the knock-down bHLH116

seedling displayed reduced cold stress tolerance accompanied with

increased ROS levels and reduced antioxidant enzyme activities

(Guo et al., 2021). Extensive studies uncovered several downstream

genes of bHLH. For example, bHLH122, can directly bind to the

promoters of CYP707A3 gene, repressing its expression and

increasing the APX content. AtbHLH68, AtbHLH112 and

AtbHLH122, have been reported to control abiotic stress

responses by regulating the APX and ABA signaling pathway

genes in A. thaliana. These results indicate that bHLH genes play

important roles in plant abiotic stress tolerance through crossing

with phytohormone ABA and ROS scavenging pathway. However,
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the functional importance of bHLH gene in controlling plant

response to multiple abiotic stresses remains to be investigated

and the downstream genes extending the bHLH pathway

remain unclear.

The Chinese bayberry (Myrica rubra Sieb. and Zucc.), which is

widespread in tropical and subtropics, is one of the most important

sub-tropical fruit crops. It is also a good candidate for studying fruit

quality (Ren et al., 2019; Ren et al., 2021).M. rubra species are sensitive

to drought and cold stress, which will directly decrease the yield and

quality of M. rubra (Larcheveque et al., 2011; Windt et al., 2011).

Moreover, the whole genome of M. rubra will be helpful to study the

function genome and improve its genetics. (Ren et al., 2019). In this

study, we performed a time-course transcriptome investigation in

response to drought and cold stress, in an effort to identify the

potential multifunctional TFs involved abiotic stress in M. rubra.
Materials and methods

Plant materials

The 1-year-oldM. rubra seedlings were grown in a greenhouse

at Lanxi, Zhejiang Province, China (29.22 N, 119.45 E) (15.0 h

light, 22–25°C, 75% humidity). We watered the seedlings once a

day to maintain the optimum level of moisture in the field. In

order to carry out the cold-treatment, the plants in the treatment

group were transferred to the growing room (Sanyo) where they

grew under the same conditions as those of the control (He et al.,

2018). Three biological replicates were used for each group of

seedlings, with each group exposed to 4°C for 0, 30 min, 1, 3, 6, 9,

12, 24, 36, or 48 h in growth chambers (Sanyo). Treatment groups

were moved to Sanyo growth chambers with the same growth

conditions as those in the control group when performing drought

treatments. The seedlings were also divided into ten groups with

three biological replicates each, and seedlings from each group

were treated with 8% polyethylene glycol (PEG) for either 0,

30 min, 1, 3, 6, 9, 12, 24, 36 or 48 h in growth chambers

(Sanyo) at 23°C. Each of the three to five fully expanded leaves

of the seedling were measured.
Antioxidant enzyme and H2O2 assay

The pigment content and enzyme activity of M. rubra leaves

were determined immediately after freezing in liquid nitrogen at the

same time. In few words, 0.1 g of the leaf sample was frozen in liquid

nitrogen, homogenized in cold 0.01M phosphate buffer (1.5 mL, pH

7.2),and centrifuged at 14,000 grams for 10 minutes at 4°C for 10

minutes, and then Plant superoxide dismutase (SOD) Assay Kit

(Nanjing Jiancheng Bioengineering Institute, Jiangsu Province,

China) was used to measure the activity of SOD. First, 1.5 mL

reaction buffer (6.5 × 10-6 M riboflavin, 0.013 M met, 6.3 × 10-6 M

NBT, 1 × 10-4 M Ethylene Diamine Tetraacetic Acid (EDTA), 0.05

M phosphate buffer, pH=7.8) was added to the supernatant

followed by incubation at 25°C for 30 min, and absorbance at 560

nm was measured with a spectrophotometer. The activity of
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malondialdehyde (MDA) was measured in accordance with the

manufacturer’s specification using Catalase Assay Kit (Nanjing

Jiancheng Bioengineering Institute). Using a plastic pestle and an

ice-cold 0.01 M phosphate buffer (pH 7.2) with 1.13 mg

dithiothreitol, the leaf specimens were crushed in a micro-

centrifuge. A centrifuge was used for 10 minutes at 4°C, weighing

14,000 g. We assayed the supernatant for MDA activity by

measuring the linear rate of decrease in absorbance at 240 nm

with a spectrophotometer. For APX and peroxidase (POD) activity,

0.1 g samples of leaves were homogenized in 1.5 mL ice-cold 0.01 M

phosphate buffer (pH 7.2) for 30 min and centrifuged at 14,000 g for

10 min at 4°C. A Plant APX and POD Assay Kit (Nanjing Jiancheng

Bioengineering Institute) were used to measure APX and POD

activity in the supernatant. The supernatant was added to a mixture

of 0.5 mL 0.1 M phosphate buffer, 0.5 mL 0.1 M guaiacol buffer and

incubated at 30°C for 8 min. The absorbance of the sample at 470

nm was measured with an optical spectrophotometer.
RNA-sequencing and data analysis

In the case of drought and cold-stress, the 3rd to 5th leaves of M.

rubra were picked up, then frozen in liquid nitrogen, and kept at -80

degrees Celsius until application. According to the manufacturer’s

guidelines, RNeasy Kit (Qiagen) was used to extract the total RNA.

NanoDrop ND-2000 (A260/A280 1.9-2.1) and Agilent 2100

bioanalyzer (28S/18S 1.8-2.0) were used for the determination of

RNA quality. A strand-specific RNA-seq library was constructed on

an Illumina HiSeq 4000 platform according to the manufacturer’s

instructions and index codes. The Beijing Novogene Technologies

performed the construction of the libraries and the paired-end

sequencing. Following quality control and removal of adapter-and

poly(N)-containing reads, clean reads acquired after mapping on the

reference genome of M. rubra (http://www.bayberrybase.cn/) were

analyzed (http://www.bayberrybase.cn/) as previously described (Ren

et al., 2019) with TopHat (v. 2.0.0) with default parameters (Trapnell

et al., 2009). Transcript levels were normalized based on FPKM with

Cufflinks (v. 2.1.1) with default options (Trapnell et al., 2012). It was

considered significant that genes with P-value<0.05 (adjusted for the

false discovery rate, Q-value< 0.05) and >2-fold change were

differentially expressed.
Functional enrichment analysis
and visualization

A GO analysis was performed on DEGs and a GO annotation

was obtained from M. rubra (http://www.bayberrybase.cn/) (Ren

et al., 2019). The result of the GO enrichment analysis along with

the P-value modified using the Benjamini and Hochberg (1995)

FDR method were input into OmicShare platform (https://

www.omicshare.com/tools), and created a visual tree map of the

outcome of the GO analysis. Significant enrichment of GO terms

with corrected P value < 0.05 and Q value < 0.05 was observed.
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Measurement of tissue specificity

The tissue specificity score was calculated as previously

described (Liao and Zhang, 2006). The tissue specificity score was

generated as follows in order to further quantify the tissue

specificity of gene expression: n represents the sum of tissues, aij

is the mean expression of the gene i in tissue j, and the tissue

specificity of the gene i is defined as:

Ti =
1
n-1o

n
j=1(1 −

aij
(aij)max j

)

Construction of a multi-layered
hierarchical gene regulatory network using
the BWERF algorithm

Using PlantPAN v.2.0, it was determined that cis-regulatory

elements were found in the 2 kb promoter region of the candidate

genes (Chow et al., 2016; Xu et al., 2022). It was predicted that these

motifs are TF target sites based on 80% confidence values. Then, a

backward elimination random forest (BWERF) algorithm is

employed to construct ML-hGRNs, which uses the genes and TFs

encoding transport, photosynthesis and oxidoreductases (Deng

et al., 2017; Xu et al., 2022).
Phylogenetic and bioinformatics analyses

ExPASy (http://web.expasy.org/computepi/) was used for the

analysis of the isoelectric point (pI) and the molecular weight of the

bHLH protein (Kumar et al., 2018). In order to analyze genetic

variation and phylogenetic relationships, a plurality of sequence

alignment of bHLH protein sequences was performed in MEGA 7

(Kumar et al., 2018). To deal with the gaps and lack of data, we

chose a partial deletion with an 80% coverage limit. Therefore,

Jones-Taylor-Thornton (JTT) + (G) + (F) was chosen as the

optimum amino acid replacement model. The Maximum

Likelihood (ML) method in MEGA 7 was utilized to construct a

phylogenetic tree of protein sequences with 1000 bootstrapping

replicas (Kumar et al., 2022). For all positions, 90 per cent of the site

coverage was removed; in other words, no more than 10 per cent of

the alignment space, no data, and no clear basis were permitted. A

phylogenetic tree was visualized using Figtree software (http://

tree.bio.ed.ac.uk/software/figtree/).
Plasmid construction and A. thaliana
genetic transformation

Generic transformation, cloning and expression analysis were

carried out on A. thaliana seedlings at long time (16 hours/8 hours

darkness) to produce overexpression and RNAi lines (Quan et al.,

2021; Zhang et al., 2022). With the help of gene-specific primers, we
frontiersin.or
g

http://www.bayberrybase.cn/
http://www.bayberrybase.cn/
http://www.bayberrybase.cn/
https://www.omicshare.com/tools
https://www.omicshare.com/tools
http://web.expasy.org/computepi/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://doi.org/10.3389/fpls.2023.1155504
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2023.1155504
cloned the full-length coding region of MrbHLH10 gene from a M.

rubra clone template cDNA. During the process of cloning the full-

length gene, the coding region of MrbHLH10 gene was cloned into

pDONR222 vector. Subsequently, LR reactions were employed to

re-sequence the encoding area and target vector pGWB405 in

accordance with Nakagawa et al. (2007), verified by sequencing.

Two kinds of vector were introduced to Agrobacterium GV3101 via

Agrobacterium-mediated transformation together with gene

silencing inhibitor P19, and then transformed into Nicotiana

benthamiana based on previous study (Zhang et al., 2022). The

Agrobacterium-mediated floral dipping approach was used to create

transgenic A. thaliana seedlings (Wang et al., 2022). Transgenic

plants were confirmed by PCR analysis using vector- and gene-

specific primers in Table S1.
Measurement of the physiological
characteristics of transgenic plants

On a plate containing 1% sucrose and ½×MS medium (0.1 mM

MgSO4, 0.1 mM CaCl2, 0.6 mM NaCl, and 0.3 mM ZnSO4), seeds of

WT and transgenic A. thaliana were grown. The germination count

was calculated up to the 5 days (d) after stratification (nearly emerged

radicle). Based on the prior research, we obtained the germination

rate (GR) by the number of seeds on each side of WT A. thaliana and

transgenic plants (Quan et al., 2020; Zhang et al., 2022). Leaf

physiological traits were measured in mature leaves of WT and

transgenic A. thaliana seedlings at 20 days after germination

(DAG). Seedling length of A. thaliana was calculated by ImageJ

software (https://imagej.en.softonic.com/) (Banugopan et al., 2012).
Statistical analyses

The statistical significance of treatment differences was assessed

with either one way or twoway analysis of variance, with SPSS 17.0

(IBM, Chicago, IL, USA) and Excel 2013 (Microsoft Corp.,
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Redmond, WA) on the basis of prior research (Xu et al., 2022).

For the calculation of P values, the Students’t test (* P < 0.05, * * P <

0.01) was adopted. After normalization, all samples had a normal

distribution with respect to variance homogeneity (Xu et al., 2022).
Results

Physiological and transcriptomic changes
response to drought and cold stress

In order to determine the effects of drought and cold stress on

physiological activity, we first examined the activity of SOD, POD,

MDA, APX, CAT and H2O2 under drought and cold stress. As

expected, the activity of SOD, POD, MDA, APX, CAT and H2O2

showed an overall increase during the drought and cold treatment

(Figures 1A–H). For example, under drought stress, the activities of

SOD, MDA, APX and CAT and H2O2 increased significantly from 6

to 36 h (Figures 1B–D); the activities of SOD, MDA and APX

peaked at 36 h, 36 h and 12 h, respectively (Figures 1B, C). By

contrast, the activities of SOD and APX peaked at 12 h after cold

treatment (Figures 1B, D). Interestingly, the activities of APX and

MDA were positively correlated with each other (P>0.05, R>0.6)

under the two stresses. Totally, the anti-oxidant enzyme activities

were strongly induced under drought and cold stress.

To identify the stress-responsive genes under both stresses, we

sequenced the total RNAs of the leaf tissues across all the time

points. A total of 7,583 and 8,840 differentially expressed genes

(DEGs) were obtained under drought stress and cold stress,

respectively (Fold Change>2 and FDR < 0.01) (Figure 2A; Table

S1). To gain insight into the transcriptome dynamics under the two

stresses, we performed principal component analysis (PCA;

Figures 2B, C). As a result, the transcriptome data can be

generally divided into four and two clusters under drought and

cold stress, respectively (Figures 2B, C). Consistent with this, a

previous study reported that abiotic stress response in higher plants

occurs in different phases (Wu et al., 2021). Notably, the cold-
A B D

E F G H

C

FIGURE 1

Temporal dynamics of M. rubra physiological characteristics during drought and cold treatment. Peroxidase (POD) activity (A), superoxide dismutase
(SOD) activity (B), MDA (C) and APX content (D), in M. rubra under drought stress. Peroxidase (POD) activity (E), superoxide dismutase (SOD) activity
(F), MDA content (G) and APX content (H), in M. rubra under cold stress. (*P < 0.05, **P < 0.01, Student’s t-test).
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responsive transcription profile was clearly divided into two phases,

and the majority of cold-responsive DEGs were induced in the

second phase timepoint from 24 to 48 h (Figure 2D). By contrast,

there were only <1500 DEGs in the first phase (0 to 24 h. The fewer

DEGs within the early response might be reminiscent of M. rubra

species that lived in freezing environment (under 4°C) with

consistent cold pressure (Ren et al., 2019).

The GO analysis of the drought and cold-response genes

showed that there were 251 and 227 significant enrichment terms

(P<0.001). The upregulated DEGs under drought stress were

enriched for terms including “response to hormone-mediated

signaling pathway,” “oxidoreductase activity,” “photosynthesis,”

“transcription factor activity,” “abscisic acid biosynthetic process,”

and “ABA signal transduction pathway” (Table S3). By contrast,

upregulated cold-responsive DEGs were enriched for terms of

photosynthesis, response to “oxidoreductase activity,”

“photosynthesis,” “external biotic stimulus,” “transcription factor

activity,” “transcription regulation,” “calcium-binding,” “DNA

binding,” and “serine/threonine kinase activity” (Table S3). These

indicates that the patterns of the functional shifts were consistent

with the physiological changes under the two stresses.
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Conserved and divergent dynamic
transcription profile between the two
abiotic stresses

To examine the shared and unique transcriptomic network

under drought and cold stresses, DEGs were clustered into 20

dynamic groups by using K-means clustering algorithm (Wu et al,

2021). The ten largest dynamic groups in response to drought and

cold stress contained most of the stress-responsive DEGs—83.4%

(3,142 drought-responsive genes) and 88.7% (4,108 cold-responsive

genes) respectively (Figure 3A). The genes in the D2, D3, C3, C9,

and C10 groups were continuously down- or up-regulated under

both stresses (Figure 3A). On the other hand, the D1 and C2 groups

were observed to have transient changes in gene expression at

earlier timepoints, presumably in response to early stress. Thus, the

groups with similar expression dynamics probably kept similar

biological processes regardless of the stress they were exposed to.

Under the two types of stress, the D4 and C4 groups with transient

gene expression peaks at 36 hours showed a higher level of

photosynthetic gene accumulation (Figures 3A, B). Likewise, the

D3 and C7 groups that showed an increasing tendency to continue
FIGURE 2

Temporal dynamics of M. rubra transcriptome during drought and cold treatment. (A) Venn diagrams of DEGs overlapping between drought stress and
cold stress. DEG indicates dfferentially expressed gene. (B) PCA of the transcriptomes of the 8 time point samples under drought stress and (C) cold
stress. (D) Number of drought-responsive (upper bars) and cold-responsive (lower bars) genes at each time point compared to the control group (0 h).
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showed oxidoreductase activity, as well as the genes associated with

abiotic stress reaction (Figures 3A, B). These GO terms are

consistent with the early and late physiological changes, which

were observed in plant cells under drought and cold stress (Muns

et al., 2007; Guo et al., 2021). This similarity in biological functions

indicates that abiotic stress-response genes have maintained

conserved expression dynamics.

Our objective was to gain insight into the regulatory mechanism

underpinning drought and cold stress by using hierarchical clustering

(Figures S1, S2). Under drought and cold stress response, the

hierarchical clustering network consist of differentially expressed

genes with 6 cluster (DI-VI) and 4 cluster (CI-IV) (Figures S1, S2),

respectively. Cluster enrichment analyses revealed that, despite the

presence of multiple metabolic pathways, some patterns could be

discerned in a single cluster. For example, in drought stress response,

genes involved in “membrane,” “abiotic stress stimulus,”

“oxidoreductase activity,” “response to abiotic stress,” “response to

stress,” “ADP metabolic process,” and “oxidation-reduction process,”

were mainly enriched in cluster D-III, which exhibited an increasing

trend from 12 to 36 h, indicating that membrane biosynthesis, ADP

metabolic process and oxidoreductase activity pathways are enhanced

in response to drought stress (Figure S1). In cold stress response, genes

involved in “oxidoreductase activity,” “abiotic stress stimulus,”

“antioxidant activity,” “photosynthesis,” and “plant-pathogen

interactions” were enriched in cluster C-IV and exhibited an

increasing trend from 0 to 12 h, suggesting active ROS scavenging.

DEGs involved in “response to abiotic stimulus” and “organic

substance biosynthetic process,” and “response to cold,” were

enriched in cluster C-II and showed continuously decreasing trends

to 48 h (Figure S2). As a result of drought and cold stress, M. rubra

exhibits early and late physiological changes that are consistent with

these two GO terms.
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Transcriptional regulatory networks
involved in drought and cold stress

Expression dynamics are conserved, indicating that some

regulators are common to both early and late responses in two

abiotic stresses (Wu et al., 2021). Gene expression profiles under

abiotic stress were sample-specific for TFs, which dominated the

network rather than other genes (Yin et al., 2019; Wu et al., 2021).

In our current research, a total of 1,923 and 1,731 stress-

responsive TFs were identified under drought and cold stress,

respectively, 26.6% (548) of which are stress-conserved TFs

(Figure 4A). TFs had more sample-specific expression profiles

under different abiotic stresses (Wu et al., 2021), and the number

of stress-responsive TFs increased significantly across the

samples in our study (Figure 4B). Specially, TF families of

bHLH, MYB, ethylene responsive factor (ERF), MYB, WRKY,

and NAM, ATAF, and CUC (NAC) showed one of the highest

enrichments under drought and cold stress (Figure 4B). The

bHLHs proteins, for instance, form a large family of plant-

specific TFs that play an important role in plant defense and

biotic and abiotic stresses (Yoda et al., 2002; Journot-Catalino

et al., 2006; Zheng et al., 2006; Liu et al., 2007). Interestingly, the

transcription of MrbHLH18, MrbHLH31, MrbHLH10 and

MrbHLH75 increased significantly under both drought and cold

stress, which are grouped in cluster D3 and C7 related to response

to abiotic stimulus and oxidoreductase activity in both

abiotic stresses.

To further examine the potential regulatory relationships, we

constructed gene regulatory network (GRN) that interlinks TFs

with their potential target genes (PTGs) based on the expression

data and examined the presence of MrbHLH10 potential TF

binding site (TFBS) to verify the GRN (Figure 4C). As a result,
BA

FIGURE 3

Temporal dynamics of M. rubra transcriptome during drought and cold treatment. (A) Expression dynamics of the 20 largest gene clusters over time
under drought (D1–D20) and cold stress (C1–C20). (B) GO terms enriched in DEGs, with red indicating more significant enrichment (–log10(P-
value)). The heatmaps show enriched GO terms detected in temporally dynamic groups of both drought and cold stress from 1 to 48 h.
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totally 227 TF-PTG pairs were identified, and we observed that

MYBs, WRKYs, bHLHs and ERFs which targeted large numbers of

genes (twenty or more target genes from each TF as indicated by

solid or arrows line, Figure 4D). Notably, MrbHLH10 regulated 39

downstream ROS signaling pathway genes, and clear functional

associations were observed in both stresses—MrbHLH10 were

connected to APX (GENE_006840) gene (Figures 4E, F; R > 0.6;

P <0.05), while multiple previously stress-responsive gene, such as

WRKY21 (Zhang et al., 2017) and MYB6 (Li et al., 2020) were also
Frontiers in Plant Science 07
associated with MrbHLH10 (Figures 4E), indicating a role as the

master regulators under the cold and drought stress.
Molecular characterization of MrbHLH10

The bHLH superfamily, one of the largest TF families, is

widespread in eukaryotes (Pires & Dolan, 2010). Among the

amino acid sequences of the MrbHLH proteins, there is a high
B C

D E F

A

FIGURE 4

Gene regulatory networks of drought and cold-responsive transcriptional modulators. (A) Venn diagrams of TFs overlapping between drought stress and
cold stress. (B) Enrichment (–log10 (P-value)) of TF families in timepoint (0–48 h) under drought stress (left) and cold stress (right). The number
represents the number of differentially expressed TF genes. The heatmap presents TF families enriched in at least one of 20 groups. (C) Bioinformatic
analysis of bHLH Binding Site (TFBS) Motifs based on PlantTFDB database (http://planttfdb.gao-lab.org/). (D) Gene regulatory network of photosynthesis,
oxidoreductase activity and membrane regulation under drought stress and cold stress. (E) Coexpression network of genes that are differentially
expressed under drought stress and cold stress (F) treatment in M. rubra at different timepoints.
B

CA

FIGURE 5

Bioinformatics analysis of bHLH gene (A) Domain architecture analysis of MrbHLH protein. (B) Multiple amino acid sequence alignment of bHLH10
from M. rubra, O. sativa, P. trichocarpa and A. thaliana. (C) Phylogenetic analysis of bHLH homologs from M. rubra, O. sativa, P. trichocarpa and A.
thaliana. Scale bars, 0.2.
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conservation domain comprising 60 amino acids with two distinct

functional areas (Figure 5A). The base region, which is located at

the N-terminal end of the domain, participates in DNA binding, is

composed of 15 amino acids with many base residues (Tian et al.,

2019). The MrbHLH10 coding sequencing (CDS) is 1,483 bp long,

encoding 493 amino acids and having a molecular mass of ~54 kD

and an isoelectric point of 5.42 (Table S6). The multiple amino acid

sequence alignment and a phylogenetic tree indicated that the

bHLH protein sequences from multiple species consist of the

same conserved domains (Guo et al., 2021) (Figures 5B, C).

Therefore, MrbHLH10 and ATbHLH10 might have the same

biological function, which has been demonstrated to respond to

various abiotic stresses (Guo et al., 2021).

In order to probe into the potential biology function of

MrbHLH10 gene in M. rubra, we made a deep analysis on the

expression mode of bHLH. Notably, a total of 241 MrbHLH

members are detected in M. rubra, which show four major

expression patterns (Figure S3). MrbHLH10 showed different

expression patterns in 12 of the selected organs or tissues (Figure

S3), for instance, the expression profiles of bHLH10 gene in the

branch, xylem and mature leaf show similar trends, and expression

patterns in the young leaf, phloem and petiole grouped in one
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cluster (Figure S3), indicating that bHLH10 gene regulate plant

growth and stress response in M. rubra.
MrbHLH10 promotes APX and
ROS scavenging in response to
environmental stresses

To investigate the potential function of bHLH10 in the response

to enviromental stresses, we generated transgenic A. thaliana

seedl ing overexpressing (OE) and RNAi bHLH10 via

Agrobacterium tumefaciens-mediated transformation (Figure 6A)

(Zhang et al., 2022). Compared to the WT and RNAi line, the OE

line had a significantly longer root length and heavier fresh weight

increased by 22.9% and 62.8% respectively under normal condition

(P<0.05; Figure S3), indicating that MrbHLH10 gene is implicated

in plant growth (Figures 6A–C).

Compared with WT and RNAi lines, the primary root length of

OE was obviously increased (P<0.05; Figure 6D). After 7 days of

treatment at 4 °C, the WT and RNAi lines showed a significant

increase in the primary root length of OE line compared with WT

and RNAi (P<0.05; Figure 6G), indicating that bHLH10 can
B C

D E F

G H I

A

FIGURE 6

MrbHLH10 expression in response to drought and cold stress. (A) Time course of MrbHLH10 expression in A. thaliana exposed to drought and
cold stress on standard ½ MS medium. (B) Root length and (C) fresh weight of wild-type (WT), MrbHLH10-OE and MrbHLH10-RNAi lines grown
on standard ½ MS medium for 1 weeks. (D) Time course of MrbHLH10 expression in A. thaliana exposed to drought stress on standard ½ MS
medium with 8% PEG for 1 weeks. (E) Root length of wild-type (WT), MrbHLH10-OE and MrbHLH10-RNAi lines grown on standard ½ MS
medium with 8% PEG for 1 weeks. (F) APX content in leaves of wild-type (WT), MrbHLH10-OE and MrbHLH10-RNAi lines grown on standard ½
MS medium with 8% PEG for 1 weeks. (G) Time course of MrbHLH10 expression in A. thaliana exposed to drought stress on standard ½ MS
medium with 4 °C for 1 weeks. (H) Root length of wild-type (WT), MrbHLH10-OE and MrbHLH10-RNAi lines grown on standard ½ MS medium,
with 4 °C for 1 weeks. (I) APX content of wild-type (WT), MrbHLH10-OE and MrbHLH10-RNAi lines grown on standard ½ MS medium, with 4 °C
for 1 weeks. Data are presented as means ± SD (n = 3). (*P < 0.05, **P < 0.01, Student’s t-test).
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positively increase the growth of plants under drought and cold

stress. Ascorbate peroxidase (APX) maintain cellular ROS

homeostasis and is major ROS scavengers (Xing et al., 2018;

Wang et al., 2021). APX activity were measured in OE, RNAi and

WT line. Total APX activity was strongly induced, and OE line

showed distinctly APX activity higher than WT plants and RNAi

line respectively under drought and cold stress (P<0.05; Figures 6F,

I). Thus, bHLH10 could be used as an indirect way to improve

drought and cold-tolerance by keeping ROS in a stable state.
Discussion

Presence of conserved gene
regulatory network in response
to environmental stresses

The improvement of the plant’s ability to withstand many kinds

of stress is one of the fundamental objectives of breeding. It is of

great importance to enhance the comprehensive resistance of plants

by means of core functional genes in molecular breeding. (Hu et al.,

2017; Xu et al., 2023). In this study, we constructed a high-

temporal-resolution dynamic transcriptome landscape of drought

and cold stress responses using nine time points. The dynamic

transcriptome profiles were clealy grouped into four and two stages

within the drought and cold stress response respectively, indicating

the early-responsive and late-responsive phase (Hickman, 2017; Wu

et al., 2021). We found there were 7,453 and 9,614 genes mainly

expressed at the stages of early- and late-responsive phase

respectively. Biological processes in the K-Means groups with

similar expression dynamics were probably maintained across the
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two types of abiotic stresses. It is also possible that there are

common regulators of early and late responses in both stressors

due to the conserved expression dynamics. Specifically, we have

identified 2,311 stress-conserved genes, among them 548 TFs,

which will undoubtedly become the goal of functional genomics

in the future. Because of this vast array of genes, we will be able to

carry out further functional research, which will significantly

improve our knowledge of the genetic mechanisms that govern

the response to environmental stresses.

The TFs of bHLH, MYB, NAC, WRKY and ERF are known to

regulate stress-responsive genes (He et al., 2018; Wu et al., 2021).

Some TFBSs, which were enriched in the promoter, were related to

the up-regulation of TF genes. The bHLH TF gene and some bHLH

binding sites were significantly enriched (Guo et al., 2019; Yu et al.,

2021). Therefore, transcriptomic regulation during salt stress in M.

rubra is mediated by dynamic regulation of bHLHs and other TFs.

In A. thaliana, these TFs are also associated with a cold stress

response (Xu et al., 2014; Guo et al., 2021; Yu et al., 2021). In

addition, bHLH genes function in leaf formation and growth as well

as heat and drought stress responses (Khadiza et al., 2017; Zhao

et al., 2021), indicating that in the two main dicotyledons and

probably in other plants, bHLH orthologues are thought to confer a

stress-tolerance mechanism.
bHLH is implicated in environmental
stresses tolerance and plant growth

To adapt to abiotic stress conditions including extreme

temperatures (heat and freezing), plants regulate a series of genes,

so as to form a GRN in previous study (Guo et al., 2021; Jia et al.,
FIGURE 7

A potential working model for bHLH10 response to abiotic stresses in M. rubra. Under drought and cold stress, activating the environmental stresses
signaling pathway and stimulating downstream stress signal transduction in plant cells, the upregulated bHLH10 acts upstream of APX and directly
regulates its expression by binding to the E-box motif of its promoter. The activated APX then promotes cytosolic ascorbate peroxidase
accumulation to scavenge ROS content under environmental stresses.
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2022). In the absence of a central trans-regulator gene, a GRN could

be deleted completely or network connectivity could be reorganized

(Wu et al., 2021; Xu et al., 2022). However, there is still little

investigation on the construction of GRNs in response to abiotic

stresses combination (Reményi et al., 2004; Song et al., 2016;

Vihervaara et al., 2018).

Systemic signaling in plants during abiotic stress combination

(Zandalinas et al., 2020). In the bHLH10-mediated GRN, direct

target genes including MYB6, WRKY41, TCP4, CYP1, STZ and

APX1 were identified. In O. sativa, overexpression of OsbHLH148

gene increases the plant’s drought tolerance by regulating the JA

pathway and the expression of OsJAZ protein (jasmonate ZIM

domain) (Seo et al., 2011). With the expression of MfbHLH38 gene

from resurrection plants (Myrothamnus flabellifolius), transgenic

Arabidopsis has improved water retention and drought tolerance, as

well as the increase of their oxidative stress tolerance and osmotic

regulatory ability, which is associated with the ABA response and

elevated ABA content. In our study, multiple target genes of

bHLH10, such as APX1 and WRKY41 were known to function in

ROS scavenging and ABA signal processes (Reményi et al., 2004;

Song et al., 2016; Vihervaara et al., 2018). In addition, recent studies

showed that AtSTZ, a downstream transcription repressor,

enhances abiotic stress tolerance after growth delay in Arabidopsis

(Park et al., 2015; Sakamoto, 2004), may be regulated by MAP

kinases in Arabidopsis (Nguyen et al., 2016). CYP1 mediate the last

steps of auxin biosynthesis, as well as root growth inhibition in

response to stress (Rodrıǵuez et al., 2010).

The bHLH TFs are also involved in the course of development

and growth, including the germination of seeds and the

development of root, epidermis, xylem, carpels, anthers, fruits and

stomata (Groszmann et al., 2010; Guo et al., 2021). In our study,

root length significantly increased 131%, 114% and 78% in the

MrbHLH10-OE line compared to the WT under drought, cold and

normal condition respectively. Currently, there is evidence that

bHLHs directly regulate cytokinin synthesis genes or cytokinin

degradation genes such as CKXs (Hezhong et al., 2008; Hozain

et al., 2012). bHLH10 may directly regulate MrCKX by GRN

analysis, enhancing root development and cell division in root of

OE plants, in agreement with prior reports (Hezhong et al., 2008).

In contrast to other stress-tolerant genes like MYB6, DREB2C,

WRKY45, and AtSAP5 (Lim et al., 2007; Hozain et al., 2012),

overexpression of bHLH10 gene enhances plant growth and

environmental stresses tolerance.
MrAPX1 may be a key downstream gene
involved in ROS scavenging

Excess ROS, for example, caused by environmental stresses,

such as heat, salt, cold, and drought stress, results in oxidative

conditions that are detrimental to plant cells (Wang et al., 2008; He

et al., 2018). In response to environmental stresses, plants

accumulate cryoprotectant molecules such as soluble sugars, sugar

alcohols, and low-molecular-weight nitrogenous compounds
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(proline and glycinebetaine; Zhuo et al., 2017; He et al., 2018;

Xing et al., 2018), and activated antioxidant defence systems which

include MDA, CAT, SOD, POD and APX (He et al., 2018; Wang

et al., 2021; Xie et al., 2018; Zhuo et al., 2017). These antioxidative

enzymes can suppress ROS accumulation in plant cells due to

environmental stress (Wang et al., 2021; Wu et al., 2018). The cycle

of AsA-GSH and SOD is of great significance to the scavenging of

ROS (He et al., 2018; Shi et al., 2014). SOD acts as a first defence

mechanism for ROS, it catalyzes the conversion of oxygen ions (O2
-

) into oxygen (O2) and hydrogen peroxide (H2O2) (Huang et al.,

2016; He et al., 2018), in the AsA-GSH cycle, AsA reduces H2O2 to

water (H2O) (Xing et al., 2018). Our findings indicate that bHLH10

may activate stress-responsive gene including APX1 to modulate

ROS accumulation under environmental stresses by GRN analysis.

Further physiological analyses support this hypothesis, activities of

APX increased in transgenic plants under normal, cold and drought

stress conditions in our study. In previous study, APX subtypes are

present in a variety of organelles as well as in the cytosol, whose

adjustment modes differ under environmenta stress conditions (He

et al., 2018; Xing et al., 2018). Recent studies shown that APX1 is

induced by heat, cold, drought and H2O2 stresses, and APX genes

confer tolerance to various abiotic stresses when overexpressed in

transgenic plants (Wang et al., 2016; He et al., 2018; Wang et al.,

2020). Absence of cytosolic APX1 in Wassilewskija background

results in a breakdown of the H2O2-scavenging system in

Arabidopsis chloroplasts, causing an increase in H2O2 and protein

oxidation (Davletova et al., 2005). A knockout of APX1 also

significantly inhibits Arabidopsis growth and development,

leading to increase sensitivity to oxidative stress, stunted growth

and delayed flowering (Davletova et al., 2005; Miller et al., 2007; He

et al., 2018). In Populus, activated PeAPX1 promotes cytosolic APX

that scavenges ROS under cold and heat stress, and transgenic

Populus overexpressing PtAPX1 showed increased cold tolerance

and led to lower MDA and H2O2 levels in leaf and roots, resulting in

higher plant height and root biomass under cold stress,

phenocopying the MrbHLH10 OE plants in our study (He et al.,

2018; Zhou et al., 2020; Guo et al., 2021).

In this study, we present a systematic review of ROS scavenging

regulation first, as well as the complex GRNs that accompany it, and

such networks have an essential role to play in understanding plant

responses to environmental stresses. Together, the results show that

MrbHLH10, a versatile TF, can increase environmental stresses by

regulating the expression of MrAPX1, a direct downstream gene,

which in turn keeps ROS stable (Figure 7). These results indicate

that over-expression of bHLH10 can enhance the antioxidative

function of transgenic plants, which might be helpful to prevent

hyperosmolar and excess ROS due to environmental stresses.
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