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Purple corn (Zea mays L.) is a special variety of corn, rich in a large amount of

anthocyanins and other functional phytochemicals, and has always ranked high

in the economic benefits of the corn industry. However, most studies on the

stability of agronomic traits and the interaction between genotype and

environment in cereal crops focus on yield. In order to further study the

accumulation and stability of special anthocyanins in the growth process of

purple corn, this review starts with the elucidation of anthocyanins in purple

corn, the biosynthesis process and the gene regulation mechanism behind them,

points out the influence of anthocyanin metabolism on anthocyanin metabolism,

and introduces the influence of environmental factors on anthocyanin

accumulation in detail, so as to promote the multi-field production of purple

corn, encourage the development of color corn industry and provide new

opportunities for corn breeders and growers.
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1 Introduction

Cereals are an important dietary resource for humans (Ciudad-Mulero et al., 2019; Guo

et al., 2022). As one of the three major food grains in Asia, maize is the main source of food

security and economic development in Sub-Saharan Africa, Latin America and the

Caribbean (Grote et al., 2021; Soto-Gómez and Pérez-Rodrıǵuez, 2022). With the

increasing relentless pursuit of health in modern society, foods with high bioactive

content have become popular. Purple corn stands out with its extremely high

anthocyanin and phenolic compound content, and has attracted increasing attention

(Lao et al., 2017; Colombo et al., 2021; Guo et al., 2021; Tiozon et al., 2022). As the main

producer and exporter of purple corn in the world, Peru’s purple corn production accounts

for about 23% of the total domestic corn production (Data of Ministry of Agriculture and

Irrigation of Peru; Ritchie et al., 2022). On the one hand, purple corn has a wide range of

industrial uses and can be used as photosensitizers for solar cells (Barba et al., 2022),

natural colorants (Chatham et al., 2019; Cruzado et al., 2022), ethanol fuels (Somavat et al.,

2018; Li et al., 2019; Ruan et al., 2019), etc. On the other hand, the antioxidant effect of

anthocyanins attracted the attention of researchers earlier (Lieberman, 2007; Bendokas

et al., 2020). Corn anthocyanins have antioxidant capacity and other biological effects. The

anthocyanins in purple corn have a greater ability to scavenge free radicals than common
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antioxidants (Brewer, 2011), such as butylated hydroxyanisole

(Felter et al., 2021), vitamin E (Blaner et al., 2021), catechin

(Coșarcă et al., 2019) and quercetin wait (Xu et al., 2019). About

35.6-54.0% of the anthocyanins in purple corn are acylated, which

has a positive effect on maintaining in vitro stability (Jing et al.,

2007; McDougall et al., 2007), when the redox balance in the

organism exceeds the capacity of the endogenous antioxidant

defense system due to the excessive formation of free radical

molecules, it can be used as a kind of exogenous antioxidant

(Magaña Cerino et al., 2020). The antioxidant activity of phenolic

compounds including anthocyanins increased with the maturity of

purple corn, which was largely attributed to the change of its

structure rather than its content (Hu and Xu, 2011; Harakotr

et al., 2014). Therefore, anthocyanins in mature purple corn have

rich nutritional and disease prevention value (Kang et al., 2012;

Petroni et al., 2014; Gálvez Ranilla, 2020; Lee et al., 2020). Such as

protecting cells (Hong et al., 2013; Poorahong et al., 2021),

preventing cancer (Shi et al., 2021; Bars-Cortina et al., 2022; de

Arruda Nascimento et al., 2022; Mottaghipisheh et al., 2022),

preventing cardiovascular diseases (Wongsa, 2020; Dong et al.,

2022; Miladiyah and Nuryadi, 2022) and improving eyesight

(Ghosh and Konishi, 2007; Tandon, 2022).

To study the biological mechanism of special components in

purple corn and provide new ideas for its cultivation and harvest

has always been one of the research directions for scholars to

promote the special crop industry (Escribano-Bailón et al., 2004;

Zhang et al., 2019; Ranilla et al., 2021; Sunil and Shetty, 2022). Corn

contains many secondary metabolites such as carotenoids and

phenolic compounds (Acosta-Estrada et al., 2019; Tayal et al.,
Frontiers in Plant Science 02
2020; Lee et al., 2021). Phenolic acids and flavonoids, as common

phenolic compounds in corn kernels, exist in free, esterified

(covalently bound with other molecules) and insoluble bound

forms (Chen et al., 2021). As a member of the flavonoids family,

anthocyanins are derived from the different degrees of

hydroxylation and methoxylation of the flavin skeleton (ie, 2-

phenylbenzopyran) (Ma et al., 2018; Alvarez-Suarez et al., 2021).

Simple or acylated anthocyanins are mainly found in the aleurone

layer of corn endosperm or pericarp and can greatly affect the color

of the kernel (Pozo-Insfran et al., 2007; Žilić et al., 2016).

Thapphasaraphong et al. (2016) found that cyanidin-3-glucoside

is the most important anthocyanin component in grain by thin

layer chromatography analysis. In addition, due to the high content

of functional pigments in corn in inedible husks, cobs and silks, for

example, the anthocyanin content in corn husks is between 17.3%

and 18.9% of the dry weight, which is about 10 times the current

standard purple corn kernel content of 1.78%, the by-products of

purple corn have also been selected as potential sources for

extracting anthocyanins (Li et al., 2008; Yang et al., 2008; Deineka

et al., 2016; Chaiittianan et al., 2017). The anthocyanins in different

tissues of different types of purple corn are shown in Table 1.

In addition, the anthocyanin composition and total phenolic

content of purple corn samples under different planting conditions

were highly variable, the monomeric anthocyanins content ranged

from 290 to 1333 mg/100g cyanidin 3-glucoside equivalents of

drymatter, while the total phenolic content ranged from 950 to 3516

mg/100g of dry matter as gallic acid equivalents (Jing et al., 2007).

This is due to the fact that various factors can affect the

accumulation and stability of anthocyanins, including genetics
TABLE 1 Anthocyanin content in different tissues of different types of purple maize.

Source Tissue Main Anthocyanin Species

Anthocyanin
Content

(mg/100g Dry
Weight)

Ref.

Peru Cob
Cyanidin-3-glucoside, Pelargonidin-3-glucoside,

Peonidin-3-glucoside
2600-3800 (de Pascual-Teresa et al., 2002; Monroy et al., 2016)

Bolivia Kernels Cyanidin 3-b-glucoside \ (Nakatani et al., 1979)

Andes Total
Cyanidin-3-glucoside, Pelargonidin-3-glucoside,

Peonidin-3-glucoside
1642

(Cevallos-Casals and Cisneros-Zevallos, 2003; Pedreschi and
Cisneros-Zevallos, 2007)

\ Bran
Cyanidin-3-O-glucoside,

Cyanidin-3-O-(6-malonylglucoside)
36.25 (Chen et al., 2018)

Mexico Husk

Cyanidin-3-glucoside, Pelargonidin-3-glucoside,
Peonidin-3-glucoside,

Pelargonidin-3-(6’’-malonylglucoside),
Cyanidin-3-(6’’-malonylglucoside),
Peonidin-(6’’-malonylglucoside)

2432-2580 (Fernandez-Aulis et al., 2019)

China Cob

Cyanidin-3-glucoside, Pelargonidin-3-glucoside,
Peonidin-3-glucoside,

Pelargonidin-3-(6’’-malonylglucoside),
Cyanidin-3-(6’’-malonylglucoside),
Peonidin-(6’’-malonylglucoside)

185.1 (Yang and Zhai, 2010a)

China Kernels
Cyanidin-3-glucoside, Pelargonidin-3-glucoside,

Peonidin-3-glucoside
55.8-304.5 (Zhao et al., 2009; Yang and Zhai, 2010b)

Thailand Kernels Cyanidin-3-glucoside 1970 (Harakotr et al., 2014)
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(Coe, 1994; Khampas et al., 2015; Peniche-Paviıá and Tiessen,

2020), agronomy (Nurnawati, 2020), pH value used for extraction

(Qin et al., 2019; Rodriguez-Amaya, 2019; Vidana Gamage et al.,

2022), temperature (Zhao et al., 2008; Lao and Giusti, 2017; Gullón

et al., 2020) and light intensity (Chalker-Scott, 1999; Vidana

Gamage et al., 2022), which will be specifically mentioned in the

second section. At present, the methods for extracting total

anthocyanins and total phenolic compounds in purple corn dry

core mainly include ultrasonic-assisted extraction (Chen et al.,

2018; Muangrat et al., 2018; Xue et al., 2021), microwave-assisted

extraction (Yang and Zhai, 2010a; Herrman et al., 2020;

Jayaprakash et al., 2022), and organic solvent extraction (Lao and

Giusti, 2018). Usually, high performance liquid chromatography

and spectrophotometry are used for identification and analysis (Wu

et al., 2006; Singh et al., 2020).

This mini-review introduces the various values of purple corn

that are inseparable from the content of anthocyanins. In the second

section, the basic biological mechanism of the synthesis of

anthocyanins and other substances in purple corn will be

described, and the pH, light and The influence of temperature

(Section III), at the end of the review, a summary and outlook on

how to make full use of anthocyanins in purple corn and improve

their recovery and quality.
2 Synthesis mechanism

As a kind of water-soluble natural pigment widely present in

plants in nature, anthocyanins endow many plants with bright and

attractive colors and are valuable sources of bioactive compounds.

However, the lack of genomic data on the regulatory mechanism of

anthocyanin biosynthesis in purple maize (Zea Mays L.) has

hindered the selection process of purple maize varieties. With the

development of molecular biology and bioinformatics, a large

number of studies have revealed the complexity of the molecular

regulation mechanism of the anthocyanin synthesis pathway and its

huge differences among different plants. Among them, structural

genes and regulatory genes determine the synthesis and regulation

of anthocyanins in purple maize.
2.1 Regulation of anthocyanin biosynthesis

2.1.1 Regulatory genes
The biosynthetic pathway of anthocyanins has been described

in Arabidopsis (Solfanelli et al., 2006; Cappellini et al., 2021),

tomato (Butelli et al., 2008; Wang et al., 2020), rice (Mackon

et al., 2021; Xia et al., 2021) and many other species (Chen et al.,

2012; Feng et al., 2018), mostly through the interaction of regulatory

genes and plant hormones (Hao et al., 2021; Paulsmeyer and Juvik,

2022). With the discovery of potential key regulatory genes, the

biosynthetic pathway of anthocyanins in purple maize has also been

well established (Zhang et al., 2020; Banerjee et al., 2022).

Anthocyanin biosynthesis genes are mainly regulated by several

families of transcription factors (TFs) at the mRNA level (Zhang

et al., 2016), that is, anthocyanins are regulated at the
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transcriptional level by the MYB-bHLH-WDR (MBW) complex

(Lloyd et al., 2017; Sun et al., 2022), and the regulatory genes of the

complex They are MYB (V-myb myeloblastosis viral oncogene

homolog), WDR (WD-repeat) and bHLH (Basic helix-loop-helix)

(Sharma et al., 2011). The distribution of purple maize

anthocyanins in different tissues is determined by the tissue-

specific expression of regulatory genes. Booster1 (B1) and Plant

color1 (Pl1) are the bHLH and MYB regulatory factors, respectively,

most often associated with regulation in plant tissues (Styles and

Coe, 1986; Coe et al., 1988; Chatham and Juvik, 2021). A recessive

intensifier of anthocyanin biosynthesis in maize, in1 (intensifier1),

encodes a bHLH type protein with high sequence similarity to R1

and B1 (Burr et al., 1996; Cone, 2007; Chatham et al., 2019), certain

alleles of R1 operate in pericarp and certain B1 alleles operate in

aleurone (Portwood et al., 2019). In brief, the interaction of these

transcription factors with their target genes leads to the

spatiotemporal biosynthesis of maize anthocyanins (He et al.,

2021). Moreover, the researchers used the Agrobacterium-

mediated method to transfer the combination of ZmC1 and ZmR

belonging to the MYB-type and bHLH families in maize to wheat,

and overexpressed anthocyanin-rich germplasm wheat (Riaz et al.,

2019), indicating that transcription modulation of factor expression

was effective in increasing anthocyanin content (Jian et al., 2019).
2.1.2 Structural genes
Transcriptional regulators not only determine the spatial and

temporal patterns of anthocyanin accumulation, but also activate

the expression of anthocyanin structural genes (Gordeeva et al.,

2019; Khusnutdinov et al., 2021; Yan et al., 2021). The expression of

structural genes in high anthocyanin tissues of purple maize was

always higher than that in low anthocyanin tissues (Kaur and Singh,

2022). Structural genes directly encode enzymes required in the

anthocyanin biosynthetic pathway, such as Phenylalanine ammonia

lyase, Chalcone synthase, Chalcone isomerase, Flavanone 3-

hydroxylase, Flavonoid 3’- hydroxylase, Dihydroflavonol-4-

reductase, Leucoanthocyanidin dioxygenase, Anthocyanidin 3-O-

glucosyltransferase, etc (Li et al., 2020; Liu et al., 2021; Kaur et al.,

2022). Through transcriptome sequencing, researchers found that

anthocyanin biosynthesis is mainly regulated by structural genes

CHS, CHI, F3H, DFR, LODX and GST, among which CHS is an

early biosynthesis gene of anthocyanin (Wang et al., 2022). 72% of

the structural genes regulating anthocyanin synthesis were up-

regulated, and most of the differentially expressed genes had the

highest expression level at 34 day after pollution, when the ratio of

anthocyanin content to fresh weight was also the highest (Ming

et al., 2021). Indeed, the carbon flux to anthocyanins via the

flavonoid pathway in purple maize is complex (Chatham and

Juvik, 2020).
2.2 Steps of anthocyanin biosynthesis

Chemically, anthocyandins are polyhydroxy/polymethoxy

glycosides derived from anthocyanins (Holton and Cornish,

1995). The Andes region of South America is the birthplace of
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purple corn, the anthocyanins present in Andean purple corn,

flowers, leaves, cobs, and kernels have previously been

characterized, and the major anthocyanins found were cyanidin-

3-dimalonylglucoside, cyanidin-3-glucoside, pelargonidin-3-

glucoside, peonidin-3-glucoside, and their respective malonated

counterparts (Fossen et al., 2001; Aoki et al., 2002; Hong et al.,

2020). Figure 1 shows the major anthocyanin species in the most

representative Andean purple corn.

The production of flavonoids including anthocyanins can be

briefly described as the following steps (Figure 2). In purple corn,

the synthesis of anthocyanins originates from phenylalanine. First,

phenylalanine ammonia lyase (PAL) deaminates phenylalanine into

cinnamic acid, which is then converted to the main precursor of

anthocyanins, 4-coumaroyl CoA (Ayvaz Sönmez et al., 2021). One

4-coumaroyl CoA and three malonyl CoA molecules can be

condensed under the action of Chalcone synthase (CHS) to

generate naringin chalcone, which is an early key reaction in the

biosynthesis of flavonoids and is generally considered to be the rate-

limiting step of this pathway step (Dixon et al., 2002). Chalcone

isomerase (CHI) isomerizes naringenin chalcone to colorless

naringenin. Catalyzed by flavanone 3-hydroxylase (F3H),

naringenin is hydroxylated at the third position to generate

dihydrokaempferol (DHK). Next, A flavanoid 3’-hydroxylase

(F3’H) can use either naringenin or DHK as substrates, adding a

hydroxyl group to the 3’position of dihydroflavonols to create

dihydroquercetin (DHQ). Dihydroflavanols, DHQ, and DHK are

reduced to colorless Leucoanthocyanidins by Dihydroflavonol-4-

reductase (DFR). Futher, Leucoanthocyanidins serve as substrates

for anthocyanidin synthase (ANS) to make anthocyanidins. Finally,

the colorful anthocyanindins are then catalyzed by flavonoid-3-O-

glucosyltransferase (UFGT) for glycosylation and form morestable

molecules, anthocyanins (He et al., 2010). The synthesized

anthocyanins will be transported into the vacuoles by transporters

and stored in the form of colored aggregates, called anthocyanin

vacuolar inclusions (Goodman et al., 2004; Lago et al., 2013).
3 Environmental influencing factors

In addition to the genetic determination of purple maize itself,

environmental factors including ultraviolet radiation, temperature
Frontiers in Plant Science 04
and water stress have been shown to induce the accumulation of

anthocyanins in plants (Straus, 1959; Chalker-Scott, 1999; Steyn

et al., 2002; Ayala-Meza et al., 2023). In fact, in purple maize,

environment accounted for the largest portion (77.83%) of the total

variation in grain yield (MITROVIÃ et al., 2012). In addition, the

environmental factors selected during extraction will also have an

impact on the final anthocyanin content obtained in the industry,

because anthocyanin is more stable under acidic and low

temperature conditions.
FIGURE 1

Examples of major anthocyanin species in Andean maize.
FIGURE 2

Synthetic pathway of simplified version of anthocyanins.
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3.1 Soil

The soil environment can significantly affect the accumulation of

anthocyanins, such as the application of nitrogen fertilizers (Sugaya

et al., 2001; Utasee et al., 2022). Mollah et al. (2020) applied nitrogen,

phosphorus and potassium fertilizers (3.05 tons ha-1) and humic acid

(20 kg ha-1) to the soil to increase the soil pH and increase the cation

exchange capacity to 25.8 CmoL(+)/kg, which had a significant effect

on the growth and production parameters of purple maize. Jing et al.

(2007) found that different concentrations or forms of potassium salts

had no significant effect on the anthocyanin content of purple corn

cobs. Metal ions affect the accumulation of anthocyanins. Janeeshma

et al. (2021) found that the accumulation of anthocyanins in maize

plant leaves increased with the increase of soil element zinc content.

Trace metal ions absorbed from soil usually accumulate in vacuoles

and form stable complexes with anthocyanins, thereby affecting their

color and increasing their stability (Sigurdson, 2016; Enaru et al.,

2021). In addition, silicon treatment can enhance the drought

tolerance of purple maize, which also has beneficial effects under

abundant water conditions (Goto and Kondo, 1991; Özdemir, 2021).
3.2 Temperature

Temperature will also affect the accumulation of anthocyanins

in purple corn. The low temperature induced the expression of

regulatory and structural genes such as MYB10 and bHLH3/33, and

the transcription of anthocyanin-related synthetases in maize

seedling sheaths. The level remained stable at low temperature

(10°C) and then rose rapidly, and dropped to the pretreatment level

within 2 days after the cold-stressed seedlings returned to normal

temperature (25°C) (Christie et al., 1994). At normal temperature,

Paucar-Menacho et al. (2017) used response surface analysis found

that the concentration of anthocyanins in purple maize sprouts

increased with the extension of germination time at 26°C within 63

h. Vilcacundo et al. (2020) found that the Andean purple corn had

the highest germination rate of 63.33% at 25°C, and the germination

rate decreased with the increase of germination temperature. The

germination rate was between 9.33% and 26.00% at 40°C. High

temperature (32°C) induced the expression of MYB16, resulting in a

“residue” effect, lower synthesis and accumulation of anthocyanins

in grains and ears (Wang et al., 2016; Aguilar-Hernández et al.,

2019). Also, at higher temperatures, due to enhanced superoxide

dismutase activity and increased malondialdehyde content,

anthocyanins will degrade due to increased H2O2 concentration

(Yüzbaşıoğlu et al., 2017; Bayat et al., 2018).
3.3 Illuminance

The influence of temperature and light on the growth and

metabolism of purple corn is inseparable. Janda et al. (1996)

transferred corn seedlings treated with low temperature and dark

to normal temperature and light, and found that the content of

plant pigment increased threefold in one day. Independently, light
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is also an important factor controlling anthocyanin synthesis

(Mancinelli, 1983; Byrnes, 2011; Pech et al., 2022). Anthocyanin

synthesis and accumulation in purple maize seedlings are the result

of lightinduction (Gu et al., 2018; Shimakawa and Miyake, 2021).

The Lc (leaf color) gene is an anthocyanin-regulated gene of bHLH

(basic/helix-loophelix) in maize. Under strong light conditions, the

LC transcription factor promotes and induces the production of

anthocyanins in vegetative and reproductive tissues (Fan et al.,

2016). Light is essential for the induction of PAL and CHS and the

accumulation of anthocyanins, and the accumulation of CHS and

PAL mRNA is controlled by three photoreceptors: UV B

(Ultraviolet Radiation B) receptor, blue light receptor and

phytochrome (Alokam et al., 2002). It is worth noting that the

light absorption of anthocyanins is not only attributed to the overall

ring structure and conjugated double bonds, but also depends on

the light quality, luminous flux, and exposure time. Therefore,

lighting conditions need to be optimized for their intensity,

exposure time and type (Pech et al., 2022). Guo et al. (2008)

found that too much radiation from UV B may inhibit

anthocyanin synthesis through DNA damage.
3.4 Extraction

In the extraction of anthocyanins, anthocyanins in purple corn

are often in an equilibrium state between the colored cation form

and the colorless half ketone formed by hydration, which is directly

affected by pH (Figure 3). With the change of pH, anthocyanins

undergo stability changes and reversible structural changes in

different water environments, so the color also changes drastically

(Vankar and Srivastava, 2010).

Anthocyanins have the highest color stability at lower pH and

are less stable at neutral or alkaline pH (Amogne et al., 2020). When

the pH value is around 1, anthocyanins are protonated and mainly

exist in the form of flavin cations, which are easily soluble in water

and turn red (Cooper-Driver, 2001; Harborne, 2013). The quinoidal

blue species is abundantly produced at pH value from 2 to 4 (Basıĺio

et al., 2021). When the pH increased to 4-6, the flavin cation was

rapidly hydrolyzed at the 2-position under the nucleophilic attack

of water to produce a colorless carbinol pseudoradical and a pale

yellow chalcone (Kallam et al., 2017). Around pH 8-10, further

deprotonation, shifting the color of medium to green, when the

ionized chalcone and ionized quinoid (Levi et al., 2004). At pH

values greater than 12, dianion chalcone is the major compound,

producing a yellow color in the solution (Brouillard and Delaporte,

1977; Petrov et al., 2013).

Heat-induced color changes are permanent and irreversible

(Burkinshaw and Towns, 1998; Halász et al., 2023). Anthocyanins

stored in acylated form are more stable at different temperatures than

non-acylated anthocyanins (Leonarski et al., 2022; Luo et al., 2022).

Yang et al. (2009) used ethanol to extract anthocyanins from purple

corn and found that the yield was higher at 10°C to 50°C. After

dissolving the purple corn flour extract, Aprodu et al. (2020)

determined according to the pH difference method that

anthocyanins can still maintain a certain stability at 80°C to 120°C.

However, too high temperature will lead to the thermal degradation
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of anthocyanins and the decline of productivity in the production

process (Mercadante and Bobbio, 2008).

4 Summary and outlook

Anthocyanins, the multifunctional active substances in purple

corn, may be of interest to various industries such as dietary

supplements, food additives, and cosmetics. This paper briefly

introduces the anthocyanin content in purple corn from different

sources, focuses on the metabolic pathway of anthocyanin and the

regulatory genes behind it and the structural genes encoding

enzymes, and explains the impact of environmental factors on the

growth process and extraction of purple corn. In view of the current

hot issues related to the research on anthocyanins and phenolic

compounds in purple corn, we propose the following outlook:
Fron
(1) Due to the high content of functional pigments in by-

products such as kernel, cob, and silk, it is urgent to

improve the utilization of purple corn. Moreover, if more

by-products of purple corn are developed, not just

anthocyanins, purple corn may generate additional value

in the future.

(2) The effects of anthocyanins on purple waxy corn have been

studied, such as variety, environment and their interaction.

Advances in functional genomic analysis of anthocyanin

biosynthetic pathways using recombinant DNA technology

and the combination of plant metabolic engineering with

biotechnological tools will be a promising strategy to

increase anthocyanin production.

(3) Since traditional breeding methods are relatively limited by

the phenotypic cost and yield of nutritional traits,

molecular marker-assisted selection methods are

particularly useful for improving nutritional traits, and

precise positioning must be combined with traditional
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methods to improve useful phytochemicals to develop

Healthier and higher quality breeding lines.

(4) At present, there are few studies on how soil pH affects

anthocyanin accumulation during purple corn cultivation,

and most of them focus on the pH analysis of anthocyanin

extraction from purple corn. Moreover, there is a browning

effect in anthocyanin extracts, which is often accompanied

by a decrease in the concentration of anthocyanins, which

affects the extraction yield. How to better avoid the

browning effect of anthocyanins in purple corn is also an

urgent problem to be solved.
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