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Drone monitoring plays an irreplaceable and significant role in forest firefighting

due to its characteristics of wide-range observation and real-time messaging.

However, aerial images are often susceptible to different degradation problems

before performing high-level visual tasks including but not limited to smoke

detection, fire classification, and regional localization. Recently, the majority of

image enhancement methods are centered around particular types of

degradation, necessitating the memory unit to accommodate different models

for distinct scenarios in practical applications. Furthermore, such a paradigm

requires wasted computational and storage resources to determine the type of

degradation, making it difficult to meet the real-time and lightweight

requirements of real-world scenarios. In this paper, we propose an All-in-one

Image Enhancement Network (AIENet) that can restore various degraded images

in one network. Specifically, we design a new multi-scale receptive field image

enhancement block, which can better reconstruct high-resolution details of

target regions of different sizes. In particular, this plug-and-play module enables

it to be embedded in any learning-based model. And it has better flexibility and

generalization in practical applications. This paper takes three challenging image

enhancement tasks encountered in drone monitoring as examples, whereby we

conduct task-specific and all-in-one image enhancement experiments on a

synthetic forest dataset. The results show that the proposed AIENet outperforms

the state-of-the-art image enhancement algorithms quantitatively and

qualitatively. Furthermore, extra experiments on high-level vision detection

also show the promising performance of our method compared with some

recent baselines.

KEYWORDS

image enhancement, all-in-one network, multi-receptive fields, drone image
monitoring, forest protection, smoke detection
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1 Introduction

Drone aerial image technology plays an indispensable role in

forest fire monitoring. However, the images captured by drones are

severely damaged because of the uncertainty and instability of aerial

photography. Typical examples of aerial image degradation include

atmospheric interference and motion blur caused by the vibration

of the drone. Moreover, the aerial images could further suffer from

the visual impact of compression when the images are transmitted

back through the network. Therefore, how to restore degraded

aerial images is particularly significant under the limitation of

existing hardware. Recently, with the development of deep

learning, data-driven methods designed for task-specific image

enhancement have achieved great success, such as image dehazing

(Ren et al., 2018; Qu et al., 2019; Wang et al., 2020; Song et al.,

2022), image denoising (Zhang et al., 2017b; Ct et al., 2020), and

image deblurring (Nah et al., 2017; Gao et al., 2019). However, an

all-in-one image enhancement model seems more effective than its

specific-task counterpart in practical application scenarios as real-

world images usually suffer various degradations. For example,

images of forest scenes collected by drones could be affected by

adverse weather or blurred by remote sensor shaking. In contrast,

integrating multiple image enhancement tasks in an all-in-one

framework is a promising choice.

Recently, Li et al. proposed an all-in-one method, which uses a

multi-encoder and single-decoder architecture to address various

weather corruptions (Li et al., 2017). It also utilizes the neural

architecture search to optimize the features extracted by the

encoder, which performs better than previous task-specific image

enhancement algorithms. But, designing such an architecture

usually comes at the expense of computational costs. Due to its

success in high-level tasks such as image classification,

segmentation, and detection, the transformer has been used in

low-level vision tasks. Valanarasu et al. proposed Transweather, an

end-to-end multi-weather image restoration model, as an

alternative solution to multi-encoders for the same application

scenario (Valanarasu et al., 2022). Li et al. also proposed a unified

framework capable of recovering images with unknown

degradation types, which has demonstrated its effectiveness in

image enhancement affected by natural weather (Li et al., 2022).

Although the generalization performance of the network has been

verified on multiple datasets, it has low practical application value

due to its large number of parameters and computational delays.

Moreover, nearly all of the representative models for aerial image

enhancement are based on single-task design (Wang and Liu, 2022).

Therefore, research on an all-in-one framework is still very

necessary in this field.

We believe that the future development of aerial image

enhancement research lies in all-in-one models, which is also a

critical step toward general technology research. The motivation for

this paper is two-fold: on the one hand, we wish to conduct an in-

depth study on preserving the high-dimensional detail features of

multi-scale objects, thus pushing the aerial image reconstruction

methods to a new level. On the other hand, the all-in-one network

can be utilized to study general strategies for a seamless transition
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between different tasks and domains. As shown in Figure 1, to this

end, we propose an All-in-one Image Enhancement Network

(AIENet) based on a Multi-Receptive Field (MRF) enhancement

block. Specifically, the model only performs one downsampling

operation on the original image. And the global skip connection is

used to introduce the low-level feature information of the

corresponding scale into the deconvolution process so that the

model can obtain more high-resolution details during upsampling.

In addition, with the multi-receptive field enhancement module, the

model can fully use the prior hierarchical features on the same scale

to explore different regions and then obtain the global context by

aggregating the context information collected from different areas.

The main contributions of this work include the following:
• By comprehensively analyzing the characteristics of aerial

imagery, we identify the importance of all-in-one models

for forest scenarios. Furthermore, we accurately reconstruct

local textures and microstructures in degraded images by

maximizing the feature representation and learning

capabilities of neural networks, thereby improving the

accuracy of subsequent high-level computer vision tasks.

• We propose a lightweight image enhancement model

AIENet, which can quickly solve the degradation problem

in an all-in-one framework when collecting images. The

proposed method utilizes the global and local skip

connections to introduce high-resolution details into the

output image. And the model designed in this paper cleverly

uses the multi-receptive field fusion technique to perceive

the same feature map from multiple scales, thus making up

for the insufficient ability to capture global image features.

• We demonstrate that our method can achieve better visual

performance and high scores based on the quantitative
FIGURE 1

An illustration of our motivation. As shown, the forest scene images
captured by drones could inevitably suffer from different
degradation problems. The target size in the images captured at
different locations is variable. Therefore, we explored the restoration
of multi-scale target details in aerial images and proposed an all-in-
one image enhancement method.
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Fron
metrics in task-specific and all-in-one aerial image

restoration on the forest wildfire dataset. The model

proposed in this paper also provides an idea of integrated

processing for restoring the visual quality of images with

complex scenes.
The remainder of this paper is organized as follows. Section 2

discusses related work on image enhancement and multi-receptive

field technology. The proposed method is introduced in Section 3.

Section 4 analyzes the comparative experimental results, and our

work is concluded in Section 5.

2 Related works

With the popularity of graphics processing units, the deep

learning approaches (Alsubai et al., 2022; Farghaly et al., 2022)

have developed the most advanced model in the computer vision

field, and numerous elegant solutions (Xue et al., 2019; Xue et al.,

2021) have been proposed for visual tasks in the last few years. In

the field of image enhancement, most researchers work on task-

specific image restoration. In this paper, we innovatively propose an

all-in-one architecture to solve the image degradation problems

encountered in various stages of aerial image acquisition, such as

haze weather interference, the vibration of the remote sensing

platform during shooting, and image compression during

transmission distortion. Therefore, we first describe representative

methods for each task. Then, we introduce related work on multi-

scale receptive fields in low-level vision.
2.1 Image enhancement

Image Dehazing: Since Mccartney et al. proposed the

atmospheric scattering model to approximate the haze effect

which is shown as: x̂ = x⊙ t + A⊙ (1 − t), where x̂ and x mean

the degradative images and restored images, respectively. t is the

transmission map, which can express as: t = e-bd, where b and d are

the scattering coefficient and depth map (McCartney, 1976). A is the

global atmospheric light and ⊙ represented as pixel-wise

multiplication. Recent image dehazing methods could be classified

into two families, i.e., prior-based methods and learning-based

methods. In traditional prior-based methods, many image

statistical priors are used as additional constraints to compensate

for information loss during image degradation. He et al. proposed a

classic image dehazing method that depends on the statistical

results called Dark Channel Prior (DCP), which generates at least

one low-intensity pixel in the color channel of each pixel local

neighborhood (He et al., 2010). Then the learned transmission map

is used to calculate the haze-free image through the physical model.

Wang et al. found that the blurred areas are mainly concentrated on

the brightness channel of the YCrCb color space (Wang et al., 2018)

Therefore, it is possible to enhance the visual contrast of foggy

scenes by recovering the missing texture information in the

luminance channel. As for learning-based methods, the

techniques such as attention (Liu et al., 2019; Zhang et al., 2020),
tiers in Plant Science 03
feature fusion (Dong et al., 2020; Qin et al., 2020) and contrastive

learning (Wu et al., 2021; Chen et al., 2022) are widely used to

improve single-image dehazing performance. Moreover, they

outperform the traditional prior-based image dehazing methods.

Motion Deblurring: Since large-scale real-world blur data is

challenging to obtain, most traditional deblur methods are generally

tested on synthetic images from x̂ to x, which can be expressed as

x̂ = x⊗ k + n, where x̂ is the blurred image generated from clean

image x, k is the blur kernel or convolution kernel, ⊗ denotes the

convolution operator and n is additive noise. However, handcrafted

methods are not good at capturing complex blur variations in

authentic images. In contrast, CNN-based methods can handle real-

world blurry images well if we have a dataset of paired images. Tao

et al. proposed a multi-scale approach based on encoder-decoder

recurrent networks (SRN), which is the first method to integrate

recurrent neural networks (RNN) into deblurring models (Tao

et al., 2018). Some methods (Kupyn et al., 2018; Kupyn et al.,

2019) based on Generative Adversarial Networks (GAN) have also

achieved competitive results on real-world deblur. Recently, multi-

stage architecture networks (Chen et al., 2021; Zamir et al.,

2021) have achieved state-of-the-art results in deblurring

restoration tasks.

Compression Deblurring: Early image compression restoration

methods use deblocking filters to reduce discontinuities between pixel

blocks. To reduce blocking artifacts in compressed images, Lee et al.

adaptively use various block predictors based on frequency

components in the Discrete Cosine Transform (DCT) domain (Lee

et al., 2004). Yoo et al. classifies blocks as flat or edge blocks and

applies different deblocking filters depending on the classification

result (Yoo et al., 2014). However, these methods employing

deblocking filters only target blocking artifacts. But also other

artifacts in compressed images, such as ringing artifacts. Therefore,

most scholars have conducted extensive research on CNN-based

compression deblur. Dong et al. introduce a super-resolution

convolutional neural network for reducing compressed image

artifacts (Dong et al., 2015). Zhang et al. use auto-encoders in both

DCT and pixel domains, considering the output of auto-encoders and

input images to reduce visual artifacts in compressed images (Zhang

et al., 2018). Lee et al. utilize parallel atrous convolution residual

blocks to extract a variety of features with large receptive fields, then

use attention mechanism for the output of atrous convolution to

obtain representations of the global region (Lee et al., 2021).

All-in-One Image Enhancement: Although the above image

enhancement methods all perform well on specific tasks, real-world

images are often easily corrupted by different degradation types,

making task-specific image enhancement lack flexibility and

generalization in practical applications. Recently, some work has

focused on all-in-one visual enhancement networks. To deal with

image degradation under severe weather conditions (such as rain,

haze, and snow), Li. et al. present an ensemble model based on

neural architecture search, whose generator has a multi-encoder

and a typical decoder architecture (Li et al., 2020). In other words,

the network must train different models for different degradation

problems, which is unsuitable for an all-in-one solution in practical

applications. Most recently, Valanarasu. et al. propose an alternative
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state-of-the-art solution to this problem with TransWeather

(Valanarasu et al., 2022). As an end-to-end vision transformer

(Dosovitskiy et al., 2021) based multi-weather image restoration

model, it exhibits more powerful versatility. Notably, these two all-

in-one image enhancement methods focus on recovering the same

combination of degradation types (i.e., weather disturbances).

However, solving the image degradation problem under multiple

conditions (such as weather, physical factors, etc.) in an all-in-one

framework can better meet the most practical scenes. In addition,

the real-time requirement of the remote sensing platform also

means that the model design should be simplified. In this paper,

we only use simple tricks to capture the global degradation

representation of blurred images, building an all-in-one

framework for handling different degradation types.

In summary, most image enhancement methods are designed

for specific types of degradation, making it difficult to generalize to

other image enhancement tasks. For example, state-of-the-art

image dehazing methods typically rely on the atmospheric

scattering physical model to recover images by estimating

unknown parameters in the physical model. Similarly, image

motion deblurring methods are usually designed based on linear

motion blur physical models. Research on image compression

deblur typically focuses on removing artifact blocks. Compared to

these task-specific image enhancement methods, our model can

restore images of different degraded types, which effectively

alleviates the shortage of storage resources in complex application

scenarios. Moreover, existing all-in-one image enhancement

approaches focus on the study of image degradation caused by

severe weather (e.g. haze, rain or snow), while our work committed

on image degradation caused by different factors (e.g. haze, motion

blur or compression blur). Notably, they usually insert modules

such as transformers or attention mechanisms into the network,

which can easily introduce a large number of parameters that make

it difficult to meet practical requirements. Therefore, we devise an

all-in-one model with characteristics of lightweight and obtain blur-

free aerial images characterized by good visibility that is more

responsive to practical scenarios.
2.2 Receptive field in low-level vision

The receptive field in the deep neural network represents the

size of the area mapped on the original image by the pixels on the

output feature map of each convolutional layer. Since the network

generally uses convolutional and pooling layers which are locally

connected, neurons cannot perceive all the characteristics of the

original image. Therefore, Zhang et al. employ dilated filters to

expand the receptive field (Zhang et al., 2017a). However, dilated

filter inherently suffers from grid effects, where the receptive field

only considers a sparse sampling of the input image with a

checkerboard pattern. To avoid the increased computational

burden and potential sacrifice of performance improvement, Liu

et al. expand the receptive field by applying a wavelet transform to

the U-Net architecture and propose a multi-layer wavelet CNN

(MWCNN) model with reduced computational complexity
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(Liu et al., 2018). Fu et al. propose deep convolutional sparse

coding architecture with atrous convolution to obtain a high-level

receptive field (Fu et al., 2019). Although these methods are able to

ensure that the neurons cover the image area entirely. However, an

excessively large receptive field easily introduces redundant

information to the small target area, which reduces the

performance of the model. To solve the problem of differences in

the distribution of target regions in aerial images, this paper uses

parallel convolution with different convolution kernels to extract

multi-scale target region features, so as to obtain a more effective

global degradation representation.
3 Method

In this section, we elaborate on the architecture of the proposed

all-in-one image enhancement network AIENet. The overall

architecture of the model is shown in Figure 2. The model can

strike a balance between speed and accuracy. Given a degraded

image, AIENet first performs a unique downsampling operation.

Subsequently, to yield a more effective and comprehensive degraded

representation, we adopt multiple receptive fields, catering to a wide

range of target region sizes. Lastly, the global skip connection is

used to fill in the blank content of the deconvolution process to get

purer high-resolution information. To showcase the competence of

the proposed model, we present three typical image degradation

problems encountered by drones when monitoring forest

landscapes, namely haze, motion blur, and compression blur, as

targeted examples in this paper. In the following sections, we first

illustrate the multi-receptive field image enhancement block, which

forms the fundamental component of AIENet, and then elaborate

on the overall model architecture featuring a skip structure. Finally,

the objective function of the model is discussed.
3.1 MRF enhancement block

The MRF enhancement block is a versatile module with a plug-

and-play design, enabling its integration into any part of an existing

network. Notably, this block offers multi-scale area perception,

guaranteeing the inclusion of various scale feature details in the

final outcome. It can be decomposed into two fundamental

components: 1) a multi-scale perception module, responsible for

extracting distinct scale representations; 2) a feature merging

operator, which merges intermediate feature maps. Specifically,

the features of the last layer are initially fed into two distinct

branches, each engaging in feature extraction via diverse

dimensions. The multi-scale perception refers to the lower-

dimensional branch within the block, which employs convolution

kernels of varying sizes to facilitate multi-scale feature perception.

The enhancement block concludes by utilizing channel-wise

concatenation, which enables the learning of comprehensive

contextual information. We elaborate on these processes in detail

below. The pipeline of the MRF enhancement block is shown

in Figure 3.
frontiersin.org
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3.1.1 Multi-scale perception
The receptive field in a convolutional neural network represents

the visual range of the network with respect to the input image. As

only the input pixels within the receptive field contribute to the

calculation, the size of the receptive field can be used to measure the

ability of the model to leverage spatial information. However, it is

not always optimal for the receptive field size to be maximized. In

the case of larger targets, a larger receptive field can better integrate

contextual information about the target area and restore its high-

resolution details. For smaller objects, a larger receptive field can

easily introduce excessive artifacts that may hinder the image

restoration process. Especially for aerial images that are captured

from multiple angles, the scale of the target area can constantly

expand or shrink depending on the position of the drones. It is

worth noting that a single receptive field may not always yield

optimal results in learning the complex scale structures of aerial
Frontiers in Plant Science 05
images. As such, Ren et al. and Liu et al. proposed a solution for

multi-scale feature extraction Ren et al. (2016); Liu et al. (2019).

While the design of multi-scale stacking allows the network to have

a larger expression space in the receptive field, the network’s

receptive field is fixed in the inference stage when the model

parameters are not updated. This is the statistical receptive field

calculated by the model based on the data distribution of the

training set, which may be suboptimal for each specific image.

Additionally, by extracting intermediate features through this

concatenated approach, gradient vanishing may occur, and the

signal generated in earlier iterations may be disrupted.

To effectively address the aforementioned issues, this paper

proposes the generation of intermediate feature maps through

distinct branches. The aim of multi-scale perception is to utilize

diverse receptive fields to enhance the comprehension of various

regions and acquire multiple global degraded representations.
FIGURE 2

The overall structure of our All-in-one Image Enhancement Network (AIENet) which addresses image hazy, motion blur, and compression blur
problems in an all-in-one model.
FIGURE 3

The MRF enhancement block comprises two branches: the high-dimensional extract branch and the multi-scale perception branch. The high-
dimensional extract branch is responsible for preserving the high-resolution details of the input features, while the multi-scale perception branch
employs convolution kernels of varying sizes to capture multi-scale features.
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Indeed, it is possible to design the multi-scale perception module to

be highly complex, maximizing the reasoning ability of the model.

However, even with a simple parallel usage of several convolutional

layers with different kernels and the use of skip connections to

concatenate the shallow features with these multi-scale perception

feature maps, we can already intuitively observe the efficiency of

feature extraction under multi-scale perception. Specifically, in

order to better preserve the high-resolution information of the

original image, the resolution of all intermediate feature maps in the

enhancement block is kept consistent with that of the input feature

map. Formally, let’s define Fin∈RH×W×Cin as the input feature map

generated by the last layer. The enhancement block initially feeds

the input feature map Fin into a dual-branch structure for feature

extraction. The high-dimensional extract branch aims to learn more

comprehensive original image features by expanding the channel

dimension. The operation on the input feature map Fin can be

defined as follows:

Fs = Relu (Convc1 (Fin)) (1)

Where Convc1 · ( · ) is the convolution layer using c1
convolution kernels and Fs∈RH×W×C

1. Nevertheless, the local

information captured by each pixel in Fs is limited. To address

this issue, the multi-scale perception branch adopts a multi-kernel

strategy, consisting of four convolutional layers with different

kernels to capture more diverse features. This trick enables the

network to conduct intricate feature extraction operations in low-

dimensional feature spaces and reduce the number of model

parameters. The resulting feature map generated by the parallel

convolutional layers can be represented as follows:

Fd = Relu (Convc2 (Fin)) (2)

fi = wi(Fd)H�W�C2,    i  ∈   1, 2, 3, 4f g (3)

where wi (·) denotes the parallel convolutional operation that

generates the ith scale receptive field and Fd∈RH×W×C2. This dual-

branch structure maintains a relatively independent calculation

scheme. The combination of a “deep network + multi-scale

feature extraction” and a “shallow network + high-dimensional

feature extraction” takes into account both the rich details of

shallow features and the abstract semantics of multi-scale

features. This combination also effectively manages the

computational overhead to ensure the real-time performance.

3.1.2 Feature merging
Once the input feature map passes through multiple receptive

fields of feature perception, as much contextual information as

possible has been constructed between these different scales of

receptive fields. We observe that for spatial tasks such as image

enhancement, parallel multi-scale capabilities are required to

handle perceptually large and small objects. In traditional

processing methods, there are primarily two approaches for

merging different feature maps: concatenation and element-wise

addition. The latter requires the feature maps to have identical

channels, necessitating the conversion of feature maps to uniform
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channels. However, this requirement restricts the flexibility of

merging feature maps and direct summation of all feature maps

may remove the generated image details. Instead, we adopt the

concatenation approach to aggregate features from different

receptive fields. At this stage, the feature channels already contain

various local contextual information adapted to the target area size.

The merged features can be further abstracted through convolution,

allowing for soft transitions between receptive fields of varying

scales and facilitating the construction of a holistic global context.

To better convey the semantic details of the input features during

training, skip connections are employed to ensure the effectiveness

of the enhancement block, resulting in an output feature map with

high-dimensional details and multi-scale perception. Let’s define Fi
as the feature map generated by the ith MRF enhancement block.

The output feature map can be expressed as:

Fm =  Cat (Convc1 (Cat(fi)), Fs),     i  ∈   1, 2, 3, 4f g (4)

where Cat (·) indicates channel-wise concatenation operator. In

this way, feature maps of arbitrary numbers can be merged, which

gives the MRF the potential to capture more details of multi-scale

target areas.
3.2 Global-local skip connection

The residual network architecture has exhibited outstanding

performance in computer vision tasks spanning from low-level to

high-level tasks(Kim et al., 2016; Dong et al., 2020). This

architecture was initially proposed by He et al. for image

recognition (He et al., 2016). The purpose of the skip connection

is to merge low-level features and high-level convolutional features

with more intricate semantics. In spatial feature reconstruction

tasks like image enhancement, the rich details preserved by high-

level convolutions are extremely valuable. Nonetheless, the increase

in the receptive field with network depth may result in the loss of

high-dimensional details. To maintain fine details from the input

image to the output image, we incorporate local skip connections,

which significantly enhance the performance. To be more precise,

the features extracted from the previous layer are first processed

through convolution for high-dimensional feature extraction, and

then combined with the multi-receptive field features before being

passed on to the next module. This approach reduces the

susceptibility of the model to loss of high-frequency information

that may occur due to repeated convolution operations.

Although Liu et al. and Gao et al. successfully applied skip

connections to image enhancement problems (Liu and Yang, 2018;

Gao et al., 2019), it should be noted that deconvolution or

upsampling often requires filling in a significant amount of

missing content. It is important to acknowledge that generating

high-quality results from scratch requires sufficient auxiliary

information. To address the issue, we devise a novel skip

connection that can take into account both global and local

contextual information interaction. By employing a cross-layer

global skip connection, the corresponding scale features are

introduced into the deconvolution or upsampling process, which
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can effectively preserve high-resolution details contained in the

input images. This results in an enhanced ability of the network to

recover image details, as illustrated in Figure 2. To exploit the merits

of both designs, the model contains n MRF enhancement blocks

and a global skip connection. Each enhancement block comprises

local skip connections that fuse high-dimensional detail and multi-

receptive field features. Such a residual structure allows the

network to train deep models without sacrificing shallow

information features.
3.3 Model architecture and loss function

Following the similar network design principle in Cai et al., we

also design the overall network as a simple auto-encoder, where

three residual blocks are inserted between the encoder and decoder

to enhance its understanding capacity of different target regions

(Cai et al., 2016; Ren et al., 2016; Li et al., 2017). Specifically, two

convolutional layers are first used to encode the input blurred image

into the feature map. This feature map is used as the encoder part,

where only the last convolutional layer downsamples the feature

map by a factor of 1/2. Correspondingly, a deconvolutional layer

with a stride of 1/2 is used in the decoder part to upsample the

feature maps to the original resolution. The feature maps are

subsequently transformed back to image space using three

convolutional layers to obtain the final blurred residual. For the

middle residual block, we call it a “multi-receptive field

enhancement block”, because it uses four convolution kernels of

different sizes to extract the details of varying target areas

adaptively. The sizes of the four convolution kernels are set as

3x3, 5x5, 9x9, and 13x13, respectively. To obtain a good trade-off

between performance and running time, we set the number of

channels of all intermediate convolutional layers in the

enhancement block to 32 or 128. Then an instance normalization

(Ulyanov et al., 2016) and a Relu layer are placed after each

convolutional layer. Each layer setting for the network is given in

Table 1. Fan et al. has proved that in addition to the input image,

pre-calculating the edges of the input image and feeding it into the

network as auxiliary information is beneficial for network learning.

By default, we also adopt this idea and concatenate the pre-

calculated edges with the input blurred image along the channel

dimension as the final input of the network (Fan et al., 2017; Fan

et al., 2018; Ren et al., 2018).

Most learning-based image enhancement methods (Cai et al.,

2016; Ren et al., 2016; Li et al., 2022) use Mean Square Error (MSE)

loss to train the models. Following the same strategy, we also use

this simple loss. Specifically, we adopt the strategy of (Ren et al.,

2018) and set the learning objective of the model as the residual

between the clear image and the input degraded one. In summary,

the total loss can then be written as follows:

L = r̂ − rk k2 (5)

where r^ is the predicted residual, r is the residual of the

degraded image and clear image at location (i,j), which can be

calculated as follows:
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Even with the only simple loss mentioned above, our method

can still achieve state-of-the-art performance on aerial image

enhancement. Further, this kind of loss function also enables

efficient training due to the smaller number of parameters

to update.

4 Experiments

This section provides qualitative and quantitative comparisons

with state-of-the-art methods for three challenging aerial image

enhancement tasks, i.e., image dehaze, image motion deblur, and

image compression deblur. We first introduce the dataset source

and experimental settings. Then, we present the results of

comparing our proposed algorithm with 15 state-of-the-art

methods. Finally, the effectiveness of the proposed module is

demonstrated through ablation experiments.
4.1 Dataset

We constructed datasets of degraded aerial images to evaluate

the effectiveness of the proposed method in handling various types

of image degradation. The raw images were sourced from a publicly

available dataset, which comprised video frames captured by drones
TABLE 1 Network Setting.

Layer Description Output Size

Encoder

#1 Conv (3, 32, 3, 1) 640x640x32

#2 Conv (32, 64, 3, 2) 320x320x64

3x MRF Enhancement Block(c)

#1_1 Conv (c, 32, 3, 1) 320x320x32

#1_2 Conv (c, 128, 3, 1) 320x320x128

#2_1 Conv (32, 32, 3, 1) 320x320x32

#2_2 Conv (32, 32, 5, 1) 320x320x32

#2_3 Conv (32, 32, 9, 1) 320x320x32

#2_4 Conv (32, 32, 13, 1) 320x320x32

#3 Cat + Conv (128, 128, 3, 1) 320x320x128

Decoder

#1 Deconv (256, 128, 4, 2) 640x640x128

#2 Conv (128, 64, 3, 1) 640x640x64

#3 Conv (64, 32, 3, 1) 640x640x32

#4 Conv (64, 32, 3, 1) 640x640x3
Where c indicates the number of feature channels entering the MRF enhancement blocks.
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equipped with video surveillance cameras. To obtain degraded

images of drone-monitored forest scenes under various

conditions, we employ Python library Imgaug (Jung et al., 2020)

to synthesize paired degraded images. For the 2007 original images,

we generated two degraded images with different levels of

degradation for each image by adjusting different parameters

depending on the degradation type. In this paper, we synthesize

haze images with different concentrations by setting the scattering

coefficient to 2 or 3, generate motion blur images using blur kernels

ranging from 25 to 34 and angles ranging from -150 to 360 degrees,

and produce compression blur images by randomly selecting

compression ratios between 89 and 93. Regarding the scattering

coefficient used in generating hazy images, we based them on

previous research about the atmospheric scattering physical

model. The motion blur kernel and angle parameters were

selected based on the linear motion blur physical model. The

compression rate parameters are based on the pixel count of the

image and the compression algorithm parameters. Finally, 4014

degraded images were generated for each of the three tasks, 70% of

which are used for fully supervised training and the rest for testing.

Since we use a mixture of three degraded types in the all-in-one

image enhancement task, our all-in-one framework can effectively

generate close-to-ground truth images for any degradation type.
4.2 Training specifications

All experiments are conducted using PyTorch on an Ubuntu

20.04 system, with NVIDIA RTX 3080Ti GPU to optimize the

training speed. For each task, we compare the proposed method

with the state-of-the-art methods separately. Then the generality of

AIENet is demonstrated by further comprehensive training. We use

almost the same training strategy for these models. For a fair

comparison, all models are trained for 60 epochs. By default, we

train our model with batch size 2 using the Adam optimizer

(Kingma and Ba, 2014). The default initial learning rate is set to

0.001, decaying by 0.1 every 40 epochs. The changing trend of target

loss is shown in Figure 4. In the early stages of training, the loss
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value is relatively high, indicating a large discrepancy between the

predicted and ground truth images. However, the loss value of the

model drops very quickly after training several epochs and plateaus

at epoch 40. This suggests that our model may have converged

earlier, but we still follow the default training strategy for

comparison with previous work.
4.3 Comparisons with
state-of-the-art methods

Our model is individually compared with five state-of-the-art

methods on specific tasks for a comprehensive comparison.

Specifically, we compare with (Li et al., 2017; Ren et al., 2018;

Dong et al., 2020; Qin et al., 2020; Li et al., 2021) on the dehazing

task. The methods to remove motion blur include (Nah et al., 2017;

Tao et al., 2018; Kupyn et al., 2019; Zhang et al., 2019; Cho et al.,

2021). The baselines for compression deblur are (Dong et al., 2015;

Chang et al., 2020; Chen et al., 2021; Jiang et al., 2021; Zamir et al.,

2021). To demonstrate the superiority of our all-in-one framework,

we also compare models trained in an all-in-one manner on three

tasks. In other words, we train the proposed model on an ensemble

of all datasets consisting of degraded images with three different

degradation types (i.e., haze, motion blur, and compression blur).

And then test on a single type.

Quantitative evaluations between ground truth x and restored

images y were performed via the conventional Peak Signal-to-Noise

Ratio (PSNR) (Huynh-Thu and Ghanbari, 2008) and Structural

Similarity (SSIM) (Wang et al., 2004) metrics. PSNR is a very

important indicator in the field of image enhancement, which can

be expressed as:

PSNR = 10 log10 (
L2

MSE
) (7)

where L is the possible maximal pixel value. The mean square

error MSE between x and y is calculated as follows where H and W

are the height and width of the images:
A B C

FIGURE 4

Curves of the changing trend of target loss. (A) shows the trend of the dehazing loss function, (B) shows the trend of the compression deblurring
loss function, and (C) shows the trend of the motion deblurring loss function.
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MSE(x, y) =
1

H �Wo
H

i=1
o
W

j=1
(x(i, j) − y(i, j))2 (8)

In comparison to PSNR, the structural similarity indicator

is more in line with human subjective system judgment on

image quality. SSIM is designed to compute the luminance,

contrast, and structural similarity between the x and y, which can

be represented by:

SSIM(x, y) =
(2mxmy + c1) (2sxy + c2)

(m2
x+m2

y + c1) (s2
x+s2

y + c2)
(9)

where mx and my are the mean of x and y, respectively. sx and sy
are the variance of x and y, respectively. sxy is the covariance of x
and y. By default, c1=·(0.01L) and c2=·(0.03L) are the constants used

to avoid divisors by zero. We evaluated PSNR and SSIM based on

the luminance channel Y of the YCbCr color space in accordance

with the previous convention (Zamir et al., 2021; Valanarasu

et al., 2022).

4.3.1 Task-specific image enhancement results
Quantitative Evaluation for Image Enhancement. Table 2

presents our quantitative evaluations. The top half of the tables

contain results from task-specific image restoration. Our models

achieve performances superior to all compared existing methods in

PSNR on all tasks. For the image dehazing task, the proposed

method yields the best PSNR of 35.69 dB, which also outperforms

all dedicated to dehazing models. Notably, in our experiments, we

found GCANet (Ren et al., 2018) to be the best-performing network

for dehazing in SOTAs. And the method in this paper also achieves

a breakthrough of 5.37%. Furthermore, we also get small victories in

objectively evaluating SSIM close to the Human Visual System

(HVS). In the motion deblurring task, our model exceeds all

compared deblurring networks in terms of PSNR. It is worth

noting that our model is the second best in the comparison of

structural feature recovery. But compared to MIMO-UNet (Cho

et al., 2021), the best network for motion blur removal in this

experiment, our model parameters are only 10.62MB, while the

MIMO-UNet network has a parameter amount of 25.97MB.
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Qualitative Results for Image Dehazing. To illustrate that our

model can better remove the visual effects of haze and restore more

image details than other dehazing methods, Figure 5 depicts some

visualizations of image dehazing reconstructions for aerial images of

forests, comparing our method with FFANet (Qin et al., 2020) and

GCANet (Ren et al., 2018). As illustrated, the FFANet does not

completely remove the influence of haze, and its restored image has

some artifacts. While GCANet seems to have the comparable visual

quality to our model in image dehazing, our AIENet achieves

visually pleasing results in detail enhancement (enlarged in red

and blue bounding boxes).

Qualitative Results for Image Deblurring: To demonstrate the

images restored by our model are sharper and produce fewer

artifacts, Figure 6 visualizes motion deblurring examples,

demonstrating the superiority of our model AIENet over MIMO-

UNet (Cho et al., 2021) and DMPHN (Zhang et al., 2019).In

particular, the state-of-the-art methods still retain obvious streak

artifacts when restoring images, while our model can preserve the

structural and textural image details. (e.g., second example in

Figure 6, forest enlarged in the red bounding boxes). Although in

quantitative experiments, the proposed model does not show

competitive performance on image compression deblurring. But

in visual analysis, as shown in Figure 7, the proposed model can

produce excellent visual quality on par with state-of-the-

art methods.

Generality to Different Image Enhancement Tasks: To

demonstrate the superior generalization of the proposed method,

we compare it with different task-specific image enhancement

methods on three challenging tasks including dehaze, motion

deblur and compression deblur. As shown in Table 3, although

HINet performs well in removing compression artifacts, it has

uncompetitive results on image dehazing and motion deblurring.

Similarly, FFANet exhibits significant performance discrepancies

across different tasks, with a PSNR of 32.17 dB for compression

deblurring but only 20.97 dB for dehazing. Evidently, these methods

excel only in specific tasks while performing poorly in others.

Although generalization seems to be visible in MIMO-UNet, our

AIENet exhibits a more competitive restoration performance than it
TABLE 2 Quantitative comparisons in terms of PSNR and SSIM (the symbol “↑” means that higher value is better) with state-of-the-art image
dehazing, motion deblurring, and compression deblurring methods.

Dehaze MotionDeblur Compression Deblur

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Task-specific

AODNet 13.99 0.7592 MS-CNN 28.47 0.8107 ARCNN 27.62 0.7986

GCANet 33.87 0.9632 SRN 28.35 0.7968 FBCNN 30,99 0.9001

MSBDN 14.96 0.8864 DeblurGAN-v2 27.54 0.7752 HINet 33.11 0.9104

FFANet 20.97 0.9325 DMPHN 29.59 0.8248 SADNet 32.81 0.9095

YOLY 10.22 0.5284 MIMO-UNet 31.33 0.9317 MPRNet 32.47 0.8626

AIENet 35.69 0.9642 AIENet 31.87 0.8648 AIENet 32.98 0.8764

All-in-one AIENet 32.50 0.9501 AIENet 28.88 0.7909 AIENet 31.70 0.8587
fro
The best and second-best results are highlighted in bold and underlined, respectively. The above half of the table shows comparisons of our task-specific models individually evaluated for each
task. The last row of the table show evaluations of our all-in-one model AIENet on all three test sets.
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A B C D E

FIGURE 6

Qualitative enhancement comparisons of our model on synthetic motion blur samples with MIMO-UNet (Cho et al., 2021) and DMPHN (Zhang et al.,
2019). (A) is the input motion blur images, (B, C) are the enhancement results of the state-of-the-art algorithms, (D) is the enhancement results of
the proposed AIENet, and (E) is the ground truth images. Blue and red boxes correspond to the zoomed-in patch for better comparison.
A B C D E

FIGURE 5

Qualitative enhancement comparisons of our model on synthetic hazy samples with FFANet (Qin et al., 2020) and GCANet (Ren et al., 2018). (A) is
the input hazy images, (B, C) are the enhancement results of the state-of-the-art algorithms, (D) is the enhancement results of the proposed AIENet,
and (E) is the ground truth images. Blue and red boxes correspond to the zoomed-in patch for better comparison.
A B C D E

FIGURE 7

Qualitative enhancement comparisons of our model on synthetic compression blur samples with SADNet (Chang et al., 2020) and MPRNet (Zamir
et al., 2021). (A) is the input compression blur images, (B, C) are the enhancement results of the state-of-the-art algorithms, (D) is the enhancement
results of the proposed AIENet, and (E) is the ground truth images. Blue and red boxes correspond to the zoomed-in patch for better comparison.
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in each task. The experimental results on datasets for hazy, motion

blurring, and compression blurring show that our model excels at

generalizing to diverse image domains.

4.3.2 All-in-one image enhancement results
The last row of the Table 2 presents quantitative evaluations for

all-in-one image restoration. Generally, our method yields

exceptional image quality and is faithful to the ground truth on

all three test sets. Notably, for the image dehazing task, our trained

all-in-one image enhancement network is second only to GCANet,

the state-of-the-art model trained on the specific task, with PSNR/

SSIM metrics reaching 32.50 dB/0.9501. Generally, the difference in

image quality is less noticeable when the PSNR value reaches above

28 dB. Therefore, our model shows its outstanding performance

and application value in environments that are sensitive to

computational cost and running time.
4.4 Ablation study

In this section, we present ablation experiments to analyze the

contribution of each component of our model. Specifically, we focus

on two major components: with/without the skip connection and

with the different number of enhancement blocks. Task-specific

evaluation is performed on the synthetic haze dataset with the

proposed models trained on the image size of 640Ã—640, and the

results are shown in Table 4. To further validate the importance of

each specific component in the all-in-one task, we also conduct

analysis on the union of three datasets. Generally, we evaluate four
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different network configurations and follow the same training setup

as the above experiments.

The influence of global-local skip connection: As mentioned

in Section 3.2, skip connection can provide more high-resolution

details of the original image for deconvolution or upsampling

processes. Therefore, we demonstrate the influence of the design

by removing them from our final model. Table 4 shows a substantial

drop in PSNR of the image dehazing results from 35.69 dB to 32.36

dB when the global-local skip connection is removed.

Correspondingly, the absence of the skip connection leads to poor

performance as compared to employing it for all-in-one image

enhancement. A similar trend is observed for the method without a

local skip connection, where gains of the original model over it are

1.73 dB/0.0089 on PSNR/SSIM. We also provide two representative

dehazing examples in Figure 8 for visual comparison. It can be seen

that the images restored by removing skip connections contain

either overly smooth contents or artifacts with grid textures. In

contrast, the complete model is able to remove real noise, while

preserving the structural and textural image details.

The effectiveness of the proposed MRF enhancement block:

Since our model could employ different enhancement block

number, we test different options. The results on image dehazing

and all-in-one image enhancement tasks corresponding to different

n are given in Table 4. This ablation study reveals that MRF block

effectively increases the PSNR by 13.56% from n=1 to n=2, owning

to the diverse receptive fields and the multi-scale perception

mechanism. It is worth noticing that the model yields better

performance in PSNR and SSIM respectively as the number of

the MRF enhancement block increases, but the gains show a clear
TABLE 3 Quantitative comparison results (PSNR/SSIM) of some excellent methods for dehazy, motion deblurring and compression deblurring tasks.

Methods Haze Haze Compression Blur

FFANet (Dehaze) 20.97/0.9325 29.60/0.8366 32.17/0.8785

FFANet (Dehaze) 30.12/0.9842 31.33/0.9317 32.76/0.9408

HINet (Compression Deblur) 21.94/0.9563 31.20/0.9035 33.11/0.9104

Ours (All-in-one) 32.50/0.9501 28.88/0.7909 31.70/0.8587

Ours 35.69/0.9642 31.87/0.864 32.98/0.8764
The best and second-best evaluation results are highlighted in bold and underlined, respectively.
TABLE 4 Ablation study on individual components of the proposed AIENet.

Method Task-specific All-in-one

PSNR↑ SSIM↑ PSNR↑ SSIM↑

w/o global-local skip connection 32.36 (10.3%) 0.9290 (3.8%) 30.11 (7.9%) 0.8664 (9.7%)

w/o local skip connection 33.96 (5.1%) 0.9553 (0.9%) 29.61 (4.8%) 0.8681 (2.2%)

MRF n = 1 30.16 (18.3%) 0.9147 (5.4%) 30.85 (5.3%) 0.8839 (7.5%)

n = 2 34.25 (4.2%) 0.9541 (1.1%) 31.02 (4.8%) 0.8840 (7.5%)

n = 4 36.18 (-1.4%) 0.9651 (-0.1%) 31.69 (-2.1%) 0.8890 (-0.2%)

Ours 35.69 (0.0%) 0.9642 (0.0%) 31.05 (0.0%) 0.8875 (0.0%)
fronti
The PSNR and SSIM of the proposed method are highlighted in bold. The symbol “↑” means that higher value is better.
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downward trend. As such, the results also indicate that the model

performance is not from the deeper layers but from a more efficient

architecture, since more modules do not improve the performance

much and our model has a smaller size.
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4.5 Smoke detection results

As discussed in the introduction, aerial image enhancement

could be helpful in improving the performance of fire detection

approaches in forest fire prevention based on drone imagery

monitoring. Therefore, we train a smoke detection algorithm

(Wang et al., 2022) on the raw dataset. To verify the effectiveness

of our method in boosting image detection, we use the results of

image dehazing, image motion deblurring, and image compression

deblurring as input exemplars for the detection algorithm,

respectively. As a comparison, we also train models that perform

better in each task, then test their enhanced results in the detection

algorithm. As shown in Figure 9, the confidence below these images

demonstrates the quantitative comparisons between the proposed

model and the state-of-the-art methods. The results show that

whether it is restoring blurred images or removing weather

disturbances, our image enhancement method can effectively

improve the confidence of the detection algorithm.
A

B

C

FIGURE 9

Qualitative comparison of our model with other works in improving fire detection performance. (A) is the visual comparison of image dehazing
results. (B) is the visual comparison of image motion deblurring results. (C) is the visual comparison of image compression deblurring results.
FIGURE 8

Examples on image dehazing(first row) and all-in-one image
enhancement(second row) to show the superiority of global-local skip
connection. Obviously, our model with glob-local skip connection
improves the gridding artifacts and produces much better details.
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5 Conclusion

This paper presents an image enhancement method based on

multiple receptive fields to improve the visual effect of aerial images

in forest scenes. We focused on building an all-in-one framework

that eliminates any degradation in aerial imagery. Based on this, we

also devise a novel multi-receptive field enhancement block, which

can adapt to the distribution differences of object regions in aerial

images. It also benefits the network by recovering high-resolution

details of images more efficiently. Extensive experiments have

validated the merits of our method over other state-of-the-art

enhancement methods on benchmark datasets. Specifically, our

AIENet has achieved considerable gains in both dehazing and

motion deblurring tasks, i.e., 5.3% improvement in PSNR on the

haze dataset, and a 1.7% increase on the motion blur dataset. The

results of all-in-one image enhancement also show that our model

has the ability to obtain performance close to SOTAs, which avoids

the lack of resources associated with storing models separately to

handle individual enhancement tasks. And we have also

experimentally demonstrated that AIENet generalizes well to

other image domains. Moreover, we further conduct ablation

experiments to demonstrate the influence of the proposed MRF

enhancement block. We show that using three enhancement blocks

leads to optimal performance (35.69 dB on a specific task, and 31.05

dB on an all-in-one task) as compared to employing other

quantities of enhancement blocks. Notably, the proposed method

introduces lightweight image enhancement capability since the

architecture can be based on a simpler backbone network for

image restoration with less running time, which is of great

interest for devices with limited resources.
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