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An improved YOLOv5s model
using feature concatenation with
attention mechanism for real-
time fruit detection and counting

Olarewaju Mubashiru Lawal*, Shengyan Zhu and Kui Cheng

Sanjiang Institute of Artificial Intelligence and Robotics, Yibin University, Sichuan, China
An improved YOLOv5s model was proposed and validated on a new fruit dataset

to solve the real-time detection task in a complex environment. With the

incorporation of feature concatenation and an attention mechanism into the

original YOLOv5s network, the improved YOLOv5s recorded 122 layers, 4.4 × 106

params, 12.8 GFLOPs, and 8.8 MBweight size, which are 45.5%, 30.2%, 14.1%, and

31.3% smaller than the original YOLOv5s, respectively. Meanwhile, the obtained

93.4% of mAP tested on the valid set, 96.0% of mAP tested on the test set, and 74

fps of speed tested on videos using improved YOLOv5s is 0.6%, 0.5%, and 10.4%

higher than the original YOLOv5s model, respectively. Using videos, the fruit

tracking and counting tested on the improved YOLOv5s observed less missed

and incorrect detections compared to the original YOLOv5s. Furthermore, the

aggregated detection performance of improved YOLOv5s outperformed the

network of GhostYOLOv5s, YOLOv4-tiny, and YOLOv7-tiny, including other

mainstream YOLO variants. Therefore, the improved YOLOv5s is lightweight

with reduced computation costs, can better generalize against complex

conditions, and is applicable for real-time detection in fruit picking robots and

low-power devices.

KEYWORDS

improved YOLOv5s, fruit detection, fruit counting, feature concatenation, attention
mechanism (AM)
1 Introduction

The demand for fruit is increasing every day because it provides essential nutrients and

several health benefits for humans (Pal and Molnar, 2021). Over 841 million metric tons of

fruit was reported to have been produced in the year 2020 according to Shahbandeh (2022).

However, in the current fruit demand and production status, there is a strict time limit for

fruit picking and the demand for labor is large, which means that labor costs will increase

significantly. With the rapid growing interest of artificial intelligence (AI), fruit production

may be replaced by agricultural robots (Zhao et al., 2016). The application of agricultural

robots for picking fruit and counting generally offers solutions to the expensive cost of
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manual labor, labor intensiveness, growing demand for food,

increasing fruit quality, etc. (Sa et al., 2016).

Fruit detection is a key intelligent technological part of the

development of agricultural robots for monitoring, picking fruit,

and counting. Nevertheless, fruit detection is influenced by many

factors such as uneven light intensity and leaf occlusions, including

a situation when the target fruit exhibits the same visual appearance

as its background. Additionally, the detection accuracy, inference

speed, and lightweight deployment (Lawal, 2021a) are of great

significance to the fruit detection model. Over the years, many

fruit detection models have been proposed and have achieved good

results, but most of them remain in the theoretical stage, lack

practical applications, or fail to fully solve the above problems, and

require further improvement. Therefore, studying a fruit detection

method that can accurately detect fruit and count in complex

environments, which is both fast and deployable, is of great

research value.

Using You Only Look Once (YOLO) framework for fruit

detection has gained a lot of attention for many years. YOLO is a

single-stage target detector that has shown excellent performance

for detection accuracy and speed (Lawal, 2021a; Lawal, 2021b). Fu

et al. (2021) modified YOLOv3-tiny (Redmon and Farhadi, 2018)

for kiwifruit detection and achieved an average precision (AP) of

90.05% and a speed of 29.4 frames per second (fps). Tian et al.

(2019) improved the YOLOv3 model to detect apples at different

growth stages in orchards, and the average speed of 3.4 fps for

images with 3,000 × 3,000 resolution was reported. Zheng Y. Y. et al.

(2019) published an AP of 88.8% and a speed of 40 fps on

muskmelon detection based on YOLOv3. Gai et al. (2021)

recorded an AP of 95.56% and a speed of 35.5 fps on improved

YOLOv3-tiny. Lawal (2021c) and Liu et al. (2020) demonstrated

that the factors of fruit detection are solvable using an improved

YOLOv3. For the detection of fruits and vegetables using YOLOv4-

tiny proposed by Bochkovskiy et al. (2020); Latha et al. (2022)

achieved a mean AP of 51% and a speed of 55.6 fps. Meanwhile, the

proposed YOLO-Oleifera by Tang et al. (2023) based on the

improved YOLOv4-tiny reported 92.07% of AP, a weight size of

29 MB, and an average speed of 32.3 fps to detect each fruit image.

Parico and Ahamed (2021) improved YOLOv4-tiny for real-time

pear fruit detection and achieved a speed of more than 50 fps and an

AP of 94.19%, but with a weight size of 22.97 MB. Yan et al. (2021)

observed an AP of 86.75% and a speed of 66.7 fps using modified

YOLOv5 (Jocher et al., 2022) for apple target detection. Zhang et al.

(2022) incorporated a ghost network (Han et al., 2020), coordinate

attention mechanism (CAM) (Hou et al., 2021), and SCYLLA-IoU

(SIoU) loss (Gevorgyan, 2022) into YOLOv5s to detect a dragon

fruit in the natural environment and realized an AP of 97.4% with a

weight size of 11.5 MB. Qiao et al. (2022) proposed a counting

method of red jujube based on the modified YOLOv5s and reported

an AP of 94% and a speed of 35.5 fps using ShuffleNetv2 (Ma et al.,

2018). YOLOv7 proposed by Wang et al. (2022) was reported to

have surpassed other well-known object detectors including

YOLOv4 and YOLOv5. Chen J. et al. (2022) enhanced YOLOv7

using a CBAM (Convolutional Block Attention Module) for citrus

detection, reaching an AP of 97.29% and a speed of 14.4 fps, and the

number of parameters and computation costs were reduced to 11.21
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MB and 28.71 G, respectively. Zhang et al. (2022) experimented on

YOLOv7 and YOLOv7-tiny for dragon fruit detection and

respectively achieved an AP of 95.6% and 96.0% including a

weight size of 74.9 and 12.3 MB. Nevertheless, few researchers

have focused on the number of parameters and computation costs

of a fruit detection model for picking and counting fruits in complex

environments. Solving this big challenge is a way to realize a

lightweight real-time fruit detection model that is deployable on a

low-power computing device with limited memory.

Thus, this study constructed a lightweight network model based

on YOLOv5s architecture to improve the detection accuracy and

speed, which can be used for the real-time detection task of fruit

picking robots and low-power computing device in a complex

natural environment. The main contributions are summarized

as follows:
(1) Establishing a new fruit dataset of dense target images

under complex conditions.

(2) The network of Stem and Maxpool was adopted in the

model, respectively replacing the first convolution layer and

the downsample convolution layers of the original

YOLOv5s network to ach ieve the l ightweight

improvement of the model. CAM was added to the

original YOLOv5s network to make the model more

accurate in locating and identifying dense image fruits.

The AC network that involves the feature concatenation

of the convolution layers with CAM was introduced for

increased precision learning. The multiscale feature fusion

was strengthened by replacing the C3 network in the path

aggregation network (PANet) (Liu et al., 2018) with a

convolution layer.

(3) Verifying the effectiveness of the improved YOLOv5s by an

ablation study and comparing it with other mainstream

single-stage target detection models.
The remaining part of this paper is organized as follows. The

second section discusses the methods involved in the fruit dataset,

improved YOLOv5s, experimental setup, and evaluation metrics.

The third section explains the obtained results and discussion, and

the fourth section summarizes the conclusions.
2 Methods

2.1 Fruit dataset details

The images of strawberry (Fragaria ananassa) and jujube

(Ziziphus jujuba) fruit used in this paper were respectively taken

from different locations within wanghaizhuang greenhouses,

Houcheng town, Jinzhong and Gaolang Red Date Picking

Garden, Linxian, Luliang in Shanxi Province, China. The images

were captured using digital cameras, Huawei mate30pro and

mate40pro, of 3,968 × 2,976, 1,904 × 4,096, and 2,736 × 3,648

pixel resolutions, respectively, in the morning, noon, and afternoon

with constantly changing distance and shooting angle. A total of

1,350 images of strawberry and 1,959 images of jujube fruit were
frontiersin.org
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obtained, with uneven conditions such as leaf occlusion, overlap

occlusion, branch occlusion, similar visual appearance to the

background image, dense targets, branch occlusion, back light,

front light, side light, and other fruit natural scenes, and saved in

JPG format. Figure 1 shows some of the captured images under

different conditions. These images were randomly divided into 80%

for the train set, 15% for the valid set, and 5% for the test set to

create 2,651, 491, and 167 images, respectively, for model training

and testing paradigms as shown in Table 1. Table 1 provides the

dataset annotation details. The ground truth bounding boxes within

each image were manually drawn using the labelImg tool without

taking into account the complex condition of the image, and the

annotation files saved in the YOLO text format. The YOLO text

format takes target class, coordinates, height, and width. According

to Table 1, SBoxes and JBoxes were the boxes created from images of

strawberry and jujube fruit, respectively, having a total number of

boxes of 18,496, 3,232, and 1,063 generated from 2,651 images from

the train set, 491 from the valid set, and 167 from the test set,

respectively. The test set, being the unseen data, was labeled in order

to investigate the P–R curves’ performance, including the target

fruit counting of the tested model. In addition to the dataset,

recorded videos of strawberry and jujube fruits in mp4 format

were provided to examine the level of robustness, real-time

detection speed, and open counting of detected fruit targets.
2.2 Original YOLOv5s

The original network structure of YOLOv5s shown in Figure 2

is divided into the input, backbone network, neck network, and

head network. The input integrates mosaic data augmentation,
Frontiers in Plant Science 03
adaptive anchor, and adaptive images scaling of 0.33 depth and

0.50 width. The backbone is a convolutional neural network used to

accumulate fine-grained images and generate feature maps. It

contains CBS, C3, and SPPF for feature extraction as detailed in

Figure 3. The neck part of YOLOv5s adopts the PANet structure for

multiscale feature fusion. The neck network combines the feature

maps collected by the backbone network and then passes the

integrated feature maps to the head network, which generate

predictions from the anchor boxes for object detection (Rahman

et al., 2022). The head network outputs a vector with the category

probability of object target, object score, and position of the

bounding box surrounding the object target.
2.3 Improved YOLOv5s

A lightweight neural network model with high detection

accuracy and speed based on the YOLOv5s network structure was

proposed to support the real-time detection task of a fruit picking

robot and low-power computing devices in complex natural scenes.

Firstly, the adaptive image scaling of YOLOv5s was increased to

1.0 depth and 1.0 width multiples in the improved YOLOv5s

network shown in Figure 4. This is basically to adjust the depth

and width of the network to meet the needs of different scenes and

improve detection accuracy, which is similar to the idea of

YOLOv5l and YOLOv7-tiny. Furthermore, the adaptive anchor

boxes of improved YOLOv5s were calculated using the k-means

clustering algorithm to match the annotated boxes for improved

fruit detection performance. The anchor box size was calculated to

meet the requirements of the dataset where the best recall must be
B C DA

FIGURE 1

Images under different conditions: (A) front light, (B) overlapping fruits, (C) leaf occlusion, and (D) back light.
TABLE 1 Fruit dataset annotation details.

Division Strawberry Jujube Images SBoxes JBoxes Boxes

Train set 1,082 1,569 2,651 7,584 10,912 18,496

Valid set 199 292 491 1,311 1,921 3,232

Test set 69 98 167 426 637 1,063

Total 1,350 1,959 3,309 9,321 13,470 22,791
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greater than 0.98, and if not, the network parameters are updated in

the reverse direction.

Secondly, four downsampling feature maps were applied in the

backbone network of the improved YOLOv5s instead of five

downsampled feature maps adopted by the original YOLOv5s in

order to ensure small and dense target detection. The backbone of

improved YOLOv5s contains a network of Stem, AC, Maxpool,

CBS, SPPF, and CAM as shown in Figure 4, and a component

outline as shown in Figures 3, 5. The lightweight Stem as the first

spatial downsampling network was used to replace the first CBS of

the original YOLOv5s backbone network by combining a small

number of convolution kernels, which effectively reduces the

computational cost while ensuring the integrity of the feature

information. The AC network that concatenated 1 × 1 CBS, 3 × 3

CBS, and CAM followed by 1 × 1 CBS as depicted in Figure 5

replaces the first, third, and fifth layers of the original YOLOv5s

network. The purpose of using this network is to enhance the

capacity to learn more diverse features by expanding the number of

channels and, at the same time, reducing parameters and

complexity. The AC network draws on the experience of selective

feature connection mechanism (SFCM) (Du et al., 2019) by

information sharing where the complementary features of low

layers concatenate high layers. The feature concatenation is

defined by Equation (1), where X ∈ RH×W×C1 is for 1 × 1 CBS, Y
Frontiers in Plant Science 04
∈ RH×W×C2 is for 3 × 3 CBS, Z ∈ RH×W×C3 is for CAM, and O ∈
RH×W× (C1+C2+C3) is the concatenated features of C1+C2+C3

channels, height (H), and width (W). Figure 5 of the AC network

describes the feature concatenation process stated in Equation (1).

The CAM proposed by Hou et al. (2021) for mobile network

attention mechanism is part of the concatenation process in the

AC network. With the added location information into channel

attention, the CAM module can easily alleviate the loss problem of

feature information of small dense objects according to Zhang et al.

(2022). The imbibed Maxpool network into the improved YOLOv5s

in Figure 4 is used for spatial downsampling, which replaces the

second, fourth, and sixth layers of the original YOLOv5s. The main

idea is to reduce the computational cost by reducing the amount of

parameters to learn and provide a faster detection speed.

Additionally, the inserted networks of CBS, SPPF, and CAM

respectively replaces the seventh, eighth, and ninth layers of the

original backbone of YOLOv5s to foster the detection performance

of improved YOLOv5s in Figure 4. As detailed in Figure 3, CBS is a

convolution layer activated with SiLU (Stefan et al., 2017) after the

batch normalization (BN) layer. SPPF is a feature enhancement

network that helps to reduce missed target detection and enables a

faster detection speed according to Jocher et al. (2022) and CAM

module; the effect of enhancing representation can accurately locate

and identify the dense image fruit.
FIGURE 2

The network structure of YOLOv5s.
FIGURE 3

The component networks contained in the original YOLOv5s.
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O = ½X, Y, Z� (1)

Thirdly, the C3 module in the neck network of the original

YOLOv5s was replaced by 1 × 1 CBS and its number of networks

was pruned to one on the improved YOLOv5s. The 1 × 1 CBS

replaces the 13th, 17th, 20th, and 23rd layers of PANet to reduce the

number of parameters and promote a faster detection speed. PANet

conveys stronger localization features from the lower feature maps

to the higher feature maps, which enhance the feature fusion

capability of the neck network.

Finally, the head network of the improved YOLOv5s in Figure 4

produces a feature map with dimensions of 160 × 160, 80 × 80, and

40 × 40 against the 80 × 80, 40 × 40, and 20 × 20 of the original

YOLOv5s in Figure 2, used to detect the image targets of different

sizes. This aims to improve the detection of small dense targets and

speed up detection. Similar to the original YOLOv5s, the non-

maximum suppression (NMS) was adopted to select the

appropriate fruit targets by removing duplicate predicted boxes

and complete intersection-over-union (CIoU) loss function in

Equation (2) proposed by Zheng Z. et al. (2019) and was utilized

for the convergence speed of the model network and localization

accuracy with special attention to the overlap area (S), centroid

distance (D), and aspect ratio (V) of the predicted box (B) and real

box (Bgt). S, D, and V are normalized from 0 and 1, and invariable

on the regression scale. This measure is to enhance fruit detection
Frontiers in Plant Science 05
performance.

LCIoU = S(B,  Bgt) + D(B, Bgt) + V(B,  Bgt) (2)
2.4 Experiment setup

The training and testing of this research work were

experimented using a computer having an Ubuntu22.04LTS

operating system, Core i7-12700 CPU @ 64-bit 4.90 GHz, 32 GB

RAM (NVIDIA GeForce RTX 3060 GPU), python 3.9.12 and torch-

1.11.0+cu113. The improved YOLOv5s including other compared

models used in this paper received an input image of 640 × 640

pixels, 16 batch size, 0.937 momentum, 0.0005 weight decay, 0.2

IoU, 0.015 hue, 0.7 saturation, 0.4 lightness, 1.0 mosaic, 0.9 scale, 0.2

translate, 0.15 mix-up, and 300 epochs for training. Random

initialization technique was utilized to initialize the weights for

training all the models from scratch.
2.5 Evaluation metrics

The evaluation metrics used for fruit detection performance are

precision (P), recall (R), F1, average precision (AP), mean average
FIGURE 4

The network structure of the improved YOLOv5s.
FIGURE 5

The component networks added to support the improved YOLOv5s.
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precision (mAP), speed, layers, number of parameters (params),

giga floating point operations per second (GFLOPs), and weight

size. The P, R, F1, AP, mAP, speed, params, and GFLOPs can be

defined using Equations (3)–(10), respectively. TP is true positive

(correct detections), FN is false negative (missed detections), FP is

false positive (incorrect detections), and P(R) denotes that P is a

function of R. F1 is the trade-off between P and R, AP is the P−R

curve of a single class, mAP is all the AP values averaged over

different classes, C is the number of classes, j is the serial number, i is

the input size, k is the convolution kernel size, o is the output size,

and H × W is the size of the outputted feature map. The fruit

detection model tends to perform better with an increase in mAP.

Speed is measured in frames per second (fps). Params is used to

measure the model complexity. Layer is a network topology of the

model. GFLOPs is the speed of the model based on computation

costs. Size measures the model weight.

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

F1 =
2� R � P
R + P

(5)

AP =
Z 1

0
P
(R)
dR (6)

mAP = o
C
j=1APj
C

(7)

Speed = frames=time (8)

params = ½i� (k � k)� o� + o (9)

GFLOPs = H�W� params (10)
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3 Results and discussion

3.1 Fruit detection

The displayed box validation loss in Figure 6A measures the

actual position of target fruits in an image. It shows a consistent

decreasing pattern to predict the training performance of the model.

The obtained box validation loss of the improved YOLOv5s is lower

than that of the original YOLOv5s, confirming a deeper neural

network. As the model learns, the performance improves. This

decreasing box validation loss constituted an increasing mAP seen

in Figure 6B. The 93.7% of mAP obtained from the improved

YOLOv5s is higher than the 92.8% of mAP found in the original

YOLOv5s model. This confirms the training superiority

performance of the improved YOLOv5s over the original YOLOv5s.

The improved YOLOv5s and original YOLOv5s were subjected

to the valid set and test set using the P−R curve method as depicted

in Figure 7. A P−R curve with a larger area under the curve (AUC)

performs better. Figure 7 shows that the AUC of the improved

YOLOv5s is greater than that of the original YOLOv5s. The P−R

curves under Figure 7A indicated that the improved YOLOv5s

having 97.5% and 89.2% for strawberry and jujube targets,

respectively, are higher than the original YOLOv5s having 97.3%

and 88.2% for strawberry and jujube targets, respectively. At the

same time, the P−R curves under Figure 7B show that the same

trend as the improved YOLOv5s is also more than the original

YOLOv5s with 0.4% and 0.7% for strawberry and jujube targets,

respectively. Meanwhile, it was observed that the level of P−R curves

of strawberry targets is higher than that of jujube targets as depicted

in Figure 7. This phenomenon can be attributed to a more complex

condition of jujube fruits in terms of their image background

compared to strawberry fruits. For justification, the output of

images tested using the valid set and test set is displayed in

Figures 8, 9, respectively. The predicted boxes in orange color are

jujube targets while the ones in blue color are strawberry targets. A

number of target fruits were detected using both the improved

YOLOv5s and the original YOLOv5s model. Nevertheless, the

correct detection score of fruit targets found in Figure 8A of the
BA

FIGURE 6

The training outcome of models: (A) box-validation loss and (B) mAP@50%.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1153505
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lawal et al. 10.3389/fpls.2023.1153505
improved YOLOv5s is more than that found in Figure 8B of the

original YOLOv5s, having higher missed detections. This is

verifiable using the confusion matrix because it provides a holistic

view of comparing the actual targets against the predicted targets of

fruits in Figures 8, 9. In the case of Figure 9, based on the test set, the
Frontiers in Plant Science 07
correct detection score in Figure 9A of the improved YOLOv5s is

96% for strawberry and 93% for jujube targets compared to that in

Figure 9B of the original YOLOv5s with 96% of strawberry and 91%

of jujube targets using the confusion matrix. Just like Figure 8, the

number of missed detections observed in Figure 9B tends to be
BA

FIGURE 8

The output of images tested on (A) the improved YOLOv5s and (B) the original YOLOv5s model using the valid set.
BA

FIGURE 9

The output of images tested on (A) the improved YOLOv5s and (B) the original YOLOv5s model using the test set.
BA

FIGURE 7

The P−R curves from (A) the valid set and (B) the test set tested on models.
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greater than Figure 9A. A proof to support the presented results in

Figures 7A, B, shows that the improved YOLOv5s outperformed the

original YOLOv5s.

The obtained results that examine the overall performance of

the improved YOLOv5s against the original YOLOv5s are displayed

in Table 2. As part of the contribution to the fruit detection

performance of the improved YOLOv5s, the layers, params,

GFLOPs, and weight size reduce by 45.5%, 30.2%, 14.1%, and

31.3%, respectively, from the original YOLOv5s. These evaluation

metrics are of high significance to both the training and testing

process of models particularly with speed performance. Because the

real-time and workable fruit detection model in low-power

computing devices is dependent on the params and weight size

according to Lawal (2021a) and Zhang et al. (2021), the average

detection speed of improved YOLOv5s tested on the videos’ dataset

is 10.4% higher than the original YOLOv5s. This demonstrated a

faster detection speed with a reduced computation cost and a high

level of robustness for fruit generalization. For the detection

accuracy, the obtained P and R of the improved YOLOv5s is

91.8% and 88.6% under the valid set, and 92.8% and 92.2% under

the test set, respectively, while that of the original YOLOv5s is

93.0% and 86.6% under the valid set, and 93.1% and 89.7% under

the test set, respectively. With the application of Equation (5) for F1
calculations, the obtained 90.2% of valid-F1 tested on improved

YOLOv5s is 0.5% greater than 89.7% of valid-F1 tested on the

original YOLOv5s, and 92.5% of test-F1 tested on improved

YOLOv5s is 1.1% more than 91.4% of test-F1 tested on the

original YOLOv5s. However, mAP is more accurate than F1
because it measures P−R relationship globally using the average

of all different classes. Therefore, the level of mAP as measured in

the improved YOLOv5s is 0.6% for valid-mAP and 0.5% for test-

mAP, more accurate than the original YOLOv5s, as indicated in

Table 2. Thus, the obtained detection performance of the improved

YOLOv5s is better than that of the original YOLOv5s.
3.2 Fruit counting

Both the improved YOLOv5s and the original YOLOv5s were

subjected to counting of target fruits using the test set and videos

recorded to investigate the level of robustness. The process involves
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the tracking of each fruit class before counting. Under the influence

of complex conditions, the models could detect the number of target

fruits, as described in Table 3. ISBoxes and IJBoxes are the detected

boxes for strawberry and jujube fruits using the test set, while IS%

and IJ% are respectively the percentage difference calculated

between SBoxes of Table 1 and ISBoxes, and JBoxes of Table 1 and

IJBoxes. The number of detected targets using strawberry and jujube

video are VSBoxes and VJBoxes, respectively. Table 3 shows that the

number of detected strawberry targets and jujube targets is

respectively less than and higher than those in Table 1 in terms

of ground truth targets. Having less detected targets is attributed to

missed detection, while more detected targets is attributed to

incorrect detection. This further revealed a less complex

background image of strawberry compared to jujube fruits. The

improved YOLOv5s is excellent in counting 419 targets of ISBoxes
and 693 targets of IJBoxes compared to the original YOLOv5s at the

same level of detection. Meanwhile, both models are associated with

missed and incorrect detections. However, the number of missed

detections observed on the tested improved YOLOv5s is 1.64 of IS%

against the original YOLOv5s, which is 3.52 of IS% for strawberry

targets. For jujube incorrect detections, IJ% is 8.79 on the tested

improved YOLOv5s compared to 11.62 on the tested original

YOLOv5s. Furthermore, the obtained results for tracking

strawberry targets on video detected and counted 6,292 boxes on

tested improved YOLOv5s, which is 194 more in detections than

the original YOLOv5s with 6,098. In the case of jujube targets

counted, the original YOLOv5s recorded 23 more incorrect

detections compared to the improved YOLOv5s according to

Table 3. Having experienced similar attributes from the test set

and videos, the improved YOLOv5s is more robust for tracking and

counting, making it the best candidate for fruit detection.
3.3 Ablation study

The ablation study presented in Table 4 aims to investigate the

performance effects of removing and replacing some features of the

improved YOLOv5s detection model. The ablation study was

carried out on the backbone and neck network. According to

Table 4, using only the feature concatenation in the backbone

network means without CAM as the attention mechanism.
TABLE 2 The overall detection performance between the improved YOLOv5s and the original YOLOv5s.

Model Layers Params
×106

GFLOPs Size
(MB)

Valid
F1%

Test
F1%

Valid
mAP%

Test
mAP%

Speed
fps

Original YOLOv5s 220 6.3 14.9 12.8 89.7 91.4 92.8 95.5 67

Improved YOLOv5s 122 4.4 12.8 8.8 90.2 92.5 v93.4 96.0 74
front
TABLE 3 Counting of target fruits detected using the test set and videos.

Model ISBoxes IJBoxes IS% IJ% VSBoxes VJBoxes

Original YOLOv5s 411 711 −3.52 +11.62 6,098 9,097

Improved YOLOv5s 419 693 −1.64 +8.79 6,292 9,074
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Similar to the strengthened PANet, the used feature pyramid

network (FPN) by Lin et al. (2017) was improved by replacing

the C3 module with 1×1 CBS. Method 1 is the improved YOLOv5s,

Method 2 has the same backbone as Method 1 but with FPN,

Method 3 has only feature concatenation with PANet, and Method

4 has only feature concatenation with FPN. The number of params

and GFLOPs respectively observed in methods with PANet is 0.8

and 0.5 higher than methods with FPN. This is to say that the

complexity and computation costs of Method 1 and Method 3 are

greater than those of Method 2 and Method 4. Similarly, the

methods having feature concatenation with an attention

mechanism constitute a more complex network compared to

feature concatenation without an attention mechanism. The level

of methods’ complexity and computation costs influences the

variation of detection speed shown in Table 4, where Method 4 >

Method 3 > Method 2 > Method 1 with just 1 fps difference between

them. Using accuracy, methods with attention mechanism

performed better than methods without attention mechanism,

and further improvement was observed in methods with PANet

compared to FPN. Hence, Method 1 is 0.6%, 0.7%, and 0.8% more

accurate than Method 2, Method 3, and Method 4, respectively,

under valid-mAP, and 0.4%, 1%, and 1.1% more accurate than

Method 2, Method 3, and Method 4, respectively, under test-mAP.

The ablation study verified that Method 1, as the selected improved

YOLOv5s model, performed best.
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3.4 Comparison of models

Using the P−R curve analysis technique, the improved

YOLOv5s was compared to GhostYOLOv5s (Zhang et al., 2022),

YOLOv4-tiny (Bochkovskiy et al., 2020) and YOLOv7-tiny (Wang

et al., 2022) of the single-stage detection model. The same attribute

of P−R curves in Figure 7 is noted in Figure 10, where the P−R

curves of strawberry in both the valid set and test set are greater

than those of jujube fruit targets. Figure 10A of the valid set and

Figure 10B of the test set indicate that the AUC of the improved

YOLOv5s is greater than other models. Table 5 reveals the overall

detection performance of models to justify the displayed results in

Figure 10. Under the accuracy performance, the improved

YOLOv5s is 1%, 0.8%, and 0.3% higher than GhostYOLOv5s,

YOLOv4-tiny, and YOLOv7-tiny, respectively, for valid-F1, and

1.2%, 0.2%, and 0.4% higher than GhostYOLOv5s, YOLOv4-tiny,

and YOLOv7-tiny, respectively, for test-F1. For mAP, the improved

YOLOv5s is 1.4%, 1.7%, and 0.5% greater than GhostY-OLOv5s,

YOLOv4-tiny, and YOLOv7-tiny, respectively, for valid-mAP, and

1.0%, 0.4%, and 0.5% higher than GhostYOLOv5s, YOLOv4-tiny,

and YOLOv7-tiny, respectively, for test-mAP. This demonstrates

that the improved YOLOv5s is more accurate than other detection

models according to Table 5. Meanwhile, GhostYOLOv5s has the

highest number of layers at 371 compared to YOLOv4-tiny with

113, the improved YOLOv5s with 122, and YOLOv7-tiny with 208.
TABLE 4 Ablation study on improved YOLOv5s.

Model Feature concatena-
tion

Attention mecha-
nism

Neck
network

Params
×106

GFLOPs Valid mAP
%

Test mAP
%

Speed
fps

Method
1

√ √ PANet 4.4 12.8 93.4 96.0 74

Method
2

√ √ FPN 3.6 12.3 92.8 95.6 75

Method
3

√ ˟ PANet 4.2 11.5 92.7 95.0 76

Method
4

√ ˟ FPN 3.4 11.0 92.6 94.9 77
fr
BA

FIGURE 10

The P−R curves from (A) the valid set and (B) the test set tested on the compared models.
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However, GhostYOLOv5s is associated with the lowest values,

4.1 params, 9.5 GFLOPs, and 8.5 MB weight size compared to

4.8 params, 15.0 GFLOPs, and 9.6 MB weight size of YOLOv4-tiny,

6.0 params, 13.0 GFLOPs, and 12.3 MB weight size of YOLOv7-

tiny, and 4.4 params, 12.8 GFLOPs, and 8.8 MB weight size of the

improved YOLOv5s. Apart from the GhostYOLOv5s model, the

params, GFLOPs, and weight size of the improved YOLOv5s

decreases in large percentages against YOLOv4-tiny and

YOLOv7-tiny. Interestingly, the obtained performance of

GhostYOLOv5s was unable to obtain a faster detection speed

tested on videos’ dataset, unlike other models. This outcome is

linked to its large recorded layers in Table 5, which warrants future

investigation. For other models, the detection speed of the improved

YOLOv5s is equal to YOLOv7-tiny with 74 fps, higher than the 61

fps of GhostYOLOv5s and insignificantly lower than the 75 fps of

YOLOv4-tiny. The detection performance in aggregation shows

that the improved YOLOv5s is outstanding compared to

GhostYOLOv5s, YOLOv4-tiny, and YOLOv7-tiny, including the

fruit detection model proposed by Fu et al. (2021) for kiwifruits,

Tian et al. (2019) for apples, Parico and Ahamed (2021) for real-

time pear, Yan et al. (2021) for apples, Qiao et al. (2022) for red

jujube, Chen Z. et al. (2022) for automatic estimation of apple, and

Fu et al. (2022) for YOLO-Banana. For this reason, the improved

YOLOv5s is lightweight with reduced computation costs, can better

generalize against a fruit complex environment, and is applicable

for real-time fruit detection in low-power devices.

4 Conclusion

The ability to detect fruits conveniently is important for fruit

picking robots. However, the fruit detection model is confronted with

the challenges of a complex environment, including deployment on

low-power computing devices with limited memory. For this reason,

an improved YOLOv5s model with feature concatenation and

attention mechanism was proposed in this paper based on YOLOv5s

structure and validated using a new fruit image dataset. The improved

YOLOv5s model contained the networks of Stem, AC, Maxpool, CBS,

SPPF, CAM, and improved PANet to enhance the fruit detection

performance. The performance demonstrated that the 122 layers, 4.4 ×

106 params, 12.8 GFLOPs, and 8.8 MB weight size of the improved

YOLOv5s are 45.5%, 30.2%, 14.1%, and 31.3% lower than the original

YOLOv5s, respectively. The obtained 93.4% of mAP tested on the valid

set, 96.0% of mAP tested on the test set, and 74 fps of speed tested on

videos using improved YOLOv5s is 0.6%, 0.5%, and 10.4% higher than

the original YOLOv5s model, respectively. At the same time, the

improved YOLOv5s is more robust for tracking and counting with
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less missed and incorrect detection compared to the original YOLOv5s.

For the verification of effectiveness, the aggregated performance of

improved YOLOv5s is outstanding compared to GhostYOLOv5s,

YOLOv4-tiny, and YOLOv7-tiny models. In all, the improved

YOLOv5s is lightweight with reduced computation costs, robust

against complex and changeable conditions, and applicable to fruit

picking robots and low-power computing devices for real-time

detection. Meanwhile, decreasing the adaptive image scaling of the

improved YOLOv5s model will further reduce the number of

parameters and computation costs, but with a likely setback in

accuracy performance. Future investigations will require improving

the fruit detection performance by subjecting the proposed model to

other existing neck networks and loss functions.
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TABLE 5 The overall detection performance comparison between models.

Model Layers Params
×106

GFLOPs Size
(MB)

Valid
F1%

Test
F1%

Valid
mAP%

Test
mAP%

Speed
fps

GhostYOLOv5s 371 4.1 9.5 8.5 89.2 91.3 92.0 95.0 61

YOLOv4-tiny 113 4.8 15.0 9.6 89.4 92.3 91.7 95.6 75

YOLOv7-tiny 208 6.0 13.0 12.3 89.9 92.1 92.9 95.5 74

Improved YOLOv5s 122 4.4 12.8 8.8 90.2 92.5 93.4 96.0 74
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