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Genome-wide characterization
of major latex protein gene
family in peanut and expression
analyses under drought and
waterlogging stress

Jie Li, Ruier Zeng, Zijun Huang, Hengkuan Gao, Shiyuan Liu,
Yu Gao, Suzhe Yao, Ying Wang, Hui Zhang,
Lei Zhang* and Tingting Chen*

Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China
Agricultural University, Guangzhou, China
Peanut is an important oilseed crop around the world which provides vegetable

oil, protein and vitamins for humans. Major latex-like proteins (MLPs) play

important roles in plant growth and development, as well as responses to

biotic and abiotic stresses. However, their biological function in peanut is still

unclear. In this study, a genome-wide identification of MLP genes in cultivated

peanut and two diploid ancestor species was analyzed to determine their

molecular evolutionary characteristics and the expression profile under

drought and waterlogging stress conditions. Firstly, a total of 135 MLP genes

were identified from the genome of tetraploid peanut (Arachis hypogaea) and

two diploid species Arachis. duranensis and Arachis. ipaensis. Then, phylogenetic

analysis revealed that MLP proteins were divided into five different evolutionary

groups. These genes were distributed unevenly at the ends of chromosomes 3, 5,

7, 8, 9 and 10 in three Arachis species. The evolution ofMLP gene family in peanut

was conserved and led by tandem and segmental duplication. The prediction

analysis of cis-acting elements showed that the promoter region of peanut MLP

genes contained different proportions of transcription factors, plant hormones-

responsive elements and so on. The expression pattern analysis showed that they

were differentially expressed under waterlogging and drought stress. These

results of this study provide a foundation for further research on the function

of the important MLP genes in peanut.
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1 Introduction
Peanut (Arachis hypogaea L.), also named groundnut, is an

important industrial crop worldwide, which provides vegetable oil,

protein, minerals and vitamins for humans. Cultivated peanut is an

allotetraploid (AABB, 2n = 4x = 40) thought to be derived from

hybridization between the diploids A. duranensis (AA, 2n = 2x =

20) and A. ipaensis (BB, 2n = 2x = 20) (Bertioli et al., 2016). During

the growth process of peanut plants, their yield is challenged by

several environmental factors. Drought and waterlogging are two

abiotic stress factors that severely threatened our food security

(Huang et al., 2020; Zeng et al., 2021). Breeding abiotic stress-

resistant cultivars is one of the most efficient methods to reduce the

production and quality losses in peanut.

MLP homologs can be divided into three groups: MLPs, Bet v

1s, and pathogenesis-related proteins class 10 (PR-10s), one of 17

members of the PR family (Fujita and Inui, 2021). PR-10s are

mostly cytosolic proteins, constitutively expressed in several plant

tissues. Their expression is upregulated under abiotic and biotic

stress (El-Banna et al., 2010; Gómez-Gómez et al., 2011). Hence, it

has been proposed that PR-10 proteins play a more general role in

plant development and defense mechanisms. Bet v 1s were the

major allergens of birch (Betula verrucosa) pollen. They played

important role in steroid binding. The ability of Bet v 1 to bind a

broad spectrum of plant intrinsic ligands, such as fatty acids,

cytokinins, or flavonoids, has led to an involvement in different

stages of plant reproduction (Aglas et al., 2020).MLPs have been

firstly discovered in the latex of opium poppy (Papaver

somniferum) (Nessler et al., 1990). To date, MLP genes have been

identified in many dicots, including Arabidopsis (Chen and Dai,

2010), cucumber (Suyama et al., 1999), ginseng (Choi et al., 2015),

grape (Fernandes et al., 2013; Zhang et al., 2018), apple (He et al.,

2020; Yuan et al., 2020), kiwifruit (D'Avino et al., 2011), melon

(Aggelis et al., 1997), soybean (Strömvik et al., 1999) and cotton

(Yang et al., 2015). Like Bet v 1s and PR-10s, a common structural

feature of MLP proteins is the formation of a hydrophobic cavity

that forms the ligand-binding site for transporting hydrophobic

compounds, such as steroids (Lytle et al., 2009), long-chain fatty

acids (Choi et al., 2015), and organic pollutants (Inui et al., 2013) via

phloem and xylem vessels in the plants (Li et al., 2013; Carella et al.,

2016; Goto et al., 2019).

In recent years, many studies have elucidated two biological

functions of MLP proteins in plant growth and development, as well

as abiotic stress tolerance. Firstly, MLPs play an important role in

plant growth and development (Guo et al., 2011). It has been

reported that the MLPs were related to flower development and

fruit ripening in peach (Prunus persica) (Ruperti et al., 2002) and

kiwifruit (Actinidia deliciosa) (D'Avino et al., 2011; Chruszcz et al.,

2013). Secondly, MLPs play crucial roles in tolerance to abiotic

stress and induction of pathogen resistance via the plant hormone

signaling pathway (Wang et al., 2015; Yang et al., 2015). For

instance, the MLP genes were detected in the stem phloem sap of

cucumber mosaic virus infected plants (Malter and Wolf, 2011). In

cotton plants, ectopic overexpression of the cotton (Gossypium

hirsutum) GhMLP28 gene in A. thaliana enhanced tolerance to
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salt stress (Chen and Dai, 2010), while overexpression in Nicotiana

tabacum enhanced resistance to Verticillium dahliae infection

(Yang et al., 2015). Additionally, it was reported that

overexpression of AtMLP43 improves drought tolerance by

mediating abscisic acid (ABA) signal transduction (Wang

et al., 2015).

In order to enrich our knowledge of the roles of MLP members

in peanut, in this study, 135 MLP genes were identified from

cultivated peanut and its two diploid ancestor species.

Phylogenetic analysis, chromosomal location, synteny analysis,

gene structure and cis-acting regulatory elements of their

upstream regions were comprehensively analyzed. Furthermore,

responsiveness to drought and waterlogging stress were further

evaluated. Taken together, these results serve as a genome-wide

identification and expression analysis of MLP family genes in

peanut, and it provided a new way to improve the ability of

peanut to resist abiotic stress.
2 Materials and methods

2.1 Identification of MLP genes in peanut

Protein sequences of tetraploid peanut variety Tifrunner, and

two diploid species A. duranensis and A. ipaensis were acquired

from the peanut database (https://www.peanutbase.org/). The

hidden Markov model (HMM) of Bet v 1 domain (accession:

PF00407) was downloaded from Pfam database (http://

pfam.xfam.org/) (Finn, 2006).

Peanut MLP genes were searched in the protein database by

HMMER 3.0 software (E-value <1e−10). The candidate protein

sequences, CDS sequences and conserved domain sequences were

extracted using Perl command. The putative protein sequences were

aligned with Pfam (http://pfam.xfam.org/), SMART (http://

s m a r t . e m b l - e i d e l b e r g . d e / ) , a n d CDD ( h t t p s : / /

www.ncbi.nlm.nih.gov/cdd/) database to further confirmed to

contained domains. The physical and chemical properties of the

peanut MLP proteins, including the number of amino acids,

molecular weight (MW), and theoretical isoelectric point (pI)

were analyzed using the online tool ExPASy6 (Wilkins et al., 1999).
2.2 Phylogenetic analysis of MLP genes

The MLP protein sequences of Arabidopsis thaliana were

downloaded from the NCBI (https://www.ncbi.nlm.nih.gov/). The

MLP protein sequences of Glycine max and Medicago truncatula

were downloaded from the Phytozome database (https://

Phytozome.jgi.doe.gov/pz/portal.html/). Multiple alignments of

MLP proteins from Arachis hypogaea, Arachis duranensis, Arachis

ipaensis, Glycine max, Arabidopsis thaliana and Medicago

truncatula were conducted using Clustal W with default

parameters. A phylogenetic tree was constructed via the

Neighbor-joining method with 1,000 bootstrap replicates using

Molecular Evolutionary Genetics Analysis (MEGA 7.0) software

(Kumar et al., 2018).
frontiersin.org

https://www.peanutbase.org/
http://pfam.xfam.org/
http://pfam.xfam.org/
http://pfam.xfam.org/
http://smart.embl-eidelberg.de/
http://smart.embl-eidelberg.de/
https://www.ncbi.nlm.nih.gov/cdd/
https://www.ncbi.nlm.nih.gov/cdd/
https://www.ncbi.nlm.nih.gov/
https://Phytozome.jgi.doe.gov/pz/portal.html/
https://Phytozome.jgi.doe.gov/pz/portal.html/
https://doi.org/10.3389/fpls.2023.1152824
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1152824
2.3 Gene structure analysis and protein
conserved motifs of peanut MLPs

The peanut gene structure annotation file was downloaded from

the peanut database (https://www.peanutbase.org/). The conserved

motifs of the peanut MLP proteins were identified using Multiple

Expectation Maximization for Motif Elicitation (MEME Suite)

(Bailey et al., 2006). The above results are visualized using

Tbtools (Chen et al., 2018).
2.4 Promoter cis-elements analysis
of AhMLPs

The upstream regions (2000 bp) from the initiation codon

(ATG) of MLP genes were defined as the putative promoter

sequence. The presence of various cis-acting elements of each

sequence was identified by submitting to the PlantCARE database

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The

results were visualized by TBtools (Chen et al., 2018).
2.5 Chromosomal localization and synteny
analysis of peanut MLPs

The chromosome locations of each MLP gene were obtained

from the gene annotation fi le in PeanutBase (https://

www.peanutbase.org/). Gene location was visualized via the

online tool MapGene2Chrom v2.0 (http://mg2c.iask.in/

mg2c_v2.0/). The Multiple Collinearity Scan toolkit (MCScanx)

in Tbtools was used to analyze gene duplication events of MLP

genes. Tandem and segmental duplication analysis of theMLP gene

was performed by the Multiple Collinearity Scan toolkit (MCScanx)

in TBtools (Chen et al., 2020).
2.6 Plant materials and treatments

In the previous studies, different expressional genes were

analyzed by RNA-seq under waterlogging and drought stress,

respectively (Huang et al., 2020; Zeng et al., 2020). For the

waterlogging stress, peanut cultivars Zhongkaihua 1 (ZKH1,

waterlogging-resistant) and Huayu 39 (HY39, waterlogging-

sensitive) were planted in plastic pots. At the initial flowering

stage, the peanut plants were treated with waterlogging for 5 and

10 days, respectively. The plants without any waterlogging

treatment were used as the control (Zeng et al., 2020). For the

drought stress, the seeds of variety HY39 were sowed into plastic

pots. At the initial flowering stage, the plants were treated under

drought for 7 and 14 days (Huang et al., 2020). The waterlogging

and drought stress were conducted in the greenhouse of South

China Agriculture University. The size of the pots was 410 mm ×

335 mm × 320 mm (top diameter × bottom diameter ×

height).Three experimental replicates were conducted in both
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waterlogging and drought stress. After stress treatments, at the

peak flowering stage, the third leaf located on the top (usually called

the functional leaf) was collected and rapidly frozen in liquid

nitrogen for RNA-seq and quantitative real-time PCR (qRT-PCR).

In this study, to analyze expression pattern of MLP genes in

different tissues, the roots, stems, leaves, flowers, pegs, and seeds of

peanut variety HY39 were collected and then stored in a refrigerator

at -80 °C for subsequent RNA extraction and qRT-PCR.
2.7 Expression patterns of MLP genes

In this study, to study the expression patterns of peanut MLP

genes under waterlogging and drought stresses, different

expressional genes were analyzed according to project accession

PRJNA629848, SRP259445 (for waterlogging stress) (Zeng et al.,

2021) and PRJNA629665 (for drought stress) (Huang et al., 2020)

from NCBI (https://www.ncbi.nlm.nih.gov/).Heatmaps were

generated by Omicsmart website (https://www.omicsmart.com/

home.html/), and shows the normalized value Z-score after log2

(FPKM) transformation (Clevenger et al., 2016). Based on heatmap

results, four and five candidate genes for waterlogging and drought

stress were selected to verify the RNA-seq data, respectively.

The total RNA was extracted following the method specified in

the RNA extraction kit (Takara, Japan). The equivalent amount

RNA was reverse-transcribed into cDNA using the reverse

transcription kit (Vazyme, Nanjing, China). The qRT-PCR was

performed using an Applied Biosystems QuantStudio 3 and 5

system (Thermo Fisher Scientific, USA). Using the SuperReal

PreMix Plus (SYBR Green) kit, the reaction procedure was as

follows: 95°C for 3min, followed by 40 cycles of 95°C for 15s, 57°

C for 15s, and 72°C for 20s, 40 cycles. The dissolution curve was

analyzed. The primer sequences of the candidate genes are listed in

Table S1, with Actin as the internal reference gene. The relative

expression of the target gene was calculated using the DCT method.

The relative expression of the target gene was 2− DDCT, and the

experiment was repeated three times.
3 Results

3.1 Identification and physicochemical
properties of MLP proteins in Arachis

In order to identify MLP proteins in peanut, the HMM profile of

MLP (accession: PF00407) was used to search the peanut released

protein database. All the obtained MLP proteins were analyzed by

SMART to confirm the whole Bet v 1 motifs. In total, 68, 36 and 31

MLP proteins were obtained from tetraploid A. hypogaea (peanut

variety Tifrunner, named AhMLP1-AhMLP68), and two diploid

species A. duranensis (AdMLP1-AdMLP36) and A. ipaensis

(AiMLP1-AiMLP31), respectively (Table S2). The physicochemical

properties of the MLP proteins were analyzed online using ExPASy

(Table S2). The 68 AhMLP proteins contained 64-156 amino acids
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(aa), with a molecular weight (MW) of 19.62-72.58 kDa. The

predicted isoelectric point (pI) ranged from 4.05 to 8.93. Among 36

AdMLP proteins, the length of amino acids ranged from 92 to 309 aa,

and the MW ranged from 10.62 to 34.46 kDa. The pI ranged from

5.04 to 9.66. The length of amino acids of AiMLP proteins ranged

from 102 to 228 aa, and the MW ranged from 11.66 to 26.35 kDa.

The pI of AdMLP proteins ranged from 4.96 to 7.02.
3.2 Phylogenetic analysis of the
MLP proteins

To explore the evolutionary relationships of MLP proteins, a

phylogenetic analysis was conducted on six species, including A.

hypogaea, A. duranensis, A. ipaensis, Arabidopsis, Glycine max, and

Medicago truncatula. A maximum likelihood phylogenetic tree by

1,000 bootstraps was constructed with 68 AhMLPs, 36 AdMLPs, 31

AiMLPs, 23 AtMLPs, 15 GmMLPs and 16 MtMLPs (Figure 1, Table

S3). According to the phylogenetic tree, 189 MLPs from six species

were classified into five groups. Group I, II, III, IV and V contained

64, 9, 5, 43 and 68 MLP proteins, respectively. 135 peanut MLPs

from three Arachis species were randomly distributed among the

five groups. 32 (15 AhMLPs, 11 AdMLPs and 6 AiMLPs), 5

(3AhMLPs, 1 AdMLPs and 1 AiMLPs), 4 (2 AhMLPs, 1 AdMLPs

and 1 AiMLPs), 43 (22 AhMLPs, 11 AdMLPs and 10 AiMLPs), and

51 (26 AhMLPs, 12 AdMLPs and 13 AiMLPs) MLPs were

distributed in Group I-V, respectively. Group IV contained 43

peanut MLPs, without MLPs from other species. Group I

contained 32 peanut MLPs, 23 AtMLPs, 7 GmMLPs and 2

MtMLPs. Group II contained 5 peanut MLPs, 1 GmMLPs and 3
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MtMLPs. Group III contained 4 peanut MLPs and 1 GmMLPs.

Group V contained 51 peanut MLPs, 6 GmMLPs and 11 MtMLPs.

It was suggested that peanut is closely related to Glycine max and

Medicago truncatula, compared with Arabidopsis. In addition, there

are AhMLP, AdMLP, AiMLP in the same clade, which suggested

that MLPs from A. hypogaea, A. duranensis and A. ipaensis were

evolutionary conserved.
3.3 Chromosomal localization and synteny
analysis of MLP genes in peanut

All 68 AhMLP genes were unevenly distributed to 12

chromosomes of Arachis hypogaea, including Chr03, Chr05,

Chr07, Chr08, Chr09, Chr10, Chr13, Chr15, Chr17, Chr18, Chr19

and Chr20 (Figure 2). Mostly, 15 (22.1%), 13 (20.6%), 11 (16.2%)

and 9 (13.2%) AhMLPs located on Chr 18, Chr 17, Chr 08 and Chr

07, respectively. In total, there were 31 and 37 AhMLPs in sub-

genomes AA and BB, respectively. Moreover, 36 AdMLP genes were

located on ChrA03 (4), ChrA05 (1), ChrA07 (11), ChrA08 (12),

ChrA09 (7), ChrA10 (1), respevtively. 31 AiMLP genes were located

on ChrB03 (4), ChrB05 (1), ChrB07 (10), ChrB08 (13), ChrB09 (2)

and ChrB10 (1), respectively. In addition, MLP genes in peanut

were distributed in clusters at the ends of the Chr03, Chr07, Chr08

and Chr09, implying that the members of gene family were possibly

led by tandem gene duplication. In addition to tandem duplication,

fragment duplication events of AhMLP genes family were analyzed.

17 gene pairs with segmental duplications were distributed on 12

different chromosomes (Figure 3 and Table S4). These results

suggested that the evolution of AhMLP gene family was led by

tandem and segmental duplication.
3.4 Gene structure and motif analysis of
MLPs in peanut

To further understand the structural characteristics of peanut

MLPs and conserved domain, the exon/intron/UTR and protein

motif of 135 MLP genes identified in peanut were analyzed

(Figure 4, Table S5). The conserved domains of MLP proteins

were analyzed by the online software MEME. 12 conserved motifs

(namedMotif 1 - Motif 12) were obtained (Figure 4A). Phylogenetic

analysis showed that 135 peanut MLPs were classed into three

groups. Motif 8, 1, 4, 3, 7, 2 and 5 existed in the MLPs of group I,

except AdMLP25, AhMLP51 and AhMLP52. In group II, motif 6, 3,

7, 2, and 5 existed in the most of MLPs. Motif 8, 1, 4, 3, 7, 2 and 5

existed in the MLPs of group III, except AdMLP22, AiMLP16 and

AhMLP34 (Figure 4). The gene structure of MLPs in peanut was

analyzed by Tbtools (Figure 4B). Among them, 114 peanut MLP

genes contained two exons and one intron. Seven peanut MLP

genes contained three exons and two introns. Six peanutMLP genes

contained two exons and two introns. Generally, 97 peanut MLP

genes contained one 5’ UTR and one 3’ UTR. Besides, 10 peanut

MLP genes only had one 5’UTR, without 3’UTR; Four peanutMLP

genes had only one 3’ UTR; 14 peanut MLP genes had neither 5’

UTR nor 3’ UTR.
FIGURE 1

Phylogenetic analysis of MLP proteins in plant. The red star, green
square, blue circle, green triangle, blue triangle, and yellow star
represent Arachis hypogaea, Arachis duranensis and Arachis
ipaensis, Medicago ruthenica, Arabidopsis thaliana and Glycine max,
respectively.
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3.5 Analysis of cis-acting elements in
peanut MLP genes

To further understand the potential regulatory mechanism of

peanut MLP gene family in abiotic stress response, the upstream

2000 bp sequence of 135 peanutMLP genes with complete domains

was extracted from peanut genome information for the analyses of

cis-acting elements (Supplementary Figure S1, Table S6). After
Frontiers in Plant Science 05
removing the components with content ≤ 0.1%, eight cis-acting

elements were obtained, including transcription factors of

myeloblastosis (MYB) and myelocytomatosis (MYC), ethylene-

responsive element (ERE), abscisic acid-responsive element

(ABRE), anaerobic induction element (ARE) and so on

(Supplementary Figure S1, Table 1). Table 1 showed that a total

of 130 peanut MLP genes contained MYB transcription factors,

including AhMLP (67, 51.54%), AdMLP (35, 26.92%), and AiMLP
FIGURE 2

Chromosomal locations of MLPs in Arachis hypogaea, Arachis duranensis and Arachis ipaensis.
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(28, 21.54%). ERE elements existed in 120 peanut MLP genes,

including AhMLP (62, 51.67%), AdMLP (30, 25.00%), and AiMLP

(28, 23.33%). 119 peanut MLP genes contained MYC transcription

factors, including AhMLP (62, 52.10%), AdMLP (33, 27.73%), and

AiMLP (24, 20.17%). ABRE elements existed in 98 peanut MLP

genes, including AhMLP (50, 51.02%), AdMLP (28, 28.57%), and

AiMLP (20, 20.41%). ARE elements existed in 103 peanut MLP

genes, including AhMLP (51, 49.51%), AdMLP (29, 28.16%), and

AiMLP (23, 22.33%). Therefore, it was concluded that peanut MLP

genes were mostly regulated by transcription factors and plant

hormones-responsive elements.
3.6 Expression analysis of AhMLP genes
under different abiotic stresses by RNA-seq
and qRT-PCR

To explore the expression pattern of AhMLP genes under

abiotic stress, heat map analyses were performed based on the

transcriptome data measured in our previous research (Huang et al.,

2020; Zeng et al., 2021). Under waterlogging stress, the expression

level of 20 AhMLP genes was significantly different during

waterlogging stress treatment for 0, 5 and 10 days between

waterlogging-sensitive varieties HY39 and waterlogging-resistant

varieties ZKH1 (Figure 5A, Table S7). The expression level of

AhMLP54, AhMLP31, AhMLP58 and AhMLP55 were significantly

increased after 5 and 10 days in ZKH1, but which were lower in

HY39. Under drought stress, the expression level of 10 AhMLP

genes was significantly different during drought stress treatment for

7 and 14 days. The expression levels of AhMLP14, AhMLP19 and

AhMLP5 genes were higher under drought treatment for 7 days

(D7) than that under well-watered condition (WW) (Figure 5B,

Table S8). Compared with D7 stage, AhMLP31 expression was up-
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regulated in D14 stage. It was concluded that AhMLP31 was

involved in both waterlogging and drought stress.

To verify the expression data obtained by RNA-seq, qRT-PCR

was used to examine the expression pattern of AhMLP genes under

waterlogging and drought stress (Figure 6). The expression level of

four and five AhMLP genes under waterlogging and drought stress

was consistent with the transcriptome data. Among of them,

AhMLP31 was differently expressed under both two stresses. For

waterlogging stress, AhMLP31 was up-regulated in waterlogging-

resistant ZKH1. And for drought stress, it was down-regulated at 14

days under drought stress.
3.7 Expression profile of AhMLP genes in
different peanut tissues

The tissue-specific expression profile of MLP genes were

analyzed by qRT-RCR in six tissues, including roots, stems,

leaves, flowers, pegs and seeds from peanut (Figure 7, Table S9).

SomeMLP genes displayed tissue-specific or preferential expression

patterns. For example, AhMLP14, AhMLP5, AhMLP6 and

AhMLP17 were only differently expressed in flowers, pegs, leaves

and seeds, respectively. AhMLP7 was significantly expressed in

pegs, especially leaves. AhMLP1 was significantly expressed in

leaves and pegs. Moreover, AhMLP26 and AhMLP31 were

constitutively expressed in most of tissues.
4 Discussion

MLP genes play an important role in plant growth and

development (Carella et al., 2016), biotic and abiotic stress (Chen

and Dai, 2010; Yang et al., 2015; He et al., 2020). They have been

identified in several plant species (Chen and Dai, 2010; Yang et al.,

2015; Zhang et al., 2018; He et al., 2020). The publication of the peanut

genome provided the opportunity to study the characteristics of the

MLP family in peanut (Bertioli et al., 2011). In this study, 135 MLP

genes were identified from peanut. Totally, the physical and chemical

properties, phylogenetic tree, gene structure, conserved motifs, and

promoter cis-acting elements were analyzed using bioinformatics

methods. Moreover, the polygenetic analysis, chromosomal locations

and syntenic analysis, expression profile of MLP genes under drought

and waterlogging stresses were systematically investigated.

Gene duplication is thought to have contributed much to the

evolution of morphological and physiological diversity in plants

(Qiao et al., 2019). In our study, chromosomal location analysis

showed that AhMLPs were located on Chr03, Chr05, Chr07, Chr08,

Chr09 and Chr10 of sub-genome AA and BB. Moreover, AdMLPs

were located on ChrA03, ChrA05, ChrA07, ChrA08, ChrA09 and

ChrA10. And AiMLPs were located on ChrB03, ChrB05, ChrB07,

ChrB08, ChrB09 and ChrB10. This was consistent to that the

perfect synteny between AA genome and BB genome from A.

duranensis and A. ipaensis (Bertioli et al., 2016). In addition, we

also found that tandem and fragmental duplication were appeared

on the end of the chromosome. Thus, we speculated gene

duplication at the end of chromosomes led to generate multi-
FIGURE 3

Collinearity analyses of AhMLP genes in peanut. Red lines indicate
the duplicated AhMLP gene pairs in Arachis hypogaea.
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functions of members of gene family to enhance the ability of plant

to adapt to the environment.

Cis-acting promoter elements are involved in the regulation of

gene expression by the interaction between promoter bind sites and

transcription factors (Singh et al., 2002). Our results showed that 135

MLP genes contained several functional elements, such as MYB,

MYC, ERE, ABRE and ABE elements. Among these elements, the

number of MYB, ERE, ABRE and ABE element was the largest, and

presented in most of peanut MLP genes. MYB could promote the

induction of various developmental and stress response genes, thus

play an important role in enhancing plant tolerance to a variety of

abiotic stresses (Li et al., 2021). Moreover, ERE element was
BA

FIGURE 4

Phylogenetic relationship, conserved motif and gene structure analysis of the MLP gene in peanut. (A) Phylogenetic tree of the MLP gene in peanut
and conserved motifs analyses of the MLP gene. A total of 12 predicted motifs were showed by different colored boxes. (B) Gene structure analyses
of the MLP gene in peanut.
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TABLE 1 Number of Cis acting elements in peanut MLP genes.

Cis acting element Gene Number (Ratio)

MYB AhMLP 67(51.54%)

AdMLP 35(26.92%)

AiMLP 28(21.54%)

total 130

ERE AhMLP 62(51.67%)

AdMLP 30(25.00%)

(Continued)
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presented in 62 AhMLP genes, which was considered as a target of

ABA or ethylene signal transduction and plays an important role in

ethylene and ABA regulation in plants (Ohme-Takagi and Shinshi,

1995; Wu et al., 2018). These results were consistent with the analysis

of cis-acting elements in crops such as apple (Yuan et al., 2020), and

indicated that MLP genes may play an important role in the

regulation of adaptation to environmental stress and growth

(Nakashima et al., 2009; Yoshida et al., 2014; Pan et al., 2020).

Drought and waterlogging are the key stresses that have a negative

impact on crop yield (Dietz et al., 2021; Tong et al., 2021). The

expression characteristics of AhMLP genes under drought and

waterlogging were analyzed by RNA-seq and qRT-PCR. Among

these AhMLP genes, the expression changes of AhMLP31 under

waterlogging stress were consistent between transcriptome and qRT-

PCR. The expression of AhMLP31 in waterlogging-resistant variety

ZKH1 was upregulated and reached the peak at 10 days after

waterlogging, whereas it was not detected in waterlogging-susceptible

variety HY39. Further investigation was needed to confirm the roles of

AhMLP31 in the response to waterlogging stress. The MLPs, PR-10s

and Bet v 1 proteins share a common fold characterized by a solvent-

accessible hydrophobic cavity, which serves as a binding site for small-

molecule ligands, mostly hormones and flavonoids (Radauer et al.,
TABLE 1 Continued

Cis acting element Gene Number (Ratio)

AiMLP 28(23.33%)

total 120

MYC AhMLP 62(52.10%)

AdMLP 33(27.73%)

AiMLP 24(20.17%)

total 119

ABRE AhMLP 50(51.02%)

AdMLP 28(28.57%)

AiMLP 20(20.41%)

total 98

ARE AhMLP 51(49.51%)

AdMLP 29(28.16%)

AiMLP 23(22.33%)

total 103
BA

FIGURE 5

AhMLP genes expression level under Waterlogging stress and drought stress by RNA-seq. (A) Gene expression level under waterlogging stress. H0,
H5 and H10 represent HuaYu39 waterlogging treatment for 0, 5 and 10 days; Z0, Z5 and Z10 represent Zhongkaihua 1 waterlogging treatment for 0,
5 and 10 days (B) Gene expression level under drought stress. WW7 and WW14 represent HuaYu39 treated after 7 and 14 days under well-water; D7
and D14 represent HuaYu39 drought treatment for 7 and 14 days. The heatmap was generated by Omicsmart website (https://www.omicsmart.com/
home.html/), and the fragments per kilobase of transcript per million fragments (FPKM) values of peanut MLP genes were log2-transformed. The red
and blue colors represent the maximum and minimum values, respectively.
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B

A

FIGURE 6

Genes expression of selected AhMLPs under Waterlogging stress and drought stress by qRT-PCR. (A) Gene expression level of ten selected AhMLPs
under waterlogging stress. (B) Gene expression level of eight selected AhMLPs under drought stress. The data are presented as the mean ± SD (n=3),
and the values differed significantly at P < 0.05. Different letters indicate significant differences.
FIGURE 7

The expression pattern of AhMLP genes in different tissues.
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2008). In cotton, GhMLP28 interacted with cotton ethylene response

factor 6 (GhERF6) and facilitated the binding of GhERF6 to GCC-box

element (Yang et al., 2015). Therefore, we speculate that AhMLP31

interacts with other transcription factors, contributing with resistance

to waterlogging and drought in peanut. To elucidate the molecular

mechanism by which AhMLP31 may act in the responses to abiotic

stress, yeast two-hybrid, pull-down screening and luciferase

complementation imaging (LCI) assays will further conducted to

identify proteins that interact with AhMLP31.
5 Conclusion

In this study, 135 MLP genes were identified from the genome

of A. hypogaea, and two diploid species A. duranensis and A.

ipaensis and divided into five groups. The analysis of gene

structures and protein motifs revealed that most MLPs in peanut

were relatively conserved. The 135 MLP genes were distributed in

12 chromosomes of A. hypogaea, six chromosomes of A. duranensis

and A. ipaensis, respectively. It was found that cis-acting regulatory

elements inMLP gene promoters were related to abiotic/biotic. The

results of expression profiles indicated that MLP genes were

involved in response to waterlogging and drought stress in

peanut. Our research results provided a basis for new insights

into the biological function of MLP genes in plant.
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