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Inversion models of aboveground
grassland biomass in Xinjiang
based on multisource data

R. P. Zhang1,2, J. H. Zhou1,2, J. Guo3*, Y. H. Miao1,2

and L. L. Zhang1,2

1College of Ecology and Environment, Xinjiang University, Urumqi, China, 2Key Laboratory of Oasis
Ecology, Xinjiang University, Urumqi, China, 3Xinjiang Academy Forestry, Urumqi, China
Grassland biomass monitoring is essential for assessing grassland health and

carbon cycling. However, monitoring grassland biomass in drylands based on

satellite remote sensing is challenging.Statistical regression models and machine

learning have been used for the construction of grassland biomass models, but

the predictive power for different grassland types is unclear. Additionally, the

selection of the most appropriate variables to construct a biomass inversion

model for different grassland types must be explored. Therefore,1201 ground-

truthed data points collected from 2014-2021,including 15 Moderate Resolution

Imaging Spectroradiometer (MODIS) vegetation indices,geographic location and

topographic data,and meteorological factors and vegetation biophysical

indicators were screened for key variables using principal component analysis

(PCA). The accuracy of multiple linear regression models, exponential regression

models, power function models, support vector machine (SVM) models, random

forest (RF) models, and neural network models was evaluated for the inversion of

three types of grassland biomass. The results were as follows: (1) The biomass

inversion accuracy of single vegetation indices was low, and the optimal

vegetation indices were the soil-adjusted vegetation index (SAVI) (R2 = 0.255),

normalized difference vegetation index (NDVI) (R2 = 0.372) and optimized soil-

adjusted vegetation index (OSAVI) (R2 = 0.285). (2)Grassland above-ground

biomass (AGB) was affected by various factors such as geographic location,

topography, and meteorological factors, and the inverse models using a single

environmental variable had large errors. (3) The main variables used to model

biomass in the three types of grasslands were different. SAVI, aspect, slope, and

precipitation (Prec.) were selected for desert grasslands; NDVI,shortwave

infrared 2 (SWI2), longitude, mean temperature, and annual precipitation were

selected for steppe;and OSAVI, phytochrome ratio (PPR), longitude,

precipitation, and temperature were selected for meadows. (4) The non-

parametric meadow biomass model was superior to the statistical regression

model. (5) The RF model was the best model for the inversion of grassland

biomass in Xinjiang, and this model had the highest accuracy for grassland

biomass inversion (R2 = 0.656, root mean square error (RMSE) = 815.6 kg/ha),

followed by meadow (R2 = 0.610, RMSE = 547.9 kg/ha) and desert grassland (R2

= 0.441, RMSE = 353.6 kg/ha).
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1 Introduction

Grassland ecosystems are among the most widely distributed

terrestrial ecosystems,The grassland aboveground biomass (AGB) is

a key indicator to evaluate the regional carbon budget and the

sustainability of grassland ecosystems and is also an important

material basis for the development of animal husbandry (Scurlock

and Hall, 1998; Piao et al., 2011; Zhang et al., 2019b). Therefore, the

accurate characterization of grassland biomass and its trends is of

great importance for grassland management, grassland livestock-

carrying capacity analysis, grassland growth status assessment, and

ecological protection (Liu et al., 2011; Liang et al., 2016; Xu et al.,

2020). At present, monitoring grassland biomass mainly involves

ground-based monitoring and remote sensing monitoring (Liang

et al., 2016). Limited by labor and material resources, for ground-

based monitoring, the large-scale monitoring, high-efficiency

monitoring, and whole-process monitoring of grassland biomass

are challenging (Catchpole and Wheeler, 1992; Lehtonen et al.,

2007) while remote sensing monitoring is the most effective method

for estimating grassland biomass in long time series and over large

areas (Craine and Nippert, 2014; Eisfelder et al., 2012).

Using the vegetation index for grassland biomass inversion is a

common method of remote sensing monitoring. The normalized

difference vegetation index (NDVI) has been widely used for

grassland biomass inversion since it was proposed in 1974 (Rouse

et al., 1974); However, NDVI is susceptible to the influence of many

factors. Atmospheric effects include molecular and aerosol

scattering and absorption by gases, such as water vapor, ozone,

oxygen and aerosols (Liang et al., 2001). However, in addition to the

influence of the atmosphere, the NDVI spectrum is easily affected

by the soil background value, especially in places with sparse

vegetation (Huete and Jackson, 1988; Zandler et al., 2015). Sparse

and senescent vegetation may result in weak or blurred spectral

responses, and the effects of soil background can lead to partial loss

of vegetation information (Eisfelder et al., 2012). To eliminate the

influence of soil background values, Huete proposed the soil-

adjusted vegetation index (SAVI), The effects of vegetation

indices are independent and the degradation of the atmosphere is

similar in all soil contexts. Within the range of soil and atmospheric

conditions examined here, the magnitude of soil effects on

vegetation indices was similar to that attributed to the atmosphere.

(Huete and Jackson, 1988). To further eliminate the effects of

atmospheric attenuation and soil background, the modified soil-

adjusted and atmospherically resistant vegetation index (MSARVI)

was proposed (Huete et al., 1994; Qi et al., 1994). In the enhanced

vegetation index (EVI), because the reflectivity of the blue light

band is included in the calculation, the vegetation inversion effect of

using EVI is better for the high vegetation cover areas (Garroutte

et al., 2016). In addition to the vegetation indices mentioned above,

other vegetation indices are also used by researchers for grassland

biomass inversion (Huete et al., 1994; Zandler et al., 2015),Such as

color adjustment index(RI),first order derivative of reflectanceand

ratio (FDR).Although this type of model is simple and employs

easily obtainable parameters, it is affected by factors such as sensor

spectral characteristic information and environmental factors and

still has uncertainties such as poor stability, low accuracy, and large
Frontiers in Plant Science 02
regional differences in estimation results (Liang et al., 2016). These

limitations are especially prominent for low vegetation cover areas

because vegetation indices are strongly affected by the soil

background values, i.e., weak or ambiguous spectral responses

caused by sparse and aging vegetation; therefore, the use of a single

factor to invert indicators such as vegetation biomass has great

limitations(Zandler et al., 2015).

Relevant studies in recent years have demonstrated that in a

grassland biomass inversion by a single vegetation index,

geographic location and topography data, meteorological factors,

vegetation biophysical indicators, and soil indicators are also used

as important variables to construct grassland biomass, and the

stability, versatility, and accuracy of the grassland biomass inversion

models are improved(Liang et al., 2016; Meng et al., 2017). used the

multiple regression analysis methods to study the grassland biomass

and plant spectral response characteristics at different growth stages

in central Montana, USA, and found that during the grassy stages of

pasture herbage, there is a moderate correlation between the

measured grassland biomass and biomass predicted by the

multivariate regression model based on NDVI obtained from

Landsat data. (Porter et al., 2014). (Liang et al., 2016)

used multiple indicators, such as longitude, latitude, and

meteorological factors, to construct a multivariate inversion

model for grassland biomass on the Qinghai-Tibet Plateau, which

was more accurate than the optimal model based on a single

vegetation index (Liang et al., 2016). Previous studies have

proposed vegetation biomass inversion models using multiple

vegetation indices and meteorological and vegetation biophysical

variables, but it requires considerable effort to select multiple

variables, and there may be high information overlap and high

autocorrelation among some variables (Penuelas et al., 1995;

Feliciano et al., 2009). Therefore, how to screen suitable

indicators and solve the problem of information overlap between

variables still needs further exploration (Yang et al., 2018; Xu et al.,

2020; Zhou et al., 2021).

At present, there are two main types of models for vegetation

biomass inversion: statistical regression models and machine

learning methods. Scholars have performed considerable research

on vegetation biomass inversion using these two types of models;

however, the choice of model for each grassland type is inconclusive

(Yang et al., 2018). Previous studies have found that stepwise

multiple regression models outperform machine learning methods

in grassland biomass inversion. (Xu et al., 2020) used a simple linear

regression model, a stepwise multiple regression model, a random

forest (RF) model, and an artificial neural network model to

simulate the grassland AGB in northern China and found that

the performance of the stepwise multiple regression model was

higher than that of the other three models (Gao et al., 2016). Other

scholars have found similar findings. However, most studies have

found that machine learning methods outperform statistical

regression models in grassland biomass inversion (Meng et al.,

2017; Yang et al., 2018). Currently, there is no consensus on the best

model chosen for grassland biomass inversion,Some studies have

found that the backpropagation (BP) neural network model has the

highest accuracy in grassland biomass inversion (Yang et al., 2018),

and other studies have found that RF and other machine learning
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methods have the highest accuracy (Adam et al., 2014; Meng et al.,

2017; Zhou et al., 2021). There are many types of natural grassland,

and the grassland area is often large and has high spatial

heterogeneity. The use of one model type to invert biomass in

large areas with many grassland types remains controversial.

At small scales, where high-resolution satellite observations are

inadequate, normalin situ observations are feasible. At large scales,

the utilization of high-resolution satellite imagery is often limited by

cost and weather conditions. In addition, field surveys are further

limited. The temporal resolution of satellites with high orbits is often

not high, such as Landsat data (Kearney et al., 2022) and Sentinel data

(Lin et al., 2020; Kearney et al., 2022), which only provide data for any

point on the Earth every 15-30 days.Grasslands inXinjiang are located

in arid and semiarid regions, with low vegetation cover, and are easily

affected by soil background during grassland biomass inversion

(Townshend and Justice, 1986). Moderate Resolution Imaging

Spectroradiometer (MODIS) images have been used as remote

sensing images for grassland biomass inversion in many studies;

these images can not only cover large areas but also have a high

temporal resolution, making them more suitable for large-scale areas

(Liang et al., 2016). Determining how best to use remote sensing

methods to improve the accuracy of grassland biomass inversion in

arid and semiarid regions, especially for grasslands in areas with low

vegetation cover, is an important problem for vegetation remote

sensing (Barati et al., 2011; Yang et al., 2012). Therefore,

systematically studying the multivariate inversion of grassland

biomass in Xinjiang is of great scientific value.

Based on the above analysis, this study pursued the following

aims: (1) to analyze the correlations between three types of

grassland biomass and 15 vegetation indices extracted by MODIS

remote sensing, geographic location and topography data,

meteorological variables, and vegetation biophysical variables; (2)

using principal component analysis (PCA), to screen geographic

location and topography data, meteorology, vegetation biophysical

variables, and MODIS remote sensing vegetation indices to

determine the key variables for constructing models for three

types of grassland biomass; (3) according to the screened key

variables of the three types of grasslands, to compare and analyze

the accuracy of the nonparametric and parametric models, based on

which the best inversion models for the three types of grassland

biomass in Xinjiang were finally selected.
2 Data and methods

2.1 Study area

Xinjiang is located in the middle of the Eurasian continent at

34°22-49°33′ N, 73°22′-96°21′ E. Xinjiang has a unique topography
of “three mountains and two basins” :it is surrounded by high

mountains—the Kunlun Mountains and the Altai Mountains in the

north and south, respectively—and the Tian Shan Mountains

stretch across the entire territory of Xinjiang from east to

west.Xinjiang has a typical temperate continental arid climate.

Due to the unique topographic conditions, geographical location

and arid climate, Xinjiang's ecosystem is extremely fragile with low
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vegetative cover, rare plant species and simple population structures

The total area of grassland in Xinjiang is approximately 572,600

km2, accounting for 34.4% of the area of Xinjiang, and the grassland

area accounts for 86% of the total area of green vegetation in

Xinjiang. There are many types of grassland in Xinjiang. According

to the Criteria for the Classification of Grassland Types in China and

the Chinese Grassland Type Classification System, there are 11 main

types of grassland in Xinjiang. These grasslands can be broadly

divided into three groups according to vegetation type: steppe,

desert, and meadow. Steppes include alpine grasslands, temperate

meadow grasslands, temperate grasslands, and temperate desert

grasslands; desert grasslands include alpine deserts, temperate

deserts, and steppe deserts; and meadows mainly include alpine

meadows, mountain meadows, and lowland meadows(Zhang

et al., 2019b).
2.2 Grassland measurement and
meteorological observation data

The field investigation period was the forage growing seasons in

2014-2021. According to the topography and the spatial

distribution characteristics of grassland types in Xinjiang, the

sample lands were mainly selected in areas with a relatively

uniform spatial distribution of grassland vegetation and gentle

slopes. The size of the sample plots was approximately 500 m ×

500 m, and the plots were arranged according to the five-site

sampling method. The center of the land was taken as the first

plot, and then four corner points were selected as the remaining

four plots. The size of the herbal plot was 1 m × 1 m, and that of the

dwarf shrub and tall herb plots was 5 m × 5 m. The plots were

intended to fully reflect and represent the real situation of grassland

vegetation in the sampled grassland. During grassland monitoring,

the characteristic data, such as grass height, grass cover, and ABG;

the administrative region, grassland type, slope, aspect, grassland

utilization status; and the longitude, latitude, and elevation of the

observation point were recorded. Photographs of sample plots and

landscapes were taken. Given that an abnormal value for the ground

measurement data may affect the accuracy of the estimation model,

the biomass data from ground observation sample points within an

image element corresponding to the same geographical location of

the remote sensing image were combined, and their average value

was used to represent the AGB of the ground measurement and the

image element. The AGB of the grasses in the characteristic data

was measured by drying the fresh above-ground grasses (harvested

flush) at 65°C for 48 hours in an oven until a stable weight was

reached to obtain the dry matter yield (Figure 1).
2.3 Environmental variables

The digital elevation model (DEM) data used in this study were

downloaded from the sharing website (http://srtm.csi.cgiar.org/);

the data spatial resolution is 90 m, and the data format is GeoTIFF.

For China’s administrative boundary data, the national 1:4 million

administrative division data released by the National Geomatics
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Center of China was adopted; the World Geodetic System 1984

(WGS-84) was used for map projection, and the ellipsoid was WGS-

84. To carry out subsequent statistical analysis, ArcGIS software was

used to extract the longitude, latitude, elevation, slope, and aspect of

the field monitoring points of grassland biomass.

The ANUSPLIN software method is an extension of the thin-

plate smoothing spline method (Bates et al., 1987) that introduces

multiple covariate submodels to perform meteorological spatial

interpolation of multiple surfaces simultaneously.
2.4 MODIS data

The MODIS surface reflectance product (MOD09GA) was used

in this study. The data were obtained from the Earth Observing

System Data and Information System (EOSDIS) website (https://

earthdata.nasa.gov/) of the National Aeronautics and Space

Administration (NASA); the format is EOS-HDF, and the spatial

resolution is 500 m. The MOD09GA product is the daily surface

reflectance estimate, including the reflectance data for MODIS

bands 1-7. The daily MOD09GA product covering the entire

Xinjiang region requires six scenes, and the track numbers are

h23v04, h24v04, h25v04, h23v05, h24v05, and h25v05. The

MOD09GA images of grassland during the peak production

period (July-August) were downloaded for eight years (2014-2021).

The data preprocessing included the following main steps: (1)

Using the MODIS projection conversion tool MODIS Reprojection

Tool (MRT) software, the daily MOD09GA reflectance data from

July to August in the Xinjiang region from 2014 to 2021 were

processed by projection conversion and splicing. The sinusoidal

projection was converted into the Albers map projection, the

ellipsoid was WG-S84, and the nearest neighbor method was used

for resampling. The final output image file format was GeoTIFF,

and the daily reflectance data for MOD09GA band 1-7 were

obtained. (2) Using the ArcGIS spatial analysis method and

MODIS reflectance data, 15 daily vegetation indices closely

related to biomass, such as NDVI, EVI, SAVI, modified SAVI

(MSAVI), soil-adjusted total vegetation index (SATVI), optimized

SAVI (OSAVI), reflectance index 1 (RI1), plant pigment ratio

(PPR), phosphorous buffer index (PBI), thermal and shortwave

infrared 2 (SWI2), global vegetation index (GVI), radar vegetation

index (RVI), B7/B2, B7/B5, and B2/B1, were calculated (Price et al.,

2002; Zandler et al., 2015; Liang et al., 2016). The maximum value

composites (MVC) method was used to generate the monthly

maximum vegetation index image data in July and August from

2012 to 2021.
2.5 Construction and evaluation of the
grassland biomass model

2.5.1 Univariate model
Taking grassland AGB as the dependent variable, geographic

location and topography(longitude, latitude, and elevation),

meteorological factors (annual mean temperature, annual
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precipitation), vegetation biophysical indicators (grass cover, grass

height), and 15 MODIS vegetation indices corresponding to

ground-measured sample points were used as independent

variables to analyze the correlations between grassland AGB and

15 MODIS vegetation indices, longitude, latitude, elevation, annual

mean temperature, annual mean precipitation, grassland cover, and

grass height.

2.5.2 PCA of the main variables of
grassland biomass

Grassland biomass models use variables that can either be single

variables or combine information from multiple variables. To select

a variety of variables reasonably and solve the problem of high

information overlap and autocorrelation between variables, this

study adopted the PCA method. PCA initially selects the internal

structure of each variable and converts multiple variables into a few

comprehensive variables, and these variables are independent of

each other and contain most of the information of the original

variables, reducing data dimensionality (Hossain et al., 2011). In

this study, PCA was adopted for variables that passed the

significance test, such as the MODIS vegetation indices,

geographical location and topography, meteorological variables,

and vegetation biophysical variables, to remove the correlations

between the variables, and the main information was concentrated

on the principal variables.

2.5.3 Construction of the grassland
biomass model

According to the key variables of PCA and the grassland AGB

from 2014 to 2021, a database was established, including a total of

1201 records. In this paper, the 10-fold cross-validation method is

used to evaluate the performance ability of univariate parameter

models (Liu et al., 2017), SPSS 26 software was used to randomly

select 90% of the records for grassland biomass modeling and 10%

of the data for accuracy verification,repeat the selection of the

training and test sets 10 times until all samples appear in the test

and training sets (Meng et al., 2017). Among them, there are 383

desert grasslands, with 345 modeling data points and 38 validation

data points; 562 steppes, with 506 modeling data points and 56

validation data points; and 256 meadows, with 230 modeling data

points and 26 validation data points. In this study, multivariate

regression analysis and machine learning methods were used to

construct grassland AGB models.

(1) SPSS 26 was used to build multivariate regression models

(linear, exponential, logarithmic and power) (Ge et al., 2018);

(2) Three types of machine learning models, including

backpropagation-artificial neural network (BP-ANN), support

vector machine (SVM), and RF, were used as the multivariate

nonparametric models, and MATLAB software was used to

construct multivariate nonparametric models using different

factors and their combinations that are significantly correlated

with the grassland AGB.

The SVM regression model is an algorithm based on supervised

learning; its core algorithm is to construct a set of hyperplanes in a
frontiersin.org
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high-dimensional or infinite latitude space, based on which it

performs classification and regression (Yang et al., 2016). The

SVM model is not sensitive to the sample size of the training set,

and compared to other machine learning methods, it can produce

comparable accuracy using a smaller training sample size (Camps-

Valls et al., 2006). SVM regression can be implemented using the

“LIBSVM” package in MATLAB (R2019b) (Veraverbeke et al.,

2012; Chang and Lin, 2011). The SVM type is epsilon-SVR, and

the kernel function type is the radial basis function (RBF). When

using the SVM model to estimate the grassland AGB, the same

training set and test set of the multivariate regression models were

used to construct the SVM regression model.

The BP-ANN is composed of an input layer, one or more

hidden layers, and an output layer. In the linkage of each layer, the

information transmission process is a one-way transmission, i.e.,

the information is first input in the input layer and processed in the

hidden layers and finally passed to the output layer (Yuan et al.,

2017). In this study, the Levenberg-Marquardt algorithm was

selected for model training. The final two parameters in the ANN

regression model are the number of neurons and hidden layers. The

more neurons and hidden layers there are, the higher the learning

accuracy and the weaker the generalization ability of the model. In

this study, the numbers of hidden layers and neurons were obtained

by trial and error, and the establishment and verification of the BP-

ANN model were implemented based on the neural network

toolbox in MATLAB (R2019b) (Tiryaki and Aydin, 2014).

RF is a nonparametric nonlinear model construction method

that improves prediction accuracy by applying a series of training

trees, and its theoretical basis lies in the classification tree algorithm.

The RF regression model adopts the bootstrap sampling method.

The samples extracted each time are used to construct a decision

tree, multiple decision trees are formed, and the final prediction

result is obtained by voting (Breiman, 2001). Therefore, one

advantage of using RF to build a model is that there is no

overfitting (Han, 2001). In this study, both the construction and

accuracy verification of the RF model were performed in MATLAB

using the RF_MexStandalone-v0.02 toolkit.
2.6 Model validation

The accuracy of the model was evaluated based on the

coefficient of determination (R2) and the root mean square error

(RMSE) between the measured value and the corresponding

simulated value. The R2 ranges from 0 to 1. The closer the R2

value is to 1, the higher the accuracy of the model and the higher the

reliability. RMSE is used to measure the deviation between the

predicted value and the measured value, and the smaller the value,

the better the fit of the constructed grassland AGB model.

According to the model accuracy and error size, the grassland

biomass inversion model in the study area was finally determined.

The constructed biomass model was verified by using field-

measured grassland data from 2014 to 2021, including 38 desert

grasslands, 56 steppes, and 26 meadows. RMSE and R2 were

calculated as follows:
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Zx − Zy)
2

n

s
(1)

R2 = 1 −o
n
i=1(Zi − Zy)

2

on
i=1(Zi − Zx)

2 (2)

Where Zx and Zy represent the actual observed value and

predicted value, respectively, and n is the number of samples used

for validation.
3 Results and analysis

3.1 Results and analysis

Figure 2 shows the correlations between grassland AGB during

the period of peak production from 2014 to 2021 (July to mid-

August) and the NDVI, EVI, SAVI, MSAVI, SATVI, OSAVI, RI1,

PPR, of PBI, SWI2, GVI, RVI B7/B2, B7/B5, and B2/B1 calculated

based on MODIS band 1-7 reflectance data. Figure 2 indicates that

in the Xinjiang desert grasslands, the SAVI has the best correlation

with the grassland AGB (R2 = 0.255, p< 0.01), followed by MSAVI,

NDVI, OSAVI, B2/B1, SATVI, GVI, EVI, RVI, B7/B5, B7/B2, RI1,

SWI2, PBI, and PPR. The correlation between the NDVI and

temperate steppe AGB was the highest (R2 = 0.372, p< 0.01),

followed by MSAVI, OSAVI, SAVI, EVI, GVI, RI1, SATVI, B7/

B2, RVI, B7/B5, B7/B2, PPR, SWI2, PBI, etc. The alpine grassland

AGB shows the highest correlation with the OSAVI (R2 = 0.285,

p< 0.01), followed by SAVI, MSAVI, NDVI, GVI, SATVI, EVI, B2/

B1, RI1, B7/B5, B7/B2, PPR, RVI, SWI2, PBI, and so on. The linear

regression models between the PPR, SWI2, and PBI indices and

desert grassland AGB did not pass the significance test, and other

vegetation indices passed the F-test at the significance level of 0.05

or 0.01. In summary, when using a single vegetation index to invert

the AGB of desert grasslands, steppes, and meadows in Xinjiang, the

SAVI, NDVI, and OSAVI should be selected.
3.2 Comparative analysis of univariate AGB
monitoring models of alpine grassland

Figure 3 shows the linear regression analysis results between

environmental variables and AGB of three types of grasslands: desert

grassland, steppe, and meadow. From the perspective of geographical

location and topographical factors, the AGB of the three types of

grasslands was not highly correlated with geographical location and

topographical factors. Among them, the correlations between the

AGB of desert grassland and the aspect, elevation, and slope of the

observation points are extremely significant (p< 0.01), and the

correlations with longitude and latitude are not significant

(p > 0.01); the correlations between the steppe AGB and the

longitude, elevation, and slope of the observation points are

extremely significant (p< 0.01), and the correlations with slope and

latitude are not significant (p > 0.01); The correlation between the

above-ground biomass of meadows and the longitude, latitude and
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elevation of the observation sites reached a highly significant level

(P< 0.01), while the correlation with slope and gradient was not

significant (P> 0.01). From the perspective of climatic factors, the

correlations between AGB of desert grasslands and annual

precipitation are extremely significant (p< 0.01, R2 = 0.180), but

the correlation with temperature is not significant (p > 0.01); The

correlations between the AGB of meadows and annual precipitation

and temperature are extremely significant (p< 0.01); the correlations

between meadow AGB and temperature and precipitation are

extremely significant (p< 0.01). From the perspective of vegetation

biophysical indicators, except that the AGB of the desert grasslands is

not significantly correlated with the grass cover, the AGB of the three

types of grasslands is extremely significantly correlated with the grass

cover and the grass height. Overall, among the nine environmental

factors, the AGB of the desert grasslands has the highest correlation

with the grass height (R2 = 0.182), followed by annual precipitation

(R2 = 0.180), grass cover (R2 = 0.047), and aspect (R2 = 0.043); the

steppe AGB has the highest correlation with grass height (R2 = 0.344),

followed by annual precipitation (R2 = 0.261), grass cover (R2 =

0.196), and annual temperature (R2 = 0.170); the meadow AGB has

the highest correlation with the annual mean temperature of the

observation points (R2 = 0.305), followed by grass height (R2 = 0.261),

temperature (R2 = 0.146), and grass cover (R2 = 0.126). It can be seen
Frontiers in Plant Science 06
that, except for the vegetation index factor, the correlations of the

above-ground biomass of grasses in the three types of grass at the

peak grass stage were significantly different from the geographical

location of the observation sites, topographic factors, climatic factors,

and vegetation biophysical indicators.
3.3 Biomass model construction
index screening

The above analysis reveals that the single vegetation index or

environmental variable that is most closely correlated with AGB can

only reflect 25.47% of the AGB of desert grasslands, 37.17% of the

AGB of temperate grasslands, and 28.50% of the AGB of alpine

grasslands in Xinjiang (Figures 2, 3). Therefore, biomass inversion

models that simply use the MODIS vegetation indices or other

environmental variables are prone to great errors and uncertainties.

To avoid the poor accuracy with univariate biomass inversion

models, this study explored the multivariate AGB monitoring

models with factors that are closely correlated with AGB and

independent of each other as independent variables. PCA was

used to screen the vegetation indices and environmental variables

with an extremely significant correlation with the grassland AGB.
FIGURE 1

Correlations of vegetation indices and AGB of different types of grasslands in Xinjiang.
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The results indicated that the KMO values of desert grassland,

steppe, and meadow were all greater than 0.8, and the p-value was

less than 0.0001, reaching the extremely significant level of 0.01,

indicating that the selected variables met the requirements of PCA.

Figure 4 shows the principal variables with a cumulative

contribution rate over 85%. SAVI, aspect, slope, and Prec were

selected for desert grassland; NDVI, SWI2, longitude, mean

temperature, and annual precipitation were selected for steppe;

and OSAVI, PPR, longitude, precipitation, and temperature were

selected for meadow.
3.4 Biomass inversion based on the
multivariate regression method

Linear, logarithmic, power, and exponential models were

analyzed based on the selected principal components of the three

types of grasslands: desert grassland, steppe, and meadow (Table 1).

For desert grasslands, the exponential model is the best, with an R2

of 0.42 and RMSE of 419.56 kg/ha. For steppe and meadow, the

power function model is the best, with R2 values of 0.56 and 0.50

and RMSE values of 811.99 kg/ha and 737.90 kg/ha, respectively.

Therefore, the exponential model is more suitable for biomass

inversion of desert grasslands, and the power function model is

more suitable for biomass inversion of steppe and meadows.
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3.5 Nonparametric-based
biomass inversion

Using the 10-fold cross-validation method, BP-ANN, SVM, and

RFmodels for grassland AGB estimation of the three grassland types of

desert grassland, steppe, and meadow were constructed using the

selected principal components (Table 2). Comparing the results of

Table 1 with those of Table 2, it is known that BP-ANN, SVM and RF

significantly outperformed the multifactor-based linear and nonlinear

regression model in inverting the three grassland types in the study

area. Table 2 lists the accuracy evaluation results of the SVM, RF, and

BPNN regression models for the biomass inversion of the three

grassland types. The accuracy evaluation results indicate that the dry

weight of desert grasslands predicted by the SVM regression model is

the best (R2 = 0.43, RMSE = 356.62 kg/ha), and the accuracy of the dry

weight of the meadow (R2 = 0.64, RMSE = 503.10 kg/ha) and steppe

(R2 = 0.65, RMSE = 763.33 kg/ha) predicted by the RFmodels is higher

than that of other two machine learning methods.

When using the SVM regression model to predict the dry weight

of desert grassland, meadow, and steppe, the prediction accuracy of

the three grassland types is in the following order: steppe > meadow >

desert (Figures 5A, D, G). When using RF model (Figures 5B, E, H)

and the BPNN model (Figures 5C, F, I) to predict the dry weight of

three different grassland types, the prediction accuracy follows the

same order: steppe > meadow > desert.
FIGURE 2

Correlations of environmental factors and AGB of different types of grasslands in Xinjiang.
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TABLE 1 Accuracy evaluation of multivariate regression models.

Type Model
type

Training set Test set

Formula R2 RMSE R2 RMSE

Desert
(n=383)

Linear y=-0.026 + 0.026slope + 0.013aspect + 0.266precipitation_20150 + 0.402SAVI 0.41 347.01 0.40 432.72

Logarithm y=0.408-0.005 *LN(slope) + 0.004 * LN(aspect) + 0.006 * LN(precipitation _20150) + 0.114 * LN
(SAVI)

0.31 373.47 0.04 1775.12

Power y=0.860 * (slope0.041) * (aspect0.024) * (precipitation _201500.554) * (SAVI0.535) 0.42 343.36 0.41 426.39

Exponential y=0.069 * e(0.252 * slope) * e(0.158 * aspect) * e(1.180 * precipitation _20150) * e(1.438 * SAVI) 0.39 352.29 0.42 419.56

(Continued)
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FIGURE 3

Cumulative contribution rate of variables for the AGB of different types of grasslands in Xinjiang.
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4 Discussion

4.1 Accuracy analysis of the grassland AGB
inversion models based on the remote
sensing vegetation indices

In this study, we analyzed the correlation between 15

vegetation indices such as MODIS NDVI, SAVI, and EVI or

wave combinations and above-ground biomass of grassland. The

grassland AGB has the highest correlation with NDVI (R2 =

0.372), and other vegetation indices with high correlations are

MSAVI, OSAVI, and SAVI. The SAVI is the best vegetation
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index for the AGB inversion of desert grassland (R2 = 0.255), and

other vegetation indices with good inversion effects are MSAVI,

NDVI, and OSAVI, which is consistent with the results of

Veraverbeke et al. (2012); that is, when performing grassland

biomass inversion in sparsely vegetated areas, SAVI is better

than other single vegetation indices. The best vegetation index

for meadow AGB inversion is OSAVI (R2 = 285), and other

indices, such as SAVI, MSAVI, and NDVI, are also good for

meadow AGB inversion. Although the best indices for AGB

inversion of the three grassland types are different, the best

vegetation indices are generally NDVI, SAVI, MSAVI, and

OSAVI. Due to the sparse vegetation in Xinjiang, when a pixel
TABLE 2 Accuracy of the multivariate machine learning regression models for three grassland types evaluated by the 10-fold cross-validation
method.

Grass type Model R2 RMSE R2 RMSE

Desert (n=383)

training set test set

SVM 0.51 334.92 0.43 356.62

RF 0.89 179.05 0.42 356.98

BPNN 0.54 314.05 0.42 368.46

Meadow (n=256)

training set test set

SVM 0.61 543.66 0.56 537.55

RF 0.91 279.86 0.64 503.10

BPNN 0.71 456.45 0.51 604.02

Steppe (n=562)

training set test set

SVM 0.62 797.33 0.58 831.31

RF 0.93 372.49 0.65 763.33

BPNN 0.67 739.45 0.60 817.75
fronti
In each evaluation, except for BPNN, the machine learning methods use 10% of the samples as the test set and the rest as the training set; for BPNN, 80% of the samples constitute the training set,
and the remaining 20% of the samples are used as the test set and validation set.
TABLE 1 Continued

Type Model
type

Training set Test set

Formula R2 RMSE R2 RMSE

Steppe
(n=562)

Linear y=-0.113-0.053 * Y + 0.259 * avg_201509 + 0.328 * precipitation _20150 + 0.036 * SWI2 + 0.194 *
NDVI

0.54 865.38 0.52 928.26

Logarithmic y=0.262 + 0.004 * LN(Y) + 0.006 * LN(avg_201509) + 0.018 * LN(precipitation _20150) + 0.009 *
LN(SWI2) + 0.014 * LN(NDVI)

0.10 1216.74 0.29 1178.26

Power y=0.950 * (Y-0.012) * (avg_2015090.851) * (precipitation _201500.630) * (SWI20.181) *
(NDVI0.239)

0.55 837.46 0.56 811.99

Exponential y=0.040 * e(-0205 * Y) * e(1.325 * avg_201509) * e(1.331 * precipitation _20150) * e(0.215 * SWI2)
* e(0.804 * NDVI)

0.56 814.17 0.55 827.87

Meadow
(n=256)

Linear y=-0.026 + 0.026slope + 0.013aspect + 0.266 precipitation _20150 + 0.402SAVI 0.41 347.01 0.40 432.72

Logarithm y=0.408-0.005 *LN(slope) + 0.004 * LN(aspect) + 0.006 * LN(precipitation _20150) + 0.114 * LN
(SAVI)

0.31 373.47 0.04 1775.12

Power y=0.860 * (slope0.041) * (aspect0.024) * (precipitation _201500.554) * (SAVI0.535) 0.42 343.36 0.41 426.39

Exponential y=0.069 * e(0.252 * slope) * e(0.158 * aspect) * e(1.180 * precipitation _20150) * e(1.438 * SAVI) 0.39 352.29 0.42 419.56
* in the text means multiply.
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is composed of green vegetation and soil background, soil-

adjusted indices, such as SAVI, MSAVI, and OSAVI, can

eliminate the influence of the soil background value, and the

inversion effect is better (Bannari et al., 1995; Silleos et al., 2006).

When only using a single vegetation index for the grassland

biomass inversion, the grassland biomass inversion accuracy of

desert, steppe, and meadow is different; steppe has the highest

accuracy, followed by meadow, and the desert grassland has the

lowest accuracy. Due to the low vegetation cover in most of the

desert area, the leaves of the vegetation are small, and with low

chlorophyll concentration; therefore, the “contamination” of the

target signal by background information is prone to occur in the

process of detecting vegetation spectral information by satellite

remote sensing sensors, and the sensitivity of sensors to detect

vegetation spectral information in desert areas is reduced,
Frontiers in Plant Science 10
making the vegetation spectral information obtained from

satellite remote sensing images extremely weak or even

difficult to detect by satel l i te remote sensing sensors

(Townshend and Justice, 1986; Vanselow and Samimi, 2014),

which could lead to predicted values that are higher or lower

than actual values during grassland biomass inversion.

In view of the low accuracy of using a single vegetation index for

grassland AGB inversion in Xinjiang, other environmental factors

related to the grassland AGB, such as meteorological factors,

geographic location and topography, and vegetation biological

indicators, must be added to the grassland AGB inversion models.

This study found that the AGB of desert grasslands and steppes has the

highest correlation with grass height, with R2 values reaching 0.182 and

0.344, respectively, and precipitation also has a high correlation with

the AGB of desert grasslands and steppes; for the AGB of meadows, the
A

B

FIGURE 4

Distribution map of grassland sampling points (A) and meteorological stations (B) in Xinjiang from 2014 to 2021.
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index with the highest correlation is temperature, R2 = 0.305, followed

by the grass height. Since there is less precipitation in desert grasslands

and steppes, precipitation is one of the most critical factors in

determining grassland biomass. (Shoshany and Karnibad, 2011) also

found that in large-scale arid areas with sparse vegetation, precipitation

is a key indicator to construct a biomass model (Shoshany and

Karnibad, 2011). For meadows, the elevation is high, and the

temperature is low, and temperature is a key factor in determining

meadow AGB(Zhang et al., 2019a), which indicates that for different

vegetation types, the responses to climatic factors are inconsistent due

to different growth environments. Our study found that the correlation
Frontiers in Plant Science 11
between a single environmental variable and the biomass of the three

grassland types is not high, but the correlation of most variables is

extremely significant (p< 0.01). (Yang et al., 2018) found similar results

in studying grassland biomass in the Sanjiangyuan area. Several

scholars have also found that there are many uncertain factors in the

grassland biomass inversion using a single vegetation index or

environmental index (Yang et al., 2018). Similarly, other scholars

have found similar results (Zandler et al., 2015; Meng et al., 2017;

Zhou et al., 2021). Therefore, it is necessary to comprehensively

consider the vegetation indices and environmental variables when

constructing grassland biomass models.
FIGURE 5

The relationships between the dry weight of the three grassland types predicted by machine learning models using the test set and the measured
dry weight. (A–C) are the relationships between the dry weight of the desert predicted by SVM, RF, and BPNN models, respectively, using the test set
and the measured dry weight; (D–F) are the relationships between the dry weight of the meadow predicted by SVM, RF, and BPNN models,
respectively, using the test set and the measured dry weight; and (G–I) are the relationships between the dry weight of the steppe predicted by SVM,
RF, and BPNN models, respectively, using the test set and the measured dry weight.
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4.2 Screening of indicators for
constructing biomass models

Although grassland biomass inversion by a single vegetation

index or environmental variable is insufficient, the comprehensive

consideration of these variables could provide more information. Of

course, some indicators may have high information overlap and

high autocorrelation. Using PCA can eliminate the interactions

between the evaluation variables. After PCA, the principal

components that are independent of each other are formed, and

PCA can reduce the workload of selecting the independent variables

for biomass inversion (Feliciano et al., 2009). For the selection of

independent variables to construct a grassland biomass inversion

model, this study selected the PCA method for the first time and

screened out a small number of variables to maximally reflect the

information of the original variables to ensure that the loss of

original information was small, and the number of variables was as

small as possible. Therefore, in this study, correlation analysis and

PCA were used to screen the vegetation indices, geographical

location and topography, meteorological, and vegetation

biophysical indices for the biomass inversion of the three

grassland types of desert grassland, steppe, and meadow. The

cumulative contribution rate of the selected principal variables of

desert grassland, steppe, and meadow is over 85%, which indicates

that the information provided by all the variables is included in the

eigenvalues of the principal variables, i.e., most of the information is

contained. This study revealed that the principal variables of desert

grassland are aspect, precipitation, total grass cover, mean grass

height, and OSAVI; the principal variables of steppe are Y, aspect,

temperature, precipitation, OSAVI, and PBI; and the principal

variables of meadow are elevation, grass height, grass cover,

precipitation, OSAVI, and PBI. Notably, among the 29 single

vegetation indices used in regression models, NDVI has the

highest correlation with steppe AGB, and SAVI has the highest

correlation with the AGB of desert grassland. However, in the

process of screening variables by PCA, NDVI and SAVI were not

screened out, and the screened index was OSAVI, because it is an

improved vegetation index based on NDVI; OSAVI has a good

linear correlation with NDVI and SAVI and can reflect a large

amount of information contained in certain indices, such as the

unadjusted index NDVI and soil-adjusted indices SAVI, EVI,

MSAVI, and SATVI (Price et al., 2002). Green and red NDVI

(GRNDVI), RVI, green–red vegetation index (GRVI), and green

chlorophyll index (GCI) were screened out in the variable

screening, and these vegetation indices have better accuracy for

biomass fitting in the univariate regression model. The PBI is one of

important variables for steppe and meadow, but the accuracy of the

univariate model using PBI was not high; the EVI, GVI, and other

high-precision variables were not selected, and the interaction and

complementarity of various vegetation indices are an important

reason for this phenomenon. The PRI is a color-adjusted index

(Coppin and Bauer, 1994) and is more sensitive to plants with

“greener” leaves, and PBI is a principal variable for steppe and

meadow after PCA. The leaf color for desert grassland vegetation is

darker and more consistent with the background color, while the

leaf color of steppe and meadow is obviously different from the
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background color; therefore, when performing the biomass

inversion of meadows and steppes, using the PBI is beneficial for

the biomass inversion (Gamon et al., 1997).
4.3 Comparative analysis of
biomass models

Model selection is a key step in accurately estimating grassland

biomass. The parametric and nonparametric models for the

biomass inversion of desert, steppe, and meadow were compared

and analyzed. The inversion accuracy of the parametric models was

low, and the logarithmic models had the highest accuracy in

estimating steppe and meadow biomass, while the linear function

model was the best model for estimating the biomass of desert

grassland, with R2 = 0.323, which can only be used for a rough

estimation of biomass over a large grassland area in the study area.

Compared with traditional parametric models, nonparametric

models can significantly improve the accuracy of grassland

biomass estimation, and machine learning algorithms are more

suitable for more complex operations, which can better filter and

combine variables and greatly improve the accuracy of grassland

AGB estimation models (Meng et al., 2017; Anderson et al., 2018;

Yang et al., 2018; Zhao et al., 2018). RF is the model with the highest

biomass inversion accuracy for the three types of grasslands, but the

accuracy is not the same, with the highest accuracy found for steppe

(R2 = 0.656), followed by meadow (R2 = 0.61), with desert grassland

having the worst accuracy (R2 = 0.441). Desert grasslands are in arid

environments, and due to the influence of the soil background and

leaves, the biomass inversion of desert grasslands by remote sensing

still needs further exploration. In addition to the RF model, the

SVM model performs well for the biomass inversion of meadows

and steppes but performs the worst for the biomass inversion of

desert grasslands. Therefore, RF should be selected for grassland

biomass inversion in Xinjiang. Meng compared and analyzed the

parametric and nonparametric models for the estimation of alpine

grassland biomass in southern Gansu and found that RF is the

optimal grassland biomass inversion model (Meng et al., 2017),

which is essentially consistent with the findings of this study.

However, Simple regression models, stepwise multiple regression

models, RF models and ANN models have been used for

comparison of grassland biomass estimations in the mixed

agropastoral zone of northern China, and stepwise multiple

regression models were found to be the best models for grassland

inversion, which may be related to the number of data samples used

to build the models. When the model is built with fewer samples,

the parametric model is better than the nonparametric model

(Abrougui et al., 2019; Xu et al., 2020; Xu et al., 2020).
4.4 Factors affecting the accuracy of
grassland biomass inversion models

Although parametric or nonparametric models have a high

inversion accuracy, some factors still affect the accuracy of grassland

biomass inversion. First, there may be spatiotemporal
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inconsistencies between field sampling ranges and satellite data

(Eisfelder et al., 2012). In terms of spatial consistency, the sampling

points are relatively small (i.e., 1 m × 1 m or 5 m × 5 m). Although

each sample land has five plots, each NDVI pixel covers a square of

500 m, which is substantially larger than the sampling point, and

this difference inevitably creates modeling errors (Yuan et al., 2016).

For grasslands in high-elevation and desert areas, there are fewer

sampling points due to impassability, which could inevitably have a

certain impact on the results of grassland biomass inversion. This

study demonstrated the feasibility of using PCA for screening

indicators for desert grassland, steppe, and meadow, and for

grasslands with more sampling points, the machine learning

method is the optimal method for grassland biomass inversion.

Of course, the machine learning method requires a large amount of

ground-measured data. The amount of data sampled in this paper

(desert: 383; steppe: 562; and meadow: 256) can support the

parameter model to simulate grassland biomass. This study

provides a basis for how to select data, models, and predictors

and successfully constructed a model with high accuracy for

grassland biomass inversion. However, some grassland biomass

indicators selected in this study are not easily obtained. For

example, the accuracy of the inversion model using the grass

height by remote sensing is extremely poor. However, some of

the grassland biomass indicators selected in this study are not easily

available, such as the extremely poor accuracy of the grassland

height remote sensing inversion model, and this indicator is not yet

available for automated observation, thus lacking operability in

practice and cannot be applied yet.
5 Conclusion

This study collected 1201 grassland AGB data points in

Xinjiang from 2014 to 2021 and compared the univariate and

multivariate AGB inversion models and their accuracy. The main

conclusions are as follows:
Fron
(1) Of 15 vegetation indices (NDVI, EVI, SAVI, MSAVI,

SATVI, OSAVI, RI1, PPR, PBI, SWI2, GVI, RVI, B7/B2,

B7/B5, and B2/B1), except for PPR, PBI, and SWI2, the

other vegetation indices have extremely significant

correlations with the AGB of desert grasslands (p< 0.01),

among which SAVI has the strongest correlation. The 15

vegetation indices used in this study all have extremely

significant correlations with the AGB of steppes and

meadows, among which NDVI has the highest correlation

with the steppe AGB and MSAVI has the highest

correlation with the meadow AGB.

(2) Grassland AGB is significantly affected by geographical

location and topography, climate, and vegetation

biophysical indicators, and the accuracy of grassland

biomass inver s ion mode l s based on a s ing l e

environmental variable is poor.

(3) In the biomass models of three types of grasslands

constructed after PCA, the principal variables are
tiers in Plant Science 13
different. SAVI, aspect, slope, and Prec are selected for

desert grassland; NDVI, SWI2, longitude, mean

temperature, and annual precipitation are selected for

steppe; and OSAVI, PPR, longitude, precipitation, and

temperature are selected for meadow.

(4) The accuracy of biomass models of the three types of

grassland constructed by principal variables is significantly

improved, and the nonparametric models are all better than

the parametric models. The RF model is better than the

other models for the biomass inversion of desert grassland,

steppe, and meadow. However, for desert grasslands with

extremely low vegetation cover, there are great

uncertainties in multivariate inversion by remote sensing.
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