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Optimal sensor location methods are crucial to realize a sensor profile that

achieves pre-defined performance criteria as well as minimum cost. In recent

times, indoor cultivation systems have leveraged on optimal sensor location

schemes for effective monitoring at minimum cost. Although the goal of

monitoring in indoor cultivation system is to facilitate efficient control, most of

the previously proposed methods are ill-posed as they do not approach optimal

sensor location from a control perspective. Therefore in this work, a genetic

programming-based optimal sensor placement for greenhouse monitoring and

control is presented from a control perspective. Starting with a reference micro-

climate condition (temperature and relative humidity) obtained by aggregating

measurements from 56 dual sensors distributed within a greenhouse, we show

that genetic programming can be used to select a minimum number of sensor

locations as well as a symbolic representation of how to aggregate them to

efficiently estimate the referencemeasurements from the 56 sensors. The results

presented in terms of Pearson’s correlation coefficient (r) and three error-related

metrics demonstrate that the proposed model achieves an average r of 0.999 for

both temperature and humidity and an average RMSE value of 0.0822 and 0.2534

for temperate and relative humidity respectively. Conclusively, the resulting

models make use of only eight (8) sensors, indicating that only eight (8) are

required to facil itate the efficient monitoring and control of the

greenhouse facility.

KEYWORDS

sensor aggregat ion, opt imal sensor locat ion, genet ic programming,
greenhouse, control
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1 Introduction

Optimal sensor placement is aimed at realizing a sensor profile

or layout that achieves minimum cost as well as satisfies some pre-

specified performance criteria has gained traction in a broad

spectrum of applications areas such as health monitoring (Tan

and Zhang, 2020), distribution of medicine in disaster areas (Parque

et al., 2019), indoor cultivation systems (Uyeh et al., 2022b) and

smart cities (Du et al., 2019; Jena et al., 2021). Specifically, in indoor

cultivation systems, optimal sensor placement has become

attractive to facilitate the efficient coordination of sensors for

monitoring plant life as well as providing the necessary control of

the internal environmental conditions (micro-climate). Indoor

cultivation systems such as greenhouses are cultivation systems

that are controlled in order to support all year-round growing of

plants or crops (Nordey et al., 2017). Although these systems are

economical compared with open field cultivation systems, they rely

on effective monitoring and control of micro-climate such as

temperature and humidity which have a direct impact on crop

growth, quality (Takahata and Miura, 2017; Syed and Hachem,

2019) and consequently, crop yield (Nordey et al., 2017). In fact,

experimental analysis has shown that while effective control of the

temperature favors plant growth and reduces the overall energy

consumption of the system, appropriate levels of relative humidity

are necessary to prevent fungal infections and control transpiration

(Vox et al., 2010). In other words, efficient monitoring and control

of micro-climate are crucial to achieving the economic and

sustainability goals of controlled cultivation systems.

Traditionally, monitoring of greenhouse micro-climate and

consequently its control is facilitated through randomly

distributed sensors (based on the available resources and size of

the greenhouse) (Yeon Lee et al., 2019). However, under such

settings, there is no guarantee that such randomly placed sensors

would provide measurements that are representative of the true

micro-climatic conditions of the greenhouse. Furthermore, the use

of a large number of sensors results in a large amount of data that

requires efficient data management. In other words, the quality of

information and the accuracy of the resulting micro-climate heavily

relies on the number of sensors and their locations/placements.

Therefore, the non-trivial task of optimizing the number of sensors

and their locations becomes eminent as it forms the basis for

accurate measurement of micro-climate and consequently optimal

control of the cultivation system. Additionally, it reduces the overall

operating cost of controlled cultivation systems.

Although several techniques (Kubrusly and Malebranche, 1985;

Alonso et al., 2004; Flynn and Todd, 2010; Yi et al., 2011) for

optimal sensor placement have been proposed in the literature for

different applications, some of the proposed methods are not

directly applicable for highly non-linear setups (complex systems)

such as controlled cultivation systems. In the context of controlled

cultivation systems, optimization, and machine learning-based

algorithms have been proposed (Yeon Lee et al., 2019; Wu et al.,

2020; Uyeh et al., 2021; Uyeh et al., 2022b).

In Yeon Lee et al. (2019), a setup which relies on the fusion of an

error-based and entropy-based method was proposed for optimal

location of temperature sensors. In the setup, a reference temperature
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is generated by averaging the temperature data from all the

measurement locations. Consequently, sensor locations with

measurements that are statistically close to reference temperature

were selected. In addition, entropy related information was used to

select locations that are significantly influenced by external

environmental conditions. Based on these two methods, optimal

sensor locations that provide representative data of the entire

greenhouse condition as well as understanding regions with high

variations in temperature were realized. A hierarchical cooperative

particle swarm algorithm was proposed in Wu et al. (2020) for sensor

placement in a vegetable-cultivating greenhouse with the aim of

maximizing the entire coverage area (i.e., a non-occlusion coverage

scheme). In the scheme, the decision space was designed based on the

global effective coverage of each sensor as well as the orientation angles

of the respective sensors. Based on the results, the model was argued to

demonstrate the capability to overcome issues of occlusion between

covered objects and also improved sensor utilization in general.

However, the aforementioned works are limited because they were

investigated over a limited period of time which does not account for

different planting seasons and weather conditions. To address these

issues, (Uyeh et al., 2021) proposed a Reinforcement Learning (RL)

based method to optimally place sensors in a greenhouses using a

robust dataset which features different planting seasons. The dataset

consists data from 56 dual temperature and humidity sensors

distributed within a greenhouse. In the work, RL-based ranking of

the sensor locations was performed in order of their importance in

estimating the greenhouse micro-climate for temperature and relative

humidity respectively. The results show that the rank of each sensor

location for effective measurement of the greenhouse micro-climate

varies from month to month. This is very intuitive because it is

expected that different temperature and humidity profiles would occur

in different months and/or planting seasons based on the changes in

external weather conditions. Based on the same dataset and extracted

psychrometric features (dew point temperature, enthalpy, humid

ratio, and specific volume) (Uyeh et al., 2022a) proposed a machine

learning-based sensors clustering system to find the optimal sensor

locations. The results indicate that less than 10 percent of the sensors

were required to facilitate effective monitoring of the greenhouse.

Although the aforementioned works have considered optimal

sensor location in controlled cultivation system over different

planting seasons and environmental conditions, it is important to

realize that the ultimate goal of monitoring in controlled cultivation

systems is to maintain or regulate the micro-climates to be within the

desired range and this is facilitated through the associated control

systems. However, these works have only considered the problem of

optimal sensor placement from a monitoring or measurement

perspective without any notion of control. Therefore deviating from

the large body of previous works, this paper proposes a Genetic

Programming (GP)-based optimal sensor placement from a control

perspective for controlled cultivation systems. In the approach, firstly,

we show that reference micro-climate obtained from the aggregation of

all measurements from the 56 sensors is highly correlated to

measurements from each of the sensors. This means that the

reference temperature is a robust estimate of the overall micro-

climatic condition of the greenhouse. This is important because, in

terms of regulating the micro-climate within the greenhouse, only such
frontiersin.org
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reference micro-climate which are representative of the entire

environmental condition are required to serve as input to the

dedicated control systems. Consequently, reference micro climate

obtained based on the weighted averaging aggregation method are

used as targets to fit GP models that can effectively model the reference

micro-climate using only measurements from sensors that are most

vital to the reference micro-climate. In other words, through an

optimization process, GP selects only the crucial sensors and

effectively fuses them to realize the reference micro-climate.

Therefore, the locations of the sensor that are featured in the

resulting GP model are the optimal sensor locations required to

facilitate monitoring and control of the entire greenhouse. Consistent

with the findings in Uyeh et al. (2021), the results show that different

optimal sensor locations are representative of the entire environmental

condition across different months and different micro-climate.

Furthermore, the economic impact of the results is reflected in the

observation that only eight (8) sensors are required to monitor and

control the controlled cultivation system. This implies that the energy

cost of running the greenhouse as well as the sensor procurement cost

is reduced drastically.

The rest of the paper is structured as follows; Section II presents

a description of the data and featured pre-processing. Furthermore,

an overview of data aggregation and the methods employed in this

work, as well as correlation analysis of the resulting reference

micro-climate compared to the measurements from each of the

56 sensors is presented. In Section III, the background of Genetic

Programming as well as the proposed modules are presented.

Section IV presents the results in terms of the models obtained as
Frontiers in Plant Science 03
well as their implications. In Section V, conclusions and future

directions are highlighted.

2 Data description and aggregation

This work leverages on the same data used in (Uyeh et al., 2021;

Uyeh et al., 2022a). The dataset contains temperature and relative

humidity measurements collected remotely from a research

cultivation-controlled system in Kyungpook National University,

South Korea. The data was collected over a period of seven months

(February, March, April, May, June, July, and October) using 56

dual temperature and relative humidity sensors carefully distributed

within the greenhouse. Specifics about the site location, description,

greenhouse layout and the data collection protocol are detailed in

(Uyeh et al., 2021; Uyeh et al., 2022a). Figure 1 presents the layout

that is representative of the location of each of the sensors within

the greenhouse.

The resulting data includes measurements recorded per minute

for the two micro-climate (temperature and relative humidity). In

terms of pre-processing, rows with missing data points were

removed as the number of rows with missing data points is very

insignificant compared with the entire observations.
2.1 Data aggregation

In the context of achieving a controlled or regulated

environment, aggregate micro-climate (relative humidity and
FIGURE 1

Layout of the 56 two-in-one temperature and relative humidity sensors within the greenhouse (A) Front view, (B) Side view. The small circles
represent the positions of each of the sensors distributed over 8 rows (A–H) with each row containing 7 sensors.
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temperature) are required as inputs to dedicated control systems for

appropriate control actions within the cultivation systems (Yeon

Lee et al., 2019). Data aggregation is the process of fusing

information from different or multiple sensors together in order

to derive a single reference measurement that is sent to a base

station or controller depending on the intended application (Al-

kahtani and Karim, 2018; Kaur andMunjal, 2020; Yuan et al., 2021).

Generally, in controlled cultivation systems the aim is to ensure that

the micro-climate are controlled to support plant life and growth.

To facilitate such control, there is need to have reference micro-

climate that is representative of the environmental conditions of the

cultivation systems and consequently take control actions based on

the associated control laws. Several data aggregation methods such

as weighted averaging (Hang et al., 2017; Yeon Lee et al., 2019),

median (Cocco et al., 2015) and more complex fusing algorithms

such as the unscented Kalman filter (Xia et al., 2022) and weighted

least square method (Ren et al., 2017) etc. have been proposed in

the literature for application in cultivating systems and other

application domains.

In this work, we use the simple weighted averaging method

given as

W = o
N
i=1wiXi

oN
i=1wi

(1)

where N is the total number of sensors to be averaged, wi is the

weights applied to each sensor value and Xi is the sensor values to be

averaged. Similar to (Yeon Lee et al., 2019), we take the weight wi =

1 for all the 56 sensors. This is to ensure that every variation or

section of the greenhouse is given equal important. Furthermore, to

ensure that the chosen aggregation method is representative of the

response of each sensor we perform correlation analysis of the

reference micro-climate with micro-climate from each of

the sensors.
3 Genetic programming-based
optimal sensor location

In this Section, a systemic overview of GP is presented and

consequently, the protocols of the GP for the optimal sensor

location based on the aforementioned data are presented.
3.1 Genetic programming

In artificial intelligence, Genetic programming (GP) is a class of

bio-inspired algorithms generally known as evolutionary algorithms

that are capable of generating solutions to problems that humans

cannot solve or do not know how to solve directly. Formally, GP is a

systematic method for getting computers to automatically solve a

problem starting from a high-level statement of what needs to be

done (Koza and Poli, 2005). Generally, based on different genetic
Frontiers in Plant Science 04
operations (genetic events) such as crossover, mutation,

reproduction, gene duplication, and gene deletion the idea is to

randomly generate a large set of solutions and to evolve those

solutions until the population converges to a global maxima/

minima depending on the associated task and termination

criteria. It is often used in the field of Machine Learning for

hyper-parameter selection (Agrawal et al., 2021) or to determine

relationships between features in data (Rodrigues et al., 2022). For

example in the context of this work, the measurements from the 56

sensors are features and we intend to select the best features

corresponding to the optimal sensor locations.

In terms of implementation, the typical evolution process of GP

involves the following steps:
1. Define the problem objectives and randomly initialize or

generate a population of solution candidates.

2. Repeat the following steps until a pre-defined termination

criterion is reached:

(a) Evaluate each of the solution candidates in the

population based on the problem objective and assign it a

function value.

(b) Generate a new population of solution candidates by

performing the following operations:

1) Select a set of solution candidates for mating based

on the assigned fitness value (selection).

2) Include some of the selected solution candidates

into the new population without modifying them

(reproduction).

3) Generate new solution candidates by genetically

recombining randomly chosen parts of two selected

individuals (crossover).

4) Generate new solution candidates by replacing

randomly chosen parts of some selected individuals with

new randomly generated ones (mutation).

3. The resulting best solution candidates at any generation of

the evolution process is chosen as the result of the GP

process.
The aforementioned steps are summarized mathematically in

Algorithm 1. In classical GP, solution candidates or programs are

encoded as tree-based structures as shown in Figure 2 (Koza, 1993)

because evaluating trees in a recursive manner is easy. Under this

setting, mathematical expressions are evolved and evaluated with

each tree nodes having an operator function and each terminal

mode an operand. Furthermore, the crossover operation is achieved

by swapping randomly selected sub-trees from two parent

candidates while mutation is achieved by replacing a randomly

chosen individual’s sub-tree by a randomly generated one (Sotto

et al., 2021). For example, in Figure 2A, the sub-tree of the parent

solution is replaced to produce the offspring and in Figure 2B, two

parents P1 and P2 are crossed to produced offspring 1 and

2 accordingly.
frontiersin.org
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3.2 GP-based optimal sensor location

In order to evolve a GP model that is representative of the

optimal sensor locations, it’s important to set the global task or

objective. In terms of optimal sensor location, the goal is to realize

an efficient combination of a limited number of sensors that can

estimate the reference micro-climate obtained from the aggregation

of the 56 sensors. Since the reference micro-climate are real

continuous values, the problem at hand can be formalized as a

classical symbolic regression task which is one of the most widely

studied application of GP (Uy et al., 2010; He et al., 2022; Zojaji

et al., 2022). Symbolic Regression (SR) is a class of machine learning

approach that searches the space of mathematical expressions with

the aim of identifying a model or expression that best describes the

relations between a given dataset, both in terms of accuracy and

simplicity. This can be summarized as a multi-objective framework

where accuracy (error) is maximized (minimized) and the number

of sensors is minimized (simplicity). Therefore, given the

measurements of 56 sensors as input for each of the associated

micro-climate and a set of operator functions, the GP builds a

symbolic regression model and selects the minimum number of

sensors sufficient to estimate the reference extcolor micro-climate

from the 56 sensors. Consequently, the resulting locations of the

chosen sensors are the optimal sensor locations for the associated

micro-climate and month.
4 Computational experiments

Based on the data collected for each of the month featured in the

aforementioned dataset, we construct GP models using variables

(data from each of the sensors) as well as random numbers as

terminals and arithmetic operators such as (addition, multiplication

etc.) as operator functions. The choice of constructing GP models
Frontiers in Plant Science 05
based on each month was motivated by intuition that different

sensor profiles would be optimal for different months and seasons

which was also validated in (Uyeh et al., 2021). For each month and

the associated micro-climate, the data is divided randomly into

training and testing set based on 70:30 ratio. Furthermore, the

training set is further divided to obtain a validation set based on

80:20 ratio. The random division of the data is chosen to ensure that

the opportunity to model the different time trends is not missed.

Because the validation of the model would be affected if certain time

trends are ignored in model development.

All the experiments were conducted in MATLAB installed on a

64-bit Windows 11 PC, with 3.00GHz Intel-i5-12500 CPU and

32GB RAM. The GP is initialized with a population size of 500 and

is allowed to evolve for 100 generations. The best results obtained

over 25 independent runs of the GP algorithm are reported. In

terms of selection, tournament selection (Fang and Li, 2010) with

size of 25 was used and an elite fraction of 0.3. For all the

experiments, the set of function nodes used are basic arithmetic

operators (+, -, ×) as well as minimum (min) and maximum

(max) operators.
5 Results and discussion

To evaluate the resulting GP models, we employ a number of

metrics namely; Pearson’s Correlation Coefficient (R), Root Mean

Squared Error (RMSE), Mean Average Error (MAE) and Maximum

Absolute Error (Max.AE).
5.1 Correlation of sensor aggregation

Table 1 shows the average correlation of the reference micro-

climate (temperature and relative humidity) with each of the
FIGURE 2

Examples of mutation and crossover operations in GP (A) Offspring generated by a single-parent mutation (B) Two offspring are generated by a
bi-parent crossover.
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measurements from the 56 sensors over the even months. As seen in

Table 1, the reference textcolormicro-climate are highly correlated

with those measured from each of the sensors with the lowest being

97%. This demonstrates that the reference micro-climate based on

the average aggregation method is satisfactorily representative of

the global environmental conditions of the controlled cultivation

systems and can be used to facilitate the control of the entire regions

of the cultivation system.
5.2 Performance of GP-based model
for temperature

In Table 2, the symbolic equations for the resulting model

based on the associated sensors are presented. Specifically, the

equations represent how to aggregate the information from each

sensor as well as the bias term. Based on those models, Table 3

presents the performance of the model in terms of Pearson’s

Correlation Coefficient (r) with the reference temperatures,

Root Mean Squared Error (RMSE), Mean Average Error

(MAE) and the Maximum Absolute Error (Max.AE) of the

predicted temperature compared to the reference temperature

for each of the 7 months. In Figures 3, 4, comparisons between

the actual and predicted values based on the test dataset are

presented. The results in terms of the r values shows that the

actual and predicted temperature based on the GP model are

highly correlated with an average value of over 0.99 across the
Frontiers in Plant Science 06
seven months. In terms of the error-related metrics, such as

RMSE and MAE, it can be seen from Table 3 that the values are

insignificant and within allowable limits. It is important to note

that those error values are not from normalized samples but are

based on the real magnitudes of the temperature measurements.

The Max.AE metric presents the worst cases of error between

the actual and real temperature values. These values are found to

be in the region of the allowable measurement error from the

device manufacturer which is ± 0.3°C (Uyeh et al., 2021). In

terms of the qualitative analysis of the actual and predicted

temperature values presented in Figures 3, 4, it can be clearly

seen that the actual and predicted temperature measures are

very similar.
5.3 Performance of GP-based model for
relative humidity

In Table 4, the symbolic equations for the resulting model

based on the associated sensors are presented. Based on those

models, Table 5 presents the performance of the model in terms

of Pearson’s Correlation Coefficient (r) with the reference

relative humidity, Root Mean Squared Error (RMSE), Mean

Average Error (MAE) and the Maximum Absolute Error

(Max.AE) of the predicted relative humidity compared to the

reference relative humidity for each of the 7 months. In

Figures 5, 6, comparison between the actual and predicted

values based on the test dataset are presented. The results of

the correlation analysis presented in Table 5 shows that the

actual and predicted relative humidity based on the GP-model

are highly correlated with an average value of over 0.99 across

the seven months. In terms of the error related metrics, such as

RMSE and MAE, it can be seen from Table 5 that the values are

insignificant and within allowable limits. It is important to note

that those error values are not from normalized samples but are

based on the real magnitudes of the relative humidity

measurements. The Max. AE metric presents the worst cases of

the error between the actual and real relative humidity values.

These values are found to be in the region of the allowable

measurement error from the device manufacturer which is ± 2%°

C (Uyeh et al., 2021). In terms of the qualitative analysis of the

actual and predicted relative humidity values presented in
TABLE 2 Resulting GP-based symbolic models (equations) for temperature.

Months Symbolic Equations for Temperature

February 0.126A1 + 0.126A2 + 0.126B5 + 0.126B6 + 0.126D7 + 0.126E4 + 0.126F4 + 0.126H1 - 0.1880

March 0.126A1 + 0.126A2 + 0.126C5 + 0.126C7 + 0.126D5 + 0.126E2 + 0.126F5 + 0.126G3 - 0.0887

April 0.125A4 + 0.125B3 + 0.125B5 + 0.125C1 + 0.125D6 + 0.125E1 + 0.125E4 + 0.125F5 - 0.0672

May 0.125A5 + 0.125C1 + 0.125D4 + 0.125E4 + 0.125E6 + 0.125F3 + 0.125G5 + 0.125H1 - 0.0295

June 0.124B1 + 0.124B5 + 0.124B7 + 0.124D5 + 0.124E4 + 0.124E6 + 0.124F3 + 0.124H1 + 0.1330

July 0.125B3 + 0.125B4 + 0.125C7 + 0.125E4 + 0.125E6 + 0.125F5 + 0.125G4 + 0.125H1 + 0.0312

October 0.125B2 + 0.125B7 + 0.125D5 + 0.125E6 + 0.125F2 + 0.125G5 + 0.125H1 + 0.125H3 - 0.0088
TABLE 1 Average correlation of the reference micro-climate with each
of the measurements from the 56 sensors.

Months Correlation Coefficients (r)

Temperature Relative humidity

February 0.972 0.978

March 0.973 0.978

April 0.980 0.980

May 0.980 0.977

June 0.976 0.984

July 0.977 0.985

October 0.970 0.983
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Figures 5, 6, it can be clearly seen that the actual and predicted

relative humidity values are very similar.
5.4 Analysis of selected optimal
sensor locations

In Table 6, the selected optimal sensor locations for each month

are presented for temperature. From the Table, it can be observed

that for the months of February, March and April an average of 5

out of the eight sensors selected are distributed along the center of

the greenhouse (A, B, C, D), while other remaining three are either

to the right or left side of the greenhouse. On the other hand for
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May to October, it can be seen that only an average of 3 of the

sensors selected are distributed along the center of the greenhouse

while the others are distributed to the left or right side of the

greenhouse. This can be attributed to the different seasons of each

month. Specifically, it can be inferred that the colder months have

higher concentration of sensors along the center of the greenhouse

while the more hotter months takes more advantage of sensor

distributed along the facility.

In Table 7, the selected optimal sensor locations for eachmonth are

presented for relative humidity. It can be observed from the Table that

the selected sensors were mostly distributed along the center of the

greenhouse across themonths. Specifically, eachmonth had at least five

(February, March, and July) or six (April, May, June, and October) of
FIGURE 3

Comparisons of the actual reference temperature versus those predicted by the proposed GP-models for (A)February, (B) March, (C), April (D) May.
TABLE 3 Performance of the GP-based models in terms of Pearson’s Correlation Coefficient (r) with the reference temperature, Root Mean Squared
Error (RMSE), Mean Average Error (MAE) and the Maximum Absolute Error of the predicted temperature (Max.AE).

Metrics Months

February March April May June July October

r 0.9997 0.9998 0.9996 0.9999 0.9999 0.9999 0.9998

RMSE 0.0884 0.0862 0.1490 0.0761 0.0601 0.03178 0.0836

MAE 0.0634 0.0502 0.0644 0.0442 0.0383 0.0210 0.0527

Max.AE 0.4842 0.5808 1.1346 0.5672 0.4539 0.2613 0.6350
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the eight sensors distributed along the center of the greenhouse while

the remaining three (3) or two (2) sensors respectively were distributed

either to the right or left side of the greenhouse. This basically means

that more sensors are selected from the center of the greenhouse during

hotter months compared to colder ones with the exception of July

which had the same number of sensors distributed in the middle as

with February and March.
5.5 Implication of the GP-based model
from a control and economic perspective

As mentioned earlier, the ultimate goal of monitoring in

controlled cultivation systems is to achieve appropriate control.

The advantage of the proposed framework from a control
Frontiers in Plant Science 08
perspective is that it not only gives the optimal sensor locations

for each month, but it also provides how to aggregate them

efficiently to facilitate the needed control of the entire system.

The symbolic representations presented in Tables 2, 4 for

temperature and humidity respectively are the needed aggregation

expressions required to obtain reference temperature and humidity

that is representative of the micro-climate of the entire cultivation

systems which can be fed into the control system and consequently

provide control actions based on the associated control laws.

The results from the proposed model, indicate that only 8 optimally

distributed sensors (less than 15% of the distributed sensors) are sufficient

to facilitate efficient and effective monitoring and control of indoor

environmental parameters. This reduces the entire operating cost in

terms of energy use and most importantly, the cost of sensor

procurement and installation can be reduced by about 75%.
TABLE 4 Resulting GP-based symbolic models (equations) for humidity.

Months Symbolic Equations for Humidity

February 0.126A1 + 0.126A3 + 0.126A5 + 0.126B6 + 0.126D6 + 0.126E2 + 0.126F4 + 0.126G3 - 0.8330

March 0.125A1 + 0.125A4 + 0.125B7 + 0.125C5 + 0.125D3 + 0.125E1 + 0.125E6 + 0.125F3 + 0.0494

April 0.126A1 + 0.126A4 + 0.126A5 + 0.126B5 + 0.126B6 + 0.126C3 + 0.126F6 + 0.126H1 - 0.6660

May 0.125B4 + 0.125B6 + 0.125C1 + 0.125C2 + 0.125C3 + 0.125D7 + 0.125F6 + 0.125H1 - 0.1570

June 0.125B6 + 0.125B7 + 0.125C1 + 0.125C3 + 0.125D3 + 0.125D7 + 0.125F2 + 0.125G4 - 0.0069

July 0.124B2 + 0.124B7 + 0.124C1 + 0.124C4 + 0.124D6 + 0.124E2 + 0.124E6 + 0.124H3 + 0.4730

October 0.125A4 + 0.125B6 + 0.125B7 + 0.125C3 + 0.125E1 + 0.125E2 + 0.125F5 + 0.125H5 - 0.2610
FIGURE 4

Comparisons of the actual reference temperature versus those predicted by the proposed GP-models for (A) June, (B) July (C) October.
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6 Conclusions and future works

In this work, an optimal sensor location for controlled cultivation

system based on Genetic Programming (GP) is proposed. Using data

collected from 56 dual temperature and humidity sensors distributed

within a greenhouse, reference temperature and humidity values are

obtained based on the weighted average aggregation of the data.

Consequently, GP is used to build symbolic models which are

representative of the optimal sensors as well as how to optimally

aggregate the data from the sensors. The results based on the test data

shows that the reference micro-climate from the GP-based model for
Frontiers in Plant Science 09
each month is highly correlated to those obtained based on all the 56

sensors. Furthermore based on several error metrics, it was found that

the resulting error from using only 8 sensors based on the GP model

is within allowable measurement error as provided from the device

manufacturer which is ±2%°C.

Although, this work has been limited to only Temperature and

Relative Humidity, light or Photosynthetic active radiation is

another important requirement in a greenhouse or any other

controlled cultivation system. Therefore in the Future, we would

be interested in considering the effect of light as well as other micro-

climate within the greenhouse.
FIGURE 5

Comparisons of the actual relative humidity versus those predicted by the proposed GP-models for (A)February, (B) March, (C), April (D) May.
TABLE 5 Performance of the GP-based models in terms of Pearson’s Correlation Coefficient (r) with the reference relative humidity, Root Mean
Squared Error (RMSE), Mean Average Error (MAE) and the Maximum Absolute Error (Max.AE) of the predicted relative humidity.

Metrics Months

February March April May June July October

r 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

RMSE 0.3397 0.3152 0.2943 0.2196 0.2115 0.1536 0.2399

MAE 0.1786 0.1864 0.1722 0.1374 0.1462 0.1215 0.1659

Max.AE 4.1358 4.2093 4.1959 3.1712 2.2670 1.0564 3.4247
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TABLE 7 Optimal sensor location for relative humidity.

Optimal sensor locations

February March April May June July October

A1 A1 A1 B4 B6 B2 A4

A3 A4 A4 B6 B7 B7 B6

A5 B7 A5 C1 C1 C1 B7

B6 C5 B5 C2 C3 C4 C3

D6 D3 B6 C3 D3 D6 E1

E2 E1 C3 D7 D7 E2 E2

F4 E6 F6 F6 F2 E6 F5

G3 F3 H1 H1 G4 H3 H5
F
rontiers in Plant Science
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FIGURE 6

Comparisons of the actual relative humidity versus those predicted by the proposed GP-models for (A) June, (B) July (C) October.
TABLE 6 Optimal sensor locations for temperature.

Optimal sensor locations

February March April May June July October

A1 A1 A4 A5 B1 B3 B2

A2 A2 B3 C1 B5 B4 B7

B5 C5 B5 D4 B7 C7 D5

B6 C7 C1 E4 D5 E4 E6

D7 D5 D6 E6 E4 E6 F2

E4 E2 E1 F3 E6 F5 G5

F4 F5 E4 G5 F3 G4 H1

H1 G3 F5 H1 H1 H1 H3
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