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Introduction: Fresh pomegranate fruit is susceptible to bruising, a common type

of mechanical damage during harvest and at all stages of postharvest handling.

Accurate and early detection of such damages in pomegranate fruit plays an

important role in fruit grading. This study investigated the detection of bruises in

fresh pomegranate fruit using hyperspectral imaging technique.

Methods: A total of 90 sample of pomegranate fruit were divided into three

groups of 30 samples, each representing purposefully induced pre-scanning

bruise by dropping samples from 100 cm and 60 cm height on a metal surface.

The control has no pre-scanning bruise (no drop). Two hyperspectral imaging

setups were examined: visible and near infrared (400 to 1000 nm) and short

wavelength infrared (1000 to 2500 nm). Region of interest (ROI) averaged

reflectance spectra was implemented to reduce the image data. For all

hypercubes a principal components analysis (PCA) based background removal

were done prior to segmenting the region of interest (ROI) using the Evince®

multi-variate analysis software 2.4.0. Then the average spectrum of the ROI of

each sample was computed and transferred to the MATLAB 2022a (The

MathWorks, Inc., Mass., USA) for classification. A two-layer feed-forward

artificial neural network (ANN) is used for classification.

Results and discussion: The accuracy of bruise severity classification ranged

from 80 to 96.7%. When samples from both bruise severity (Bruise damage

induced from a 100cm and 60 cm drop heights respectively) cases were merged,

class recognition accuracy were 88.9% and 74.4% for the SWIR and Vis-NIR,

respectively. This study implemented the method of selecting out informative

bands and disregarding the redundant ones to decreases the data size and

dimension. The study developed a more compact classification model by the

data dimensionality reduction method. This study demonstrated the potential of

using hyperspectral imaging technology in sensing and classification of bruise

severity in pomegranate fruit. This work provides the foundation to build a

compact and fast multispectral imaging-based device for practical farm and

packhouse applications.

KEYWORDS

pomegranate fruit, non-destructive testing, hyperspectral imaging, Vis-NIR, SWIR,
bruise detection, pattern recognition
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1 Introduction

Pomegranate (Punica granatum L) is undeniably one of the

most ancient deciduous fruit in the world (Al-Said et al., 2009;

Opara et al., 2009; Pareek et al., 2015). With its origin traceable to

the Middle East, it has expanded and has now been grown across

the world, even meeting commercial export in South Africa

(Adetoro et al., 2020; Pienaar and Barends-Jones, 2021).

Pomegranate fruit can be consumed as fresh arils or in its

processed form such as juice, dried arils, jams, etc. In the past

decades, the demand for pomegranate fruit has been increasing due

to its nutritional and health benefits (Lansky and Newman, 2007;

Al-Said et al., 2009; Fawole and Opara, 2013). It has been recounted

to be highly effective for preventing inflammatory diseases and

induces anti-proliferative and antimetastatic side effects in human

(Pareek et al., 2015).

Bruise is the most common type of postharvest mechanical injury

affecting pomegranate fruit (Opara et al., 2021a; Opara et al., 2021b).

Bruise reduces fruit quality and causes considerable post-harvest

losses and decreases the income (Opara and Pathare, 2014; Shafie

et al., 2017; Hussein et al., 2019). Bruise usually results when the fruit

is subjected to high impact and vibration (Opara and Pathare, 2014;

Shafie et al., 2017; Opara et al., 2021a). Bruise damage normally

manifest when the outer tissue of the fruit fails without rupturing due

to excessive mechanical stress (Ahmadi et al., 2014; Hussein et al.,

2019; Opara and Pathare, 2014). various studies showed that most

bruises occurred during harvest and transportation to the packhouse

and during handling in the packaging processing line. Studies have

shown the detrimental effect of bruise on the physical and

biochemical quality of pomegranate fruit (Shafie et al., 2015;

Hussein et al., 2019). The economic losses in the fruit and

vegetable industry due to bruise damage is substantial (Van

Zeebroeck et al., 2007; Opara and Pathare, 2014). In the

pomegranate industry, bruise damage reduces the market value

considerably and causes a huge economic loss (Opara et al., 2021a;

Opara et al., 2021b), as bruised fruits do not meet export quality and

are devalued at marketplace.

Unlike other fruit with soft tissues and thin rind/peel such as

apples and pear, early detection of bruises on pomegranate fruit is

difficult due to the tough and leathery skin of this fruit (Hussein et al.,

2019). Bruise on pomegranate fruit is only visible long after the

impact (Hussein, 2019). Typically, in the industry, bruises are

identified through visual inspection by trained panels or line

operators and removed manually. This approach for bruise

diagnosis is laborious, time consuming and subjective. Therefore,

there is a need for alternative technology for rapid and non-

destructive detection of early bruise damage. Other studies showed

that pomegranate fruit responded physiologically and in some

physico-chemical changes when they undergo bruises. This is

indicative in the changes in total soluble solids (TSS), titratable

acidity (TA), Brix-to-acid ratio (TSS : TA) and BrimA when

exposed to bruising (Hussein, 2019). The effect of fruit ripeness

(maturity), on bruise susceptibility has been reported (Hussein, 2019;

Hussein et al., 2019), with corresponding physico-chemical changes.

The ripening (maturity) stage, depending on the type of fruit and

cultivar, can be the most important factors influencing bruise damage
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susceptibility (Hussein, 2019; Hussein et al., 2019). Previous studies

have revealed that mature fruits are more susceptible to bruise

damage than immature fruit (Xing and De Baerdemaeker, 2005).

Spectroscopic analysis is gaining widespread research attention

because of its ability to extract huge chemical information to

analyze and develop a quality prediction model for several fruit

types (Xing and De Baerdemaeker, 2005; Du et al., 2020).

There have been different imaging and feature extraction

approaches for fruit bruise detection and measurement (Shahin

et al., 2002; Kim et al., 2014; Du et al., 2020; Zeng et al., 2020). The

shortcoming with most of these approaches is the need for wider

spectral range (Xing and De Baerdemaeker, 2005). Spectroscopic

assessment for fruit quality gained attention in research as viable

nondestructive technique for quality attributes and grading

(Khodabakhshian et al., 2017; Arendse et al., 2018; Jamshidi et al.,

2019). Other imaging techniques that have been applied for bruise

detection in recent times include X-ray (Hussein, 2019), Thermal

imaging (TI) (Zeng et al., 2020), Magnetic resonance imaging

(MRI) (Razavi et al., 2018), Fluorescence imaging (FI) (Chiu

et al., 2015; Everard et al., 2016) as well as hyperspectral imaging

(Dian et al., 2019; Zhu et al., 2016).

Hyperspectral imaging (HSI) has emerged as a powerful non-

destructive inspection technique in the agricultural, biosecurity

diagnostic and food domain recently. HSI is a non-invasive/

nondestructive technique that integrates spectroscopy and

imaging to form one system (Wu and Sun, 2013; Su & Sun,

2018). This non-destructive approach has been proposed for

detections of different fruit defects (Arendse et al., 2021; Okere

et al., 2021). It has been employed for disease detection (Li et al.,

2016; Siedliska et al., 2018), common defects (Li et al., 2013; Zhang

et al., 2015; Munera et al., 2021), physical damage (Lee et al., 2014),

and in particular for bruise detection (Che et al., 2018; Tan et al.,

2018b; Fang et al., 2019; Zhu & Li, 2019). Some of the specific fruits

that have been investigated for bruise damage includes apples

(Siedliska et al., 2014; Ferrari et al., 2015; Li et al., 2018),

strawberries (Nagata et al., 2006; Liu et al., 2018), blueberries

(Jiang et al., 2016; Fan et al., 2018), peaches (Li et al., 2018),

kiwifruit (Lü and Tang, 2012), pears (Dang et al., 2012; Fu and

Wang, 2022), jujube (Feng et al., 2019), cucumbers (Ariana et al.,

2006), and so forth. These studies reported success in accurate

classification of bruise severity suggesting the potential of

implementing the technique. However, to the best of our

knowledge, no study has yet reported on the application of

hyperspectral imaging for non-destructive detection and

classification of bruise of pomegranate fruit. Therefore, this study

seeks to explore the potential of hyperspectral imaging to detect and

classify bruise severity for pomegranate fruit.
2 Materials and methods

2.1 Fruit procurement and
sample preparation

In this study, pomegranate fruit (cv. Wonderful) was procured

from Sonlia pack-house in the Western Cape region, South Africa.
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Sample pomegranates were harvested at commercial maturity at

average maturity indices, viz. total soluble solids (TSS) of 16.36±

1.05°Brix and brix-acid ratio (TSS/TA) of 10.08± 2.13%. A total of

90 pomegranate fruit, with an average weight of 280 ± 45g, without

visible surface defects were individually sorted, washed, and stored

at 7.0 ± 1°C and 90 ± 2% RH, which is the recommended optimum

storage condition for pomegranate fruit (Arendse et al., 2018).
2.2 Bruise simulation

Bruise damage was created on the middle (equatorial) region of

the fruit by dropping fruit from a predefined height onto a steel

surface with side of the fruit perpendicular to the metal surface. This

experiment follows the previously developed method by Hussein

et al. (2019) (Figure 1). Each pomegranate fruit was dropped once

from a given height to the metal surface and caught by hand after

the first rebound to avoid multiple impacts. Following impact tests,

fruit were incubated at ambient condition (19 – 22°C, 60 ± 5% RH)

for an hour prior to image acquisition. A total of 90 pomegranates

were used for this study. Samples were sub-divided into three

groups of 30 samples, each representing dropping induced

bruising level: 100 cm, 60 cm, and no drop (not bruised).

Assuming the fall was nearly free, impact energies applied on the

fruit surface were calculated according to impact force from falling

object. The calculated average impact energy was approximately

760 ± 0.5 mJ and 680 ± 0.8 mJ for the falling from 100 cm and 60 cm

heights, respectively.
2.3 Hyperspectral image acquisition system

Prior to image acquisition the system was set up as follows. The

distance between sample and camera was set to 20.5 cm; the grey

standard was fixed at 68 mm from above Scanning was performed at
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the Central Analytical Facility (CAF) Vibrational Spectroscopy Unit

of Stellenbosch University. Two different hyperspectral imaging

cameras: HySpex VNIR-1800 and HySpex SWIR-384 (NEO; Norsk

Electro Optikk, Norway) were tested (Figure 2). The camera

specifications for both equipment is elaborated and compared in

(Table 1). In the VNIR camera, images are acquired at wavelengths

ranging from 400 to 1000 nm with a waveband of 186 and spectral

resolution of 3.26 nm. Figure 2 illustrates the hyperspectral image

acquisition system and the formation of three‐dimensional

hyperspectral data (hypercube). The VNIR has spatial pixels (x) of

1800 which corresponds to the number of photodetectors along the

spatial dimension of the detector array of the camera. The second

spatial dimension (y) is the number of pixels in the scanning direction

and is physically bounded by the size of the scene and the speed of the

translation stage. A 30 cm focal length lens with field view of 9.733 cm

were used. Reflectivity reference data were obtained for each fruit.

Hence, each image was obtained as a three-dimensional image block

(x, y, l), including 1800 × y pixels on the space dimension (x, y), and

128 bands at 3.26‐nm intervals within a range of 400 to 1000 nm on

the spectral dimension (l).
The SWIR camera works at a wavelength range of 950 to 2500

nm with spectral wavebands of 288 and spectral resolution of 5.45

nm. It has spatial pixels of 384. The cameras were mounted above a

translation stage which has a speed regulation system (Figure 2). A

30 cm focal length lens with a field view of 9.470 cm was used.

Reflectivity reference data were obtained for each fruit with the

bruised surface facing the camera.
2.4 Hyperspectral image calibration

To minimize the impact of the uneven intensity distribution of

the light source and dark current in the charge coupled device

(CCD) detector on the hyperspectral images, image correction was
B

C

DA

FIGURE 1

Picture of pomegranate fruit sample under drop impact bruise from 100cm height (A) fresh unbruised fruit sample (B) fruit placed at 100cm drop
height (C) fruit dropped under free fall due to gravity (D) bruised fruit sample.
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performed using known true spectral information. Eqn. (1)

provides the formula for the image correction.

r_

rxy(l) = rref (l)
Rxy(l) − Rdark(l)
Rref (l) − Rdark(l)

(1)

where rref(l) is the reflectivity of the 50% grey calibration plate

(Zenith Polymer® Reflectance standard; SphereOptics GmbH,

Germany); Rxy(l) is the original uncorrected hyperspectral image;
Frontiers in Plant Science 04
Rref(l) the image of the calibration board and Rdark(l) is the

completed black image collected after turning off the light source

and rxy(l) the spectra of the corrected image. The system operation

and image acquisition were carried out using ‘Breeze’ software

(version 2021.1.5, Umeå, Prediktera, Sweden) installed on a 64-bit

Dell computer of 40 GB RAM and processor speed of 2.20GHz

running on Windows 10 pro–operating system.
2.5 Explorative analysis using PCA

The three-dimensional hyperspectral images (hypercubes) were

imported into Evince software (version 2.7.10, Prediktera, Sweden)

for pre-processing and background removal. The background was

removed by interactively separating (selecting, excluding, and

reconstructing) the background pixels from the fruit pixels using

contour 2D and scatter 2D plots of the PCA applied on individual

and group hypercubes (Figure 2).

Preprocessing of extracted hyperspectral image data is necessary to

reduce artifacts (variations that are not required in the spectral data)

arising due to background noise, instrumental effects or luminescence

and heterogeneity in samples (shape, size and position of sample)

(Magwaza et al., 2012; Xu et al., 2023). The hypothesis is that the part of

the spectral signal removed represents an interference and is generally

not useful for numerical analysis. Different spectral preprocessing

algorithms have been employed individually or in a sequential

processing mode to reduce artifacts (Magwaza et al., 2012; Ravikanth

et al., 2017). In this study raw reflectance data and six commonly used

spectral preprocessing, namely, multiplicative scatter correction (MSC),

standard normal variate (SNV), de-trending (DT), continuum removal

(CR) and Savitzky–Golay first and second derivative were compared to

identify the best for predicting bruise severity level. The SNV model

achieved the best classification predictive performance compared to

other methods used. SNV reduces disturbances in spectral data by
TABLE 1 Summary of hyperspectral imaging system, comparison of
SWIR and VNIR camera specifications.

Main specifications SWIR VNIR

Spectral range 930 – 2500 nm 400 – 1000 nm

Spatial pixels 384 1800

Spectral channels 288 186

Spectral sampling 5.45 nm 3.26 nm

FOV 16° 17°

Pixel FOV across/along 0.73/0.73 mrad 0.16/0.32 mrad

Bit resolution 16 bit 16 bit

Noise floor 150 e- 2.4 e-

Dynamic range 7500 20000

Peak SNR (at full resolution) >1100 >255

Max speed (at full resolution) 400 fps 260 fps

Power consumption 30 W 30 W

Dimensions (l-w-h) 38 – 12 – 17.5 cm 39 – 9.9 – 15 cm

Weight 5.7 kg 5.0 kg

Camera interface Camera Link Camera Link
FIGURE 2

Schematics illustrating the hyperspectral imaging and analysis workflow followed in this study.
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correcting spectra with the mean and standard deviation of each

spectrum (Tan et al., 2018a).

Subsequent hyperspectral data processing was implemented

using hyperspectral Imaging Library in MATLAB® (The

MathWorks, Inc., Natick, Massachusetts, United States).

Supervised classification models based on a two-layer feed-

forward artificial neural network (ANN), with sigmoid hidden

and softmax output neurons was used to classify inputs into two

target (for bruise detection) and three target (bruise severity)

categories (Jamshidi, 2003; Nturambirwe and Opara, 2020). The

original data was randomly divided into training set (70%),

validation (15%) and test set (15%). Training set is presented to

the network during training, and the network is adjusted according

to its error. Validation set measure network generalization, and halt

training when generalization stops improving. Testing set has no

effect on training and so provide an independent measure of

network performance during and after training. To achieve this, a

dummy binary-coded matrix of equal rows as the input was created.

In this study, for the case of bruise detection, 2-column response

matrix in which samples belonging to the first class (bruised) were

described by a vector [1 0] while the No bruise class was represented

by the vector [0 1]. In the case of severity, a 3-column matrix was

generated with the first class (60 cm drop) described by [1 0 0],

100 cm drop [0 1 0], and the No drop class [0 0 1] respectively.

Classification was accomplished by using the machine learning and

deep learning functions in MATLAB. Classification performances

were evaluated based on its overall classification accuracy for

training set, test set and validation set as well as class error. A

good model should possess high classification accuracy and low-

class error. A model with a 100% classification accuracy means that

the model made no classification error.
3 Results and discussion

3.1 Principal component analysis

Figure 3 depicts the averaged spectral of all the samples scanned

with the VNIR (Figure 3A) and SWIR (Figure 3B) cameras

squeezed out using the Evince software (version 2.7.10,

Prediktera, Sweden). Evince extracted the spatial (horizontal and

vertical), and spectral profiles from the image display. Each sample

fruit exhibited a unique spectral signature based on the sample’s

composition, surface structure, viewing geometry, etc. The

assumption is that bruising can create its own signature by

affecting the surface structure and composition. However, the

overall shape (locations of wavelength bands where highs and

lows) is similar across the electromagnetic spectrum for all

samples in both cameras. Hence, the classification parameter this

study used to identify bruise severity and presence/absence of a

bruise was based on reflectance values at bands than the overall

shape of the spectra.

The two cameras have their distinctive spectra depending on

their spatial and spectral resolution (Table 1). Due to its high spatial

resolution the VNIR camera provided high-resolution HS images as

shown by (Figures 4A–F) for sample without bruise and with bruise,
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respectively. The SWIR camera, due to its law spatial resolution,

provides rough images with noticeable spatial lines on the painting

(Figures 4G–I) and (J-L)). Correspondingly, the HS image

visualization and data analysis process is much faster and easier

for SWIR than VNIR. Using the Evince software the initial data

compression stage was undertaken by cropping the view span to

capture fruit only, PCA based background removal. This process

compressed the data size significantly. In average, the HSI data size

reduced from 3.5 GB to 200 MB for the VNIR and 1.5 GB to 150

MB for the SWIR cameras, respectively, before transferring

to MATLAB.

For each sample, the number of spectrally distinct endmembers

were estimated using the find the number of endmembers present

in a hyperspectral data cube feature by using the noise-whitened

Harsanyi–Farrand–Chang (NWHFC) method implemented in

MATLAB, and the corresponding bands were identified using

PCA method for dimensionality reduction (Figure 5). Effective

band selection was done for each fruit sample.

Figure 6, top row, displays the first five spectral bands of the

original data of unbruised fruit. Variability is not significant both

between bands and spatially on the fruit surface. Figure 6, bottom

row, shows the same fruit seen with the identified five informative

bands. Clearly, differentiations come both spatially and spectrally

with the informative bands. The same informative bands used on a

fruit that was bruised by dropping from 100 cm height is shown in

Figure 7. The accentuation of the bruise mark in the bottom raw

(viewed with the informative bands) is apparent. The residences of

the five effective bands are shown as vertical dashed line on the class

mean spectra of the two cameras (Figure 8).

The class mean spectral plot clearly distinguished the two

bruised groups from the unbruised group. The unbruised spectral

(orange) showed the highest reflectance signature across the

electromagnetic spectrum of the SWIR camera, while both

bruised samples at different severities (blue and yellow) showed

lower reflectance. However, for the VNIR camera, the variation

between classes looks small and it is not consistent across the

spectrum. Similar trend is observed in most bruise study for

different fruit (Siedliska et al., 2018; Tan et al., 2018b). This

spectral profile pattern for bruised and unbruised samples has

been attributed to the fact that there is an outflow of water from

the surface of the sample that have been bruised (Siedliska et al.,

2018; Tan et al., 2018b).
3.2 Classification model development for
bruise fruit detection

The classification test results for bruise detection classification

accuracy, true positive, false positive of the VNIR and SWIR data

are summarized on Table 2. The results for classification were

grouped into three groups or levels of severity, group 1 comprised

fruit bruised at 60 cm and unbruised fruit, group 2 was made up of

samples bruised at 100 cm and unbruised samples and finally group

3 which combined the two-bruised fruit samples (60 cm vs. 100cm).

For bruise severity classification training, each ROI averaged

reflectance values at the five wavelengths (1 × 5), presented to the
frontiersin.org
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classification model, is accompanied by a (1 × 3) target matrix

where each column indicates a category with a one in either element

1, 2, or 3, defining the desired network output (no bruising, bruised

at 60 cm and 100 cm). On the other hand, the bruise classification

problem, which is a binary (two-class) problem distinguishing

between bruised and unbruised samples, is accompanied by a (1

× 2) target matrix where each column indicates a category with a

one in either element 1 or 2. The ANN pattern recognition

algorithm divides the data randomly into training (70%), testing

(15%) and validation (15%) sets during model development.

The effect of the structure of the artificial neural network

(number of hidden neurons and random division of sample into

training, testing and validation sets) on the performance of the

classification was evaluated using error histogram, confusion matrix

and Receiver Operating Characteristic curve. Confusion matrix is a

very popular measure used while solving classification problems
Frontiers in Plant Science 06
and it is used in this paper to report the classification performances.

For the bruise severity classification which has three classes, the

confusion matrix is a 3 x 3 and the bruise classification, which is

binary, has a 2 x 2 confusion matrix.

3.2.1 Classification performance for SWIR camera
The ANNmodel accurately discriminated between bruised fruit

from this group against unbruised ones (Table 2). The confusion

matrix indicates how the model correctly and wrongly placed input

data to the different severities is seen (Figures 9A–C). For the first

severity stage SI (60cm drop height), the model showed a

recognition accuracy of bruised samples and unbruised samples

to be 76.7% and 90% respectively. The last column of the matrix

indicates the ratio of the number of correctly classified samples

to the number of all the total samples classified (Figure 9A). In the

first column, for a total of 30 bruised samples, 23 were correctly
A

B

FIGURE 3

Spectral characteristic curves of the SWIRL data. average spectra of the hyperspectral images of all samples.
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classified as bruised while 7 were misclassified as unbruised. In the

second column, out of the 30 unbruised samples, 27 were correctly

recognized as unbruised while only 3 samples were misclassified.

This yielded an overall recognition accuracy of 83.3% and a

classification error of 16.7%.

Similar accuracy was obtained by Zhang and Li (2018). The

authors implemented the Adaboost algorithm to investigate bruises

on apple. The accuracy of their training model was 80.56%. The

performance of the second severity group is presented (Figure 9B).
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The classification accuracy for this severity level (SII) improved as

compared to the severity level I (SI). The average recognition

accuracy improved from 83.3% (Figure 9A) to 93.3% (Figure 9B).

The same accuracy was maintained for the unbruised samples,

but a higher accuracy was obtained as 29 of the samples bruised

under 100cm drop height were rightly classified. For the third

category, SIII, comprising of samples bruised at 60cm height (30)

and those bruised at 100cm height (30) from both SI and SII

respectively were combined, model showed an average classification
FIGURE 4

A typical explorative PCA analysis. Sample with no drop (A–C) and drop from 100 cm (D–F) under the VNIR camera and no drop (G–I) and drop
from 100 cm (J–L) under the SWIR camera.
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accuracy of 80% (Figure 9C). model performance showed high false

positive and true negative of 8 out of 30 samples for 60cm drop

bruised samples and 4 out of 30 samples for 100cm drop bruised

samples. This shows model accurately classified SII (86.7%) data as

compared to SI data (73.3%).

3.2.2 Classification performance for VNIR camera
The results for the model recognition accuracy are listed in

Table 2. Different model accuracy for the two different severity

levels is shown (Figures 9D–F). As can be seen from the results, for

bruise severity category one (SI), the VNIR model slightly

outperformed the SWIR model, achieving an accuracy of 83.3%

and 96.7% for bruised and unbruised samples (Figure 9D). The

confusion matrix shows that for 30 samples bruised from a drop

height of 60cm, 25 were rightly recognized while 5 were wrongly

classified. The second column indicates that only 1 of the 30

unbruised samples was wrongly classified. This resulted in an

average classification of 90% and class error of 10%.
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For the case of severity category two (SII), the model showed

similar performance to the SWIR, achieving an equal average

accuracy of 93.3%. Unlike the SWIR, the model mis-classified 3

samples of 100cm dropped bruise samples out a total of 30 samples

and correctly classified 27, achieving a 90% accuracy and class error

of 10% (Figure 9E). The study on kiwifruit when applying VNIR-

HSI system for bruise detection resulted similar low classification

error of 14.5% (Lü & Tang, 2012). For the VNIR camera, it can be

observed that the unbruised samples were always better recognized

compared to the bruised data, irrespective of the bruise severity.

Similar trend was observed in several studies on bruising and

detection of other defects on pome fruits (Zhang et al., 2015; Che

et al., 2018). The result indicate that model was able to achieve

higher accuracies as the severity heightened, this was contrary to

findings by (Tan et al., 2018a). The authors re-ported lower

identification accuracy for severely bruised samples. Both cameras

performed equally as they both obtained an average accuracy

of 93.3%.

The confusion matrix for model performance for a combined

data is presented in (Figure 9F). model showed higher recognition

accuracy for SII samples (93.3%) as compared to SI (90%). The

VNIR data set performed slightly better than the SWIR when both

bruised samples were grouped together. The average classification

accuracy for the VNIR was 91.7% while that of the SWIR was 80%.

The result indicates that the model was able to recognize the

different bruise severity when they are modelled against each

other. Some of the reasons for model misclassification might be

because of light scattering effect during image data acquisition (Tan

et al., 2018a). The shiny nature of pomegranate fruit could have an

impact of how light penetrates the fruit during imaging.

3.2.3 Classification model development for
combined data for bruise detection

Table 3 gives the combined classification performance of the

ANN model for bruise detection of pomegranate fruit. Figure 10

provides the resulting confusion matrix of the classification based
FIGURE 5

A plot of principal component analysis (PCA) coefficients vs.
wavelength of the SWIR HS image.
FIGURE 6

Display of the first 5 spectral bands in the input data cube (top row) and the five most informative bands (bottom row) of a typical fruit without bruise.
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on the ANN model. The columns of the matrix refer to the true

categories, and the rows refer to the classifier outputs. For instance,

for the SWIR (Figure 10A), of the 30 sample fruits in the first block

(60 cm drop), 25 were correctly classified as “60 cm drop” 2 were

classified as “100 cm drop” and 1 was classified as “No drop”. Of the

30 “100 cm drop”, 4 were wrongly classified as “60 cm drop,” 25

were correctly classified, and 1 was wrongly classified as “No drop.”

Of the 30 “No drop”, all the 30 were correctly classified.

The bottom row and the extreme-right column of the confusion

matrix summarizes the performance of the classification model.

Accordingly, the overall accuracy of the ANN model in classifying

the SWIR data was 88.9% (classification error of 11.1%) and for the

VNIR data the classification accuracy was 74.4% (classification error

of 25.6%) (Figure 10B). This result agrees with the study on blackspot

by (López-Maestresalas et al., 2016), where they concluded that SWIR

achieved better results than VNIR data (98.56% against 95.46%). The

results of sound samples classified as sound (true positives) (90% and

100%), were better than results for bruised samples classified as

bruised (83.3%, 70%). This is the case for most reported study. Xing

et al. (2005) reported 93% for non-bruised apples correctly classified

and 86% accuracy for bruised samples.

Applying Adaboost algorithm for visual detection of bruises in

apple (Zhang & Li (2018), observed out of the 54 samples of intact

apples, 52 was correctly classified and only 2 was wrongly classified

yielding an accuracy of 96.3%, while for the bruised samples, 87.04%

was achieved. For jujube bruise detection (Feng et al., 2019), achieved

almost 100% accuracy for healthy sample detection, in the NIR

region, the authors attributed the lower accuracy for bruised

samples to (browning coloration) of the bruised jujube samples

which is like the healthy ones and made classification difficult.

Classification accuracies can also be impacted by the state of the

sample, at the time of image acquisition. Huang et al. (2015),

compared static and online application of multispectral data. The
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authors found classification accuracies to be higher for the static

data (91.5%) as compared to the online (samples in motion on a

translation stage) (87.3%).

4 Conclusion

This study investigates the detection and classification of bruises

on pomegranate fruit surface using hyperspectral imaging system.

The use of VNIR and SWIR cameras was explored. The result of the

classification accuracy metric indicated that both cameras were able

to accurately recognize bruised and unbruised pomegranate fruit

samples. Both SWIR and VNIR data yielded highly accurate

classification results ranging from 80% - 96.7%. The overall average

classification accuracy achieved was 93.3% in distinguishing fruits

dropped at 100cm and 90% for fruit dropped at 60cm height for the

VNIR camera. Model performance was slightly lowered when both

severity cases were combined, and model was able to accomplish a

recognition accuracy of 80% and 91.7% for both SWIR and VNIR

camera respectively. The model accuracy increases with the increase

in bruise severity (93.3%). This study laid a foundation for further

development of an in-line inspection system using hyperspectral

imaging techniques for bruise detection on pomegranate fruits.

While gathering satisfactory datasets is very important, HS

imaging tasks are still costly and time-consuming. Usually, HS

image data sets are not enough for training artificial neural

networks for classification model development. Using the raw HS

image, as is, can easily create high dimensional data that can

significantly cause overfitting. To augment this bottle neck, it is

important to undertake data dimensionality reduction. This study

implemented the method of selecting out informative bands and

disregarding the redundant ones to decrease the data size and

dimension. Unlike other fruit with soft tissues and surfaces, early

detection of bruises on pomegranate fruit is difficult due to the
FIGURE 7

Display of the first 5 spectral bands in the input data cube (top row) and the five most informative bands (bottom row) of a typical fruit sample
bruised from falling from 100 cm.
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TABLE 2 Summary of results for the different bruise severity of pomegranate fruit.

Type Spectra range Test set

Sample number Correct class Incorrect
class

Accuracy (%)

Sound (Unbruised) SWIR
VNIR

30
30

27
29

3
1

90
96.7

Bruised at 60cm SWIR
VNIR

30
30

23
25

7
5

76.7
83.3

Bruised at 100cm SWIR
VNIR

30
30

29
27

1
3

96.7
90

Combined 60cm and 100cm SWIR
VNIR

30
30

22
27

8
3

73.3
90
F
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FIGURE 8

The average class spectral of the three bruise severity classes of the VNIR (A) and SWIR (B) camera. The vertical dashed lines identified the most informative
bands selected by the effective wavelength (407, 639 and 917nm) selected using the noise-whitened Harsanyi–Farrand–Chang (NWHFC) method.
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tough and thick rind. Hence, developing an effective non-

destructive technic like hyperspectral imaging could have a huge

economic benefit in the industry. To this end, this paper

demonstrated effective wavelength selection technique for a more
Frontiers in Plant Science 11
compact and accurate classification prediction model. The

implemented wavelength optimization technic will help develop a

compact and fast multispectral imaging device for practical farm

and packhouse applications.
A B

FIGURE 10

Summary of confusion matrices obtained for the combined ANN model for both SWIR and VNIR input data (A) SWIR classification performance (B)
VNIR classification performance.
A B

D E F

C

FIGURE 9

The confusion matrix of the classification performance of the different class groups using the SWIR camera (SI (A), SII (B), and SIII (C), and VNIR SI
(D), SII (E) and SIII (F). The x axis refers to the true categories, and the y axis refers to the classifier outputs. The integers in the matrix show several
samples. The color encodes the percentage of a class of blocks (x) classified into a predicted class (y).
TABLE 3 Combined performance of the classification model for bruise severity detection on pomegranate fruit.

Drop distance (cm) Combined model classification performance

Wavelength Sample number Accuracy (%) Class error (%)

SI SWIR
VNIR

30
30

83.3
90

16.7
10

SII SWIR
VNIR

30
30

93.3
93.3

6.7
6.7

SI and SII SWIR
VNIR

30
30

80
91.7

20
8.3
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Xing, J., Bravo, C., Jancsók, P. T., Ramon, H., and De Baerdemaeker, J. (2005).
Detecting bruises on “Golden delicious” apples using hyperspectral imaging with multiple
wavebands. Biosyst. Eng. 90 (1), 27–36. doi: 10.1016/j.biosystemseng.2004.08.002

Xing, J., and De Baerdemaeker, J. (2005). Bruise detection on ‘ jonagold ’ apples
using hyperspectral imaging. Postharvest Biol. Technol. 37, 152–162. doi: 10.1016/
j.postharvbio.2005.02.015

Xu, H., Ren, J., Lin, J., Mao, S., Xu, Z., Chen, Z., et al. (2023). The impact of high-
quality data on the assessment results of visible / near-infrared hyperspectral imaging
and development direction in the food fields : a review. J. Food Measurement
Characterization. doi: 10.1007/s11694-023-01822-x

Zeng, X., Miao, Y., Ubaid, S., Gao, X., and Zhuang., S. (2020). Detection and
classification of bruises of pears based on thermal images. Postharvest Biol. Technol. 161
(August 2019), 111090. doi: 10.1016/j.postharvbio.2019.111090

Zhang, M., and Li, G. (2018). Visual detection of apple bruises using AdaBoost
algorithm and hyperspectral imaging. Int. J. Food Properties 21 (1), 1598–1607.
doi: 10.1080/10942912.2018.1503299

Zhang, B., Li, J., Fan, S., Huang, W., Zhao, C., Liu, C., et al. (2015). Hyperspectral
imaging combined with multivariate analysis and band math for detection of common
defects on peaches (Prunus persica). Comput. Electron. Agric. 114, 14–24. doi: 10.1016/
j.compag.2015.03.015

Zhu, Q., Guan, J., Huang, M., Lu, R., and Mendoza, F. (2016). Predicting bruise
susceptibility of “Golden delicious” apples using hyperspectral scattering technique.
Postharvest Biol. Technol. 114, 86–94. doi: 10.1016/j.postharvbio.2015.12.007

Zhu, X., and Li, G. (2019). Rapid detection and visualization of slight bruise on
apples using hyperspectral imaging. Int. J. Food Properties 22 (1), 1709–1719.
doi: 10.1080/10942912.2019.1669638
frontiersin.org

https://doi.org/10.1038/srep35679
https://doi.org/10.1080/10942912.2015.1126725
https://doi.org/10.1016/j.infrared.2013.12.015
https://doi.org/10.1016/j.jep.2006.09.006
https://doi.org/10.1016/j.jfoodeng.2013.12.032
https://doi.org/10.1016/j.postharvbio.2017.09.007
https://doi.org/10.1016/j.compag.2016.07.016
https://doi.org/10.1016/j.postharvbio.2013.02.016
https://doi.org/10.1007/s12161-017-1136-3
https://doi.org/10.1016/j.foodcont.2016.06.001
https://doi.org/10.1016/j.foodcont.2016.06.001
https://doi.org/10.1016/j.proenv.2012.01.404
https://doi.org/10.1007/s11947-011-0697-1
https://doi.org/10.1016/j.postharvbio.2020.111356
https://doi.org/10.1016/j.biosystemseng.2019.11.011
https://doi.org/10.1007/s11947-008-0095-5
https://doi.org/10.1007/s11947-008-0095-5
https://doi.org/10.3390/su13095168
https://doi.org/10.3390/su13095187
https://doi.org/10.1016/j.postharvbio.2013.12.009
https://doi.org/10.1016/j.postharvbio.2013.12.009
https://doi.org/10.1002/jsfa.7069
https://doi.org/10.1007/s11947-016-1817-8
https://doi.org/10.1007/s11947-016-1817-8
https://doi.org/10.1016/j.scienta.2017.10.011
https://doi.org/10.1080/10942912.2014.948188
https://doi.org/10.1080/15538362.2017.1295416
https://doi.org/10.1080/15538362.2017.1295416
https://doi.org/10.13031/2013.11047
https://doi.org/10.1016/j.compag.2014.05.012
https://doi.org/10.1016/j.postharvbio.2018.01.018
https://doi.org/10.1111/1541-4337.12314
https://doi.org/10.1111/1541-4337.12314
https://doi.org/10.1016/j.ijleo.2017.10.090
https://doi.org/10.1002/cem.3067
https://doi.org/10.1016/j.postharvbio.2007.01.015
https://doi.org/10.1016/j.ifset.2013.04.014
https://doi.org/10.1016/j.ifset.2013.04.014
https://doi.org/10.1016/j.biosystemseng.2004.08.002
https://doi.org/10.1016/j.postharvbio.2005.02.015
https://doi.org/10.1016/j.postharvbio.2005.02.015
https://doi.org/10.1007/s11694-023-01822-x
https://doi.org/10.1016/j.postharvbio.2019.111090
https://doi.org/10.1080/10942912.2018.1503299
https://doi.org/10.1016/j.compag.2015.03.015
https://doi.org/10.1016/j.compag.2015.03.015
https://doi.org/10.1016/j.postharvbio.2015.12.007
https://doi.org/10.1080/10942912.2019.1669638
https://doi.org/10.3389/fpls.2023.1151697
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Vis-NIR and SWIR hyperspectral imaging method to detect bruises in pomegranate fruit
	1 Introduction
	2 Materials and methods
	2.1 Fruit procurement and sample preparation
	2.2 Bruise simulation
	2.3 Hyperspectral image acquisition system
	2.4 Hyperspectral image calibration
	2.5 Explorative analysis using PCA

	3 Results and discussion
	3.1 Principal component analysis
	3.2 Classification model development for bruise fruit detection
	3.2.1 Classification performance for SWIR camera
	3.2.2 Classification performance for VNIR camera
	3.2.3 Classification model development for combined data for bruise detection


	4 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


