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Plant translational
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stress resilience
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National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
Organisms regulate gene expression to produce essential proteins for numerous

biological processes, from growth and development to stress responses.

Transcription and translation are the major processes of gene expression.

Plants evolved various transcription factors and transcriptome reprogramming

mechanisms to dramatically modulate transcription in response to

environmental cues. However, even the genome-wide modulation of a gene’s

transcripts will not have a meaningful effect if the transcripts are not properly

biosynthesized into proteins. Therefore, protein translationmust also be carefully

controlled. Biotic and abiotic stresses threaten global crop production, and these

stresses are seriously deteriorating due to climate change. Several studies have

demonstrated improved plant resistance to various stresses through modulation

of protein translation regulation, which requires a deep understanding of

translational control in response to environmental stresses. Here, we highlight

the translation mechanisms modulated by biotic, hypoxia, heat, and drought

stresses, which are becoming more serious due to climate change. This review

provides a strategy to improve stress tolerance in crops by modulating

translational regulation.

KEYWORDS
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Introduction

Genetic information is transmitted from DNA to proteins through messenger RNA

(mRNA) (with certain exceptions—i.e., reverse transcription and prions) according to the

central dogma first reported by Francis Crick (Koonin, 2012; Cobb, 2017). Therefore, the

strict control of gene expression determines most biological processes, including growth,

development, and stress responses. Gene expression occurs in stages, including

transcription and translation, that are physically and functionally connected

(Orphanides and Reinberg, 2002; Buccitelli and Selbach, 2020). Transcription and

translation generally occur simultaneously in prokaryotes lacking membrane-bound

organelles, but are spatially separated in eukaryotes. In eukaryotic cells, mRNA is

transcribed in the nucleus and then moves to the cytoplasm where translation occurs.
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The translation mechanism is highly conserved and comprises three

major stages: initiation, elongation, and termination (Kapp and

Lorsch, 2004). In eukaryotes, translation initiation relies on cap-

dependent and cap-independent pathways (Merrick, 2004; Shatsky

et al., 2018). Translation is initiated by the assembly of the initiation

complex, which consists of eukaryotic initiation factors (eIFs),

ribosomes, and the initiator methionyl-transfer RNA (Met-

tRNAi
Met) on mRNA (Merrick and Pavitt, 2018). The initiation

complex recognizes the initiation codon AUG via the anticodon of

Met-tRNAi
Met in the ribosomal peptidyl (P)-site. For translation

elongation, amino acids are sequentially and continuously added at

the P-site with the help of eukaryotic elongation factors (eEFs) from

aminoacyl-tRNAs binding to the aminoacyl (A)-site of the

ribosome, and translation terminates when a stop codon (UAG,

UGA, or UAA) is located in the A-site and recognized by eukaryotic

release factors (Dever et al., 2018).

Climate change is raising global temperatures and shifting

regional climates toward greater extremes, including increased

aridity in some areas and heavier rainfall in others. In addition,

the environmental stresses exacerbated by climate change can

impede plant immunity and provide favorable conditions for

pathogens (Velasquez et al., 2018). Crop yield and food security

are threatened by these increased stresses (Chaudhry and Sidhu,

2022; Son and Park, 2022b). Because plants cannot move to avoid

stresses, adaptive changes resulting from alteration of gene

expression play critical roles in their survival under extreme stress

conditions, and the regulation of gene expression is more crucial to

the survival of individuals in plants than in animals. Indeed, not

only the numbers of transcription factors but also their rates of

expansion are higher in plants (Riechmann et al., 2000; Shiu et al.,

2005). Plant protein translation mechanisms are also modulated in

response to various stresses (Spriggs et al., 2010; Echevarrıá-

Zomeño et al., 2013; Zlotorynski, 2022). Therefore, investigating

the translation mechanisms involved in stress tolerance and

engineering them in important crops are essential for sustainable

agriculture. Here, we summarize and discuss the translational

mechanisms that are modulated by biotic and abiotic stresses.
Translation reprogramming in
response to stress stimulus

The different steps in the translation process are coordinated to

ensure survival and efficient use of cellular resources under stress

conditions. Stimulus-mediated translational control can be

classified into global and gene-specific processes, and its

mechanisms are mainly associated with translation initiation and

polysome association (Gebauer and Hentze, 2004; Sonenberg and

Hinnebusch, 2009). In eukaryotes, stress-induced translational

regulation generally results from inhibition of canonical protein

biosynthesis driven by cap-dependent translation and induction of

stress-associated protein biosynthesis driven by cap-independent

translation (Holcik and Sonenberg, 2005; Liu and Qian, 2014). Plant

translation processes such as initiation, elongation, and termination

are highly conserved, and many components involved in translation
Frontiers in Plant Science 02
mechanisms have been well described in previous reviews (Muench

et al., 2012; Roy and Von Arnim, 2013; Browning and Bailey-Serres,

2015; Merchante et al., 2017). Therefore, this review focuses on

translation regulation in response to biotic and abiotic stresses.

mRNA translation in eukaryotes is initiated through two

different mechanisms, cap-dependent ribosome scanning and cap-

independent internal ribosome entry, which are regulated by a

stress stimulus (Figure 1). In non-stress conditions, most mRNAs

are translated through the cap-dependent translation pathway.

Transcribed nascent pre-mRNA is modified via 5′-m7GpppN

capping, RNA splicing, and 3′ poly(A) addition, and structural

mRNA features are important for their translation (Von Arnim

et al., 2014; Sablok et al., 2017). In cap-dependent translation, the

cap-binding complex eIF4F consisting of the cap-binding protein

eIF4E, the scaffolding protein eIF4G, and the ATP-dependent RNA

helicase eIF4A is assembled on the 5′-cap of mRNA, while the poly

(A)-binding protein (PABP) interacts with the 3′-poly(A) tail of

mRNA (Browning and Bailey-Serres, 2015). In plant, there is also

an eIF isoform 4F (eIFiso4F) which consists of eIFiso4E, eIFiso4G,

and eIF4A. Subsequently, eIF4F interacts with eIF4B, the eIF4A

cofactor, and PABP via eIF4G, resulting in mRNA unwinding and

circularization. The 43S pre-initiation complex (PIC), which is

composed of the 40S ribosome subunit, eIFs (i.e., eIF1, eIF1A,

eIF3, and eIF5), and the ternary complex eIF2 (consisting of a, b,
and g subunits)-GTP-Met-tRNAi

Met, interacts with the eIF4F

complex and forms the 48S PIC, which scans mRNA in the 5′-to-
3′ direction to find an initiation codon. Upon detection of an

initiation codon, eIFs, including eIF1 (which is necessary for the

fidelity of initiation codon selection), and hydrolyzed eIF2-GDP are

released, and eIF5B-GTP and the 60S ribosome subunit are

recruited to form the translation-competent 80S ribosome

(Browning and Bailey-Serres, 2015; Merchante et al., 2017).

Cap-dependent translation initiation is impaired under stress

conditions. For example, in mammals, eIF4E-binding protein (4E-

BP) interacts with eIF4E and prevents eIF4F formation by

interfering with the binding of eIF4E and eIF4G (Richter and

Sonenberg, 2005). Phosphorylation of eIF2a by multiple protein

kinases (e.g., General control nondepressible 2 [GCN2]) is another

mechanism that inhibits cap-dependent translation in mammals

(Holcik, 2015; Hinnebusch et al., 2016). In response to a wide range

of signals, stress-activated kinases phosphorylate the Ser51 of

eIF2a, which inhibits ternary complex recycling by preventing the

guanine nucleotide exchange factor eIF2B-mediated catalysis of

GDP to GTP (Buchan and Parker, 2009). However, in plant, an

orthologous genes of 4E-BP are absent (Hernandez et al., 2010).

Although some proteins (e.g., Lipoxygenase 2, Basic transcription

factor 3, Essential for potexvirus accumulation 1, and Conserved

binding of eIF4E 1) have been identified as eIF4E- and/or eIFiso4E-

binding proteins, their association with cap-dependent translation

is unclear (Freire et al., 2000; Freire, 2005; Lázaro-Mixteco and

Dinkova, 2012; Wu et al., 2017; Patrick et al., 2018). Even the plant

eIF4E-interacting protein CERES has a positive effect on global

translation, not a negative effect (Toribio et al., 2019). GCN2-eIF2a
module is also controversial in plants (Wang et al., 2022).

Alternatively, SNF1-related protein kinase 1 (SnRK1)-mediated
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eIF4E and eIFiso4E phosphorylation and the interaction of

Suppressor of the ABAR overexpressor 1 (SOAR1), involved in

abscisic acid signaling, with eIFiso4G inhibit cap-dependent

translation initiation in plants (Bi et al., 2019; Bruns et al., 2019).

Although canonical cap-dependent translation is impeded by

stress stimuli, selective mRNA translation is induced via

noncanonical cap-dependent translation and cap-independent

translation. eIF3d-mediated noncanonical cap-dependent

translation was discovered in human cells (Lee et al., 2015; Lee

et al., 2016). eIF3d, a subunit of eIF3, has cap-binding activity and

induces the translation of specific mRNAs containing a stem-loop

structure that inhibits the recruitment of eIF4F complex in their 5′
untranslated region (5′ UTR). Lamper et al. revealed the translation

mechanism regulated by eIF3d for metabolic stress adaptation

(Lamper et al., 2020). Under non-stress conditions, Casein kinase

2 (CK2) phosphorylates and inactivates eIF3d. Metabolic stresses,

inc lud ing g lucose s tarva t ion , inhib i t CK2-media ted

phosphorylation of eIF3d, resulting in selective mRNA translation

through cap-binding of eIF3d. In plant, Toribio et al. showed that

CERES interacts with eIF4E, eIFiso4E, eIF4A, eIF3, and PABP and

forms noncanonical translation initiation complex in which eIF4G

or eIFiso4G is replaced by CERES (Toribio et al., 2019). They

suggested the noncanonical complex supports translation initiation

and regulates general translation positively when the energy and

carbon supply are high. CERES is also involved in a defensive

response to turnip mosaic virus regardless of its interaction with

eIF4E and eIF4isoE (Toribio et al., 2021). However, the detailed

mechanism of selective translation of capped mRNAs by

noncanonical cap-dependent translation is unknown in plants.
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Internal ribosomal entry site (IRES)-mediated cap-independent

translation initiation was first discovered in viral RNA translation of

picornavirus (Jackson et al., 1990) and is now recognized as an

alternative translation mechanism that commonly occurs in

eukaryotic cells under stress conditions (Spriggs et al., 2010; Yang

andWang, 2019). IRESs are frequently identified in cellular mRNAs

of genes involved in stress responses and are subdivided into two

types: Type I cellular IRESs harbor cis-regulatory elements that

interact with IRES trans-acting factors (ITAFs) for ribosome

recruitment (Komar and Hatzoglou, 2011; Godet et al., 2019),

while Type II cellular IRESs have short cis elements that pair with

18S ribosomal RNA, a component of the 40S ribosomal subunit

(Dresios et al., 2006). Since most cellular IRESs are Type I, ITAFs

play a critical role in IRES-mediated translation. The mechanisms

of IRES-dependent initiation are fairly well studied in animals but

have been largely elusive in plants. Only a few studies have revealed

the possibility of IRES-dependent translation in plants. Some plant

viruses utilize IRES-dependent translation mechanisms for

biosynthesis of proteins from their viral RNAs (Jaag et al., 2003;

Dorokhov et al., 2006; Karetnikov and Lehto, 2007). In maize (Zea

mays), the 5′ UTR of Heat shock protein 101 (HSP101) mRNA

contains an IRES-like element, and its translation is increased via

cap-independent translation during heat stress (Dinkova et al.,

2005). In Arabidopsis (Arabidopsis thaliana), the conserved RNA-

binding factor La protein 1 (La1) binds to the 5′UTR ofWUSCHEL

(WUS) mRNA and improves its translation through IRES-

dependent initiation under environmental hazard conditions (Cui

et al., 2015b). However, further studies are needed to understand

the mechanisms of IRES-dependent translation in plants.
FIGURE 1

Cap-dependent and internal ribosomal entry site (IRES)-dependent translation initiation mechanisms. Under non-stress conditions, most mRNAs are
translated through the cap-dependent translation pathway (top) in eukaryotes, including plants. The eukaryotic initiation factor 4F (eIF4F) complex,
including the cap-binding protein eIF4E and the scaffolding protein eIF4G, is assembled on the 5′ cap of mRNA and recruits the 43S pre-initiation
complex (PIC) to form the 48S PIC. The complex scans mRNA for an initiation codon. Finally, 60S ribosomes are recruited to form an 80S ribosome
initiation complex, and mRNA translation is carried out in earnest. However, cap-dependent translation initiation is prevented under stress
conditions. For example, eIF4E-binding protein (4E-BP) and phosphorylation of eIF2a inhibit the formation of eIF4F and the ternary complex,
respectively, thereby suppressing cap-dependent translation (Richter and Sonenberg, 2005; Holcik, 2015). In plants lacking 4E-BP, cap-dependent
translation is impaired by not only SNF1-related protein kinase 1 (SnRK1)-induced eIF4E and eIF isoform 4E (eIFiso4E) phosphorylation but also the
interaction between Suppressor of the ABAR overexpressor 1 (SOAR1) and eIFiso4G (Bi et al., 2019; Bruns et al., 2019). Alternatively, the IRES-
dependent translation pathway (bottom) is activated under stress conditions. In general, IRES trans-acting factors (ITAFs) mediate IRES-dependent
translation in eukaryotes (Komar and Hatzoglou, 2011; Godet et al., 2019). However, this cellular mRNA translation mechanism is largely elusive in
plants. Two mRNAs, maize Heat shock protein 101 (Hsp101) and Arabidopsis WUSCHEL (WUS), are reported to be translated by IRES-dependent
translation under stress conditions (Dinkova et al., 2005; Cui et al., 2015b), and Cui et al. only identified Arabidopsis LA protein 1 (AtLa1) binding to
the 5′ untranslated region of cellular mRNA as an IRES-dependent translation regulator.
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Though translation control mechanisms in plants have been

extensively studied, how this is regulated by various stresses is

largely unknown. Here, we review the current knowledge of the

translation mechanisms controlled by biotic, hypoxia, heat, and

drought stresses in plants.
Translational control for pattern-
triggered immunity

Severe crop losses caused by various pathogens (e.g., bacteria,

fungi, and viruses) threaten global food and nutrition security.

Therefore, it is necessary to increase plant innate immunity through

effective approach such as translational regulation. Viruses use

various strategies to regulate host translation mechanisms for

protein synthesis (Jaafar and Kieft, 2019; Geng et al., 2021).

Increasing plant antiviral immunity through manipulation of

plant translation factors has been well described in previous

reviews (Sanfacon, 2015; Hashimoto et al., 2016; Calil and Fontes,

2017; Zhao et al., 2020; Leonetti et al., 2021; Robertson et al., 2022).

Therefore, herein, we focus on recent studies that demonstrate

notable translation mechanisms associated with non-

viral pathogens.

Plant immunity can be classified into pathogen-associated

molecular pattern (PAMP)-triggered immunity (PTI), also called

pattern-triggered immunity, and effector-triggered immunity (ETI)

depending on how pathogens are recognized by the plant (Tsuda

and Katagiri, 2010; Faulkner and Robatzek, 2012; Naveed et al.,

2020). Sensing of conserved pathogen signatures PAMP, also

referred as microbe-associated molecular pattern, by pattern

recognition receptors (PRRs) in the plant plasma membrane

activates downstream signaling (e.g., Receptor-like cytoplasmic

kinases [RLCKs], mitogen-activated protein kinases [MAPKs or

MPKs], calcium ion, reactive oxygen species, phytohormones, and

transcription factors), and induces PTI which is plant defense

response at basal level (Bigeard et al., 2015; DeFalco and Zipfel,

2021). Well-known PRRs are the leucine-rich repeat receptor

kinases such as Flagellin sensing 2 (FLS2) and the bacterial

translation Elongation factor thermo unstable (EF-Tu) receptor

(EFR). Sensing of the 22-amino-acid peptide derived from bacterial

flagella, flg22, by FLS2 or the 18- and 26-amino-acid peptides

derived from EF-Tu, elf18 and elf26, respectively, by EFR induces

elicitor-dependent complex formation through binding with

somatic embryogenesis receptor-like kinases (SERKs) such as

Brassinosteroid insensitive-associated kinase 1 (BAK1)/SERK3

and BAK1-like 1 (BKK1)/SERK4 (Heese et al., 2007; Schulze

et al., 2010; Roux et al., 2011; Sun et al., 2013). The elicitor-

dependent complex activates downstream signaling by

phosphorylating the RLCK Botrytis-induced kinase 1 (BIK1) and

MAPKs, resulting in PTI-related resistance responses (Wang

et al., 2020).

GCN2 is a conserved serine/threonine protein kinase that

participates in stress signal transduction, including nutrient

starvation and immune responses (Tsalikis et al., 2013; Lokdarshi

and von Arnim, 2022). Since eIF2a phosphorylation results in a
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stable phosphor (P)-eIF2-GDP-eIF2B complex, GCN2-mediated

eIF2a phosphorylation arrests global cellular mRNA translation

but induces selective translation of stress-responsive mRNAs (e.g.,

GCN4 in yeast and Activating transcription factor 4 in mammals)

harboring upstream open reading frames (uORFs) (Dever, 2002). In

plants, GCN2 regulates biotic and abiotic stress responses and also

stress-induced eIF2a phosphorylation (Liu et al., 2015; Terry et al.,

2015; Lokdarshi and von Arnim, 2022). Izquierdo et al. suggested

that GCN1 is important for translation regulation and innate

immunity in plants, while GCN2 and eIF2a phosphorylation are

not (Izquierdo et al., 2018). However, Liu et al. showed that the

bacteria-activated GCN2-eIF2a module induces translation of the

heat-shock factor-like transcription factor TL1-binding factor 1

(TBF1) mRNA and plant immunity (Liu et al., 2019). TBF1 is a

key regulator of the plant growth-defense tradeoff. TBF1 binds to

the TL1 cis element (GAAGAAGAA) and controls salicylic acid-

and elf18-induced transcriptional reprogramming (Pajerowska-

Mukhtar et al., 2012). Interestingly, TBF1 mRNA has two uORFs

conferring negative effects on its translation. Pathogen challenge

results in eIF2a phosphorylation and derepresses TBF1 mRNA

translation (Pajerowska-Mukhtar et al., 2012). Therefore, the

translationally regulated GCN2-eIF2a-TBF1 modules may play a

key role in PTI (Figure 2).

Global translatome profiling using ribosome footprinting

revealed that PTI triggers translational reprogramming to

enhance plant immunity (Xu et al., 2017a). elf18 treatment

increased the translational efficiency of 448 genes but decreased

that of 389 genes in Arabidopsis. Interestingly, the R-motif, which
FIGURE 2

Pathogen-associated molecular pattern (PAMP)-induced translational
reprogramming. PAMP-activated General control nondepressible 2
(GCN2) phosphorylates eukaryotic initiation factor 2a (eIF2a), leading
to a stable eIF2-GDP-eIF2B complex in Arabidopsis. As a result,
formation of the eIF2-GTP-Met-tRNAi

Met ternary complex required for
cap-dependent initiation is inhibited, while translation of defense-
related mRNAs with upstream open reading frames (uORFs)
conferring negative effects on translation is induced (Pajerowska-
Mukhtar et al., 2012; Liu et al., 2019). Wang et al. demonstrated
PAMP-mediated translational regulation mechanisms in Arabidopsis.
General translation is arrested by PAMP-induced mRNA decapping
and Mitogen-activated protein kinase 3 (MPK3)- and MPK6-mediated
eIF4G phosphorylation (Wang et al., 2022). On the other hand, MPK3-
and MPK6-mediated phosphorylation of the poly(A)-binding protein
(PABP) and eIF isoform 4G (eIFiso4G) promotes PABP binding with the
R-motif and eIFiso4G to drive PABP-eIFiso4G-mediated translation
(Wang et al., 2022). As a result, general mRNA translation is repressed
but translation of selective defense-related mRNAs is induced to
promote the plant immune response (PAMP-triggered immunity, PTI).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1151587
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Son and Park 10.3389/fpls.2023.1151587
consists almost exclusively of purines, is enriched on the 5′ UTR of

the mRNAs, including TBF1 mRNA, whose translational efficiency

is upregulated by elf18. MPK3, MPK6, and PABP is important for

R-motif-mediated selective translation during PTI (Xu et al.,

2017a). Processing bodies (P-bodies) also play an important role

in PTI. P-bodies are cytoplasmic granules consisting of messenger

ribonucleoprotein and are involved in translation arrest and mRNA

decay (Decker and Parker, 2012; Maldonado-Bonilla, 2014). In

eukaryotes, most mRNAs are degraded via the deadenylation-

dependent mRNA decay pathway (Garneau et al., 2007). After

deadenylation, mRNA is degraded immediately by 3′–5′
exonucleases in exosomes or decapped for later degradation by

5′–3′ exonucleases in P-bodies. In Arabidopsis, the decapping

complex—involving mRNA-decapping enzyme Decapping

protein 2 (DCP2), the co-activator DCP1, and the scaffold protein

Varicose—is localized in P-bodies (Xu et al., 2006). However,

PAMP-activated MPK3 and MPK6 phosphorylate DCP1,

resulting in disassociation of DCP1 and DCP2 and rapid P-body

disassembly within 15 to 30 minutes after flg22 treatment (Yu et al.,

2019). Yu et al. suggested that phosphorylated DCP1 leads to

mRNA degradation of negative regulators of plant immunity by

5′-to-3′ Exoribonuclease 4 (XRN4), an ortholog of yeast XRN1, and

translation of defense-related mRNAs stored in P-body assemblies

to promote the plant immune response.

Recently, the PTI-induced translational reprogramming

mechanism was demonstrated in Arabidopsis (Figure 2). As

global translation repression mechanism, elf18 induces DCP-

complex-mediated mRNA decapping and MPK3- and MPK6-

mediated eIF4G phosphorylation (Wang et al., 2022). These

mechanisms compromise translation of mRNA related to growth

and defense. However, for selective translation control during PTI,

defense-related mRNAs containing the R-motif are translated

through a PABP-eIFiso4G-mediated cap-independent pathway

(Wang et al., 2022). During PTI, PAMP-activated MPK3 and

MPK6 phosphorylate PABP and eIFiso4G using Receptor for

activated C kinase 1 (RACK1) as a scaffold, which enhances

PABP binding with the R-motif in mRNAs and with eIFiso4G,

resulting in translation of defense-related mRNAs for

innate immunity.
Translational control for
effector-triggered immunity

Plant nucleotide-binding and leucine-rich repeat (NLR)

proteins are classified into three groups (i.e., Toll/interleukin-1

receptor-like NLR, coiled coil NLR [CNL], and Resistance to

powdery mildew 8-like NLR) based on their N-terminal domain

and play various roles as sensors, helpers, and executors in ETI

signaling (Son et al., 2021). Direct or indirect recognition of specific

effectors (pathogen-secreted proteins that repress PTI and promote

infection) by NLRs activates downstream signaling and triggers

prolonged and robust ETI resistance responses (Cui et al., 2015a;

Lolle et al., 2020).
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Two CNLs, Resistance to Pseudomonas syringae pv. maculicola

1 (RPM1) and Resistance to P.syringae 2 (RPS2), are activated by

post-translational modification of the plasma-membrane-localized

RPM1-interacting protein (RIN4), which interacts with CNLs as

well as P. syringae avirulence (Avr) effectors (e.g., AvrB, AvrRpm1,

and AvrRpt2). In an incompatible interaction, AvrB and AvrRpm1

interact with RIN4, which is inactivated by the prolyl-peptidyl

isomerase Rotamase cyclophilin 1, leading to RPM1-induced

protein kinase-mediated RIN4 phosphorylation and RPM1

activation for ETI (Mackey et al., 2002; Liu et al., 2011; Li et al.,

2014). On the other hand, the interaction of AvrRpt2 with RIN4

leads to RIN4 cleavage into AvrRpt2 cleavage products and activates

RPS2 for ETI (Axtell and Staskawicz, 2003; Mackey et al., 2003;

Takemoto and Jones, 2005).

Global translatome analysis revealed that RPM1- and RPS2-

induced ETI are involved in translation reprogramming.

Meteignier et al. showed that AvrRpm1-mediated RPM1

activation modulates the translational status of hundreds of

mRNAs involved in growth-defense tradeoffs (Meteignier et al.,

2017). RPM1 increases translation efficiency of defense-related

mRNAs (e.g., BIG, Phosphorylcholine cytidylyltransferase 2 and

Redox responsive transcription factor 1/Ethylene response factor

109) but decreases translation efficiency of mRNAs involved in

growth and/or functioning as negative regulators of defense (e.g.,

Target of rapamycin [TOR], CBL-interacting protein kinase 5, and

Homolog of BEE2 interacting with IBH 1). The TOR kinase is the

conserved master regulator of the energy signaling pathway

regulating growth and metabolism (Wullschleger et al., 2006). In

mammals, TOR-mediated phosphorylation of 4E-BP1, Ribosomal

protein S6 kinase (S6K), and La-related protein 1 has critical roles

in mRNA translation (Yang et al., 2022). Although 4E-BPs remain

elusive in plants, the TOR-S6K-ribosomal protein S6 (rpS6)

pathway is conserved (Obomighie et al., 2021). Unlike most

eukaryotes, which harbor two distinct TOR complexes, plants

have only one TOR complex (TORC), consisting of TOR,

Regulatory-associated protein of TOR (RAPTOR), and Lethal

with sec thirteen protein 8 (LST8) (Maegawa et al., 2015). In

Arabidopsis, light and auxin activate TOR-S6K-rpS6 modules to

enhance translation (Schepetilnikov et al., 2013; Chen et al., 2018).

In response to auxin, eIF3h phosphorylation by TOR-activated

S6K1 enhances translation reinitiation of mRNAs with uORFs

(Schepetilnikov et al., 2013). Furthermore, the TOR-S6K module

phosphorylates MA3-domain-containing translation regulatory

factor 1 (MRF1), which then interacts with eIF4A to enhance

MRF1 ribosome association for mRNA translation (Lee et al.,

2017). Therefore, RPM1-mediated TOR repression may be an

important translational mechanism for the growth-defense

tradeoff (Meteignier et al., 2017). AvrRpt2-mediated RPS2

activation also triggers translational regulation for ETI.

Translational regulation by RPS2 differs from PTI-induced

translational reprogramming (Yoo et al., 2020). RPS2-mediated

ETI induces TBF1 translation later than PTI does, and is involved

in targeted changes in active translation of specific mRNAs instead

of general translation inhibition. In addition, unlike with PTI-
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induced translational regulation, there is a strong correlation

between transcriptional and translational changes during RPS2-

mediated ETI. There is overlap between RPS2-mediated and

RPM1-mediated translational responses (Yoo et al., 2020). For

example, 80% of upregulated and 75% of downregulated genes

from the RPS2-mediated translational response overlapped with

those of the RPM1-mediated translational response. Moreover,

RPS2- and RPM1-mediated ETI contribute to metabolic dynamics

via translational regulation (Meteignier et al., 2017; Yoo et al.,

2020). Therefore, ETI-mediated translational regulation in

metabolic pathways is important for plant immunity. However,

the detailed mechanisms by which ETI regulates protein

translation have not been elucidated.
Translation mechanisms regulated by
hypoxia in plants

Hypoxia in plants is caused by flooding, submergence, and soil

compaction, and its effect on modulating mRNA translation has

been well studied. Hypoxia leads to energy deficiency in plant cells

by inhibiting mitochondrial respiration, and plants must

redistribute their energy reserves by restricting energy-consuming

processes and inducing energy-conserving processes (Geigenberger,

2003; Fukao and Bailey-Serres, 2004; Bailey-Serres and Voesenek,

2008). Since mRNA translation uses an enormous amount of

energy, it has to be modified under hypoxic conditions (Kafri

et al., 2016; Chee et al., 2019).

In response to hypoxia, maize plants repress the translation of

aerobic proteins and increase the translation of anaerobic proteins

to confer flooding tolerance (Sachs et al., 1980; Sachs et al., 1996).

Hypoxia-mediated selective translation induces protein

biosynthesis of maize Alcohol dehydrogenase 1, and the 5′ and 3′
UTRs of its mRNA are necessary for its translation (Bailey-Serres

and Dawe, 1996). In maize roots, hypoxia induces eIF4A and eIF4E

phosphorylation (Webster et al., 1991; Manjunath et al., 1999), and

quantitative analysis of ribosomal complexes in maize seedlings

showed that translational machineries involved in initiation and

elongation (i.e., eIF4E, eIF4A, eIF4B, and eEF2) are significantly

more phosphorylated under oxygen deprivation (Szick-Miranda

et al., 2003). In Arabidopsis, although the translation of most

cellular mRNA is impaired by hypoxia due to reduced ribosome

recruitment, polysome association of some stress-induced mRNAs

containing a low GC nucleotide content in the 5′ UTR is increased

(Branco-Price et al., 2005). Restriction of global translation in

response to hypoxia is necessary for energy conservation (Branco-

Price et al, 2008), and it is mainly regulated at the translation

initiation level (Juntawong et al., 2014). In addition, hypoxia-

induced Oligouridylate binding protein 1C binds mRNAs and

forms protein-RNA complexes named stress granules, resulting in

global translational arrest viamRNA sequestration (Lee et al., 2011;

Sorenson and Bailey-Serres, 2014).

AMP-activated protein kinase (AMPK) is the evolutionarily

conserved energy stress signaling master regulator controlling
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cellular energetic homeostasis in animals (Trefts and Shaw, 2021).

AMPK inhibits mRNA translation in multiple steps by inhibiting

TOR, eEF2, and RNA biding proteins (Liu and Chern, 2021).

SnRK1 is the plant ortholog of AMPK and controls plant growth,

stress tolerance, and metabolism to cope with constantly fluctuating

environments (Baena-Gonzalez et al., 2007; Cho et al., 2012; Son

et al., 2023). Although there is no clear evidence, some studies

suggest that SnRK1-mediated TOR inhibition may occur via

RAPTOR1B phosphorylation (Nietzsche et al., 2016; Nukarinen

et al., 2016). Remarkably, SnRK1-mediated eIF4E and eIFiso4E

phosphorylation attenuates general translation (Bruns et al., 2019).

Furthermore, SnRK1 activity represses canonical protein

biosynthesis without significantly changing transcript levels and

protein stability (Son et al., 2022). However, under submergence

conditions, SnRK1-mediated eIFiso4G1 phosphorylation confers

translational enhancement of specific mRNAs, including those of

core hypoxia-response genes (Cho et al., 2019). Therefore, SnRK1

plays a key role in global translational repression and specific

mRNA translation under energy deficiency conditions (Figure 3).

Moreover, ethylene regulates translational dynamics through both a

noncanonical ethylene-signaling-activated GCN2-eIF2a module

and canonical Ethylene insensitive 2-mediated ethylene signaling

during submergence (Cho et al., 2022).
Translation mechanisms regulated by
heat and drought stress in plants

To help plants adapt and survive under elevated temperature,

canonical protein translation is significantly suppressed, while

the translation of HSPs, which prevent protein denaturation and

aggregation typically via a chaperone, is induced (Key et al., 1981;

Nover et al., 1989; Ndimba et al., 2005; Matsuura et al., 2010; Bita

and Gerats, 2013). In carrot (Daucus carota), heat stress impedes

translation initiation and hampers generation of the 5′ cap and 3′
poly(A) tail conferring mRNA translation (Gallie et al., 1995).

eIF4A and eIF4B are phosphorylated during heat stress in wheat

(Triticum aestivum), but eIF4F, eIFiso4F, eIF2a, eIF2b, and
PABP are not (Gallie et al., 1997). In Arabidopsis, mRNA

sequence features, such as the GC content of the 5′ UTR and

cDNA length, are important elements conferring heat-induced

selective mRNA translation (Yangueez et al., 2013). Under

elevated temperature, Arabidopsis XRN4 degrades mRNAs

encoding HSP70 binding proteins and hydrophobic N-terminal

proteins in polysomes, triggering ribosome pausing (Merret et al.,

2015). eIF5B contributes to the biosynthesis of stress-protective

proteins under high temperature, and eIF5B is important for heat

stress tolerance in Arabidopsis (Zhang et al., 2017). Moreover,

Bonnot and Nagel showed that the circadian clock and heat stress

interact to prioritize the translation of the mRNA pool in

Arabidopsis (Bonnot and Nagel, 2021). Translation of heat- or

abiotic-stress-related mRNAs, including HSP90-3 , was

significantly upregulated under high temperature. They also

suggested that transcription factors, including Cycling DOF
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factor, MYB-related, and B-box families, play important roles in

heat stress-mediated plant growth dynamics dependent on the

circadian clock.

Dehydration also changes mRNA translational efficiencies in

plants, including Arabidopsis, maize, and soybean (Glycine max)

(Hsiao, 1970; Dhindsa and Cleland, 1975; Rhodes and Matsuda,

1976; Bensen et al., 1988; Hurkman and Tanaka, 1988; Mason

et al., 1988; Valluri et al., 1989; Bray, 1990; Kawaguchi et al., 2003;

Kawaguchi et al., 2004). In Arabidopsis, polysome association of

71% of 2,136 genes is significantly decreased under dehydration

conditions (Kawaguchi et al., 2004), and mRNA sequence

features (i.e., 5′-UTR GC content, initiation codon context, and

ORF length) influence the dehydration-mediated differential

mRNA translation (Kawaguchi and Bailey-Serres, 2005).

Furthermore, translatome profiling revealed that mRNA

sequence features as well as uORFs are important for dynamic

translational changes under drought conditions in maize (Lei

et al., 2015). In rice (Oryza sativa), more than 50% of the genes

encoding ribosomal proteins (e.g., rpS4, rpS10, rpS18a, rpL6,

rpL7, rpL23A, rpL24, and rpL31) are upregulated in response to

drought, and overexpressing rpL23A confers rice drought

tolerance (Moin et al., 2017). In addition, silencing of rpL14B

decreases drought tolerance in cotton (Gossypium hirsutum)

(Shiraku et al., 2021). However, although ribosomal proteins

are abundant RNA-binding proteins involved in ribosome

structure and protein biosynthesis, they also have additional

functions (Warner and McIntosh, 2009). Therefore, it is not
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clear whether the drought effects associated with ribosomal

proteins are related to mRNA translation.
uORF-mediated translational control
for crop improvement

The development of stress-resilient crops is needed to cope with

the environmental extremes caused by climate change and the

increase in food demand due to world population expansion.

General protein translation is significantly decreased under

stressful conditions, while translation of specific stress-associated

proteins is increased (Muench et al., 2012; Merchante et al., 2017).

uORFs are a conserved structure found in 30–60% of eukaryotic

transcripts, including plant transcripts, and are important for

mRNA translation (Von Arnim et al., 2014; Chew et al., 2016).

Most mRNAs of stress-related genes upregulated by a specific stress

stimulus contain uORF sequences in plants (Ebina et al., 2015;

Hayashi et al., 2017). Therefore, uORF-mediated translational

control represents a promising method to improve the stress

resilience of crops.

Engineering plants to express specific stress-responsive genes

can enhanced stress resilience (Kamthan et al., 2016). However, it

can also reduce plant growth and yield due to tradeoff effects

(Gurr and Rushton, 2005; Huot et al., 2014; Waadt et al., 2022).

These fitness costs can be resolved by uORF-mediated

translational regulation. For example, Xu et al. developed a
FIGURE 3

SNF1-related protein kinase 1 (SnRK1)-mediated translational control under hypoxia. Hypoxia and submergence in plants induce energy starvation
and activate SnRK1, which consists of an a catalytic subunit and two regulatory subunits, b and bg. SnRK1 reduces anabolic processes, including
protein biosynthesis, while inducing catabolic processes and stress tolerance. Since mRNA translation is an energy-consuming process, SnRK1
modulates mRNA translation. Under submergence conditions, SnRK1 phosphorylates eukaryotic initiation factor 4E (eIF4E) and eIF isoform 4E
(eIFiso4E) to repress global mRNA translation (Bruns et al., 2019), whereas SnRK1-mediated eIFiso4G1 phosphorylation induces translation of mRNAs
of hypoxia-response genes (Cho et al., 2019). The Target of rapamycin complex (TORC) consists of Target of rapamycin (TOR), Regulatory-
associated protein of TOR (RAPTOR), and Lethal with sec thirteen protein 8 (LST8) and is a conserved master regulator of energy signaling, including
protein biosynthesis. TOR-activated ribosomal protein S6 kinase (S6K) phosphorylates ribosomal protein S6 (rpS6), eukaryotic initiation factor 3h
(eIF3h), and MA3-domain-containing translation regulatory factor 1 (MRF1) to promote mRNA translation (Schepetilnikov et al., 2013; Lee et al., 2017;
Chen et al., 2018). The SnRK1 ortholog in mammals is AMP-activated protein kinase (AMPK). AMPK-mediated TORC inhibition is well established in
mammals. However, although studies have suggested SnRK1-mediated TOR inhibition through RAPTOR1B phosphorylation (Nietzsche et al., 2016;
Nukarinen et al., 2016), it remains obscure in plants.
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TBF1 cassette using the TBF1 promoter and two uORFs on TBF1

mRNA that conferred pathogen-inducible translational control

to overcome the fitness costs of the plant immune response (Xu

et al., 2017b). They showed that pTBF1:uORFs-driven expression

of Arabidopsis Nonexpressor of pathogenesis-related genes 1,

encoding a master regulator of salicylic-acid-mediated defense

signaling that contributes to broad-spectrum resistance,

increased rice resistance to the bacterial blight pathogen

Xanthomonas oryzae pv. oryzae and the rice blast pathogen X.

oryzae pv. oryzicola without fitness penalties. Therefore,

deve loping uORF-based promoters tr igger ing mRNA

translation in response to a specific stress stimulus is an

important strategy for improving crop stress resistance.

The development of the clustered regularly interspaced short

palindromic repeats (CRISPR)/CRISPR-associated nuclease 9

(Cas9) technology was an innovation that allows efficient genome

editing without the presence of transgenes or the regulatory issues

associated with genetically modified crops (Son and Park, 2022a).

Not only coding regions but also promoter regions regulating gene

expression are good targets for genome editing for crop

improvement (Hua et al., 2019). Since most uORFs inhibit

mRNA translation via ribosome stalling, ribosome disassociation,

uORF translation past the initiation codon, and mRNA decay,

mutation of uORFs by CRISPR/Cas9 can change translation

efficiency (Young and Wek, 2016; Um et al., 2021). Indeed, crop

improvement through CRISPR/Cas9-mediated editing of uORFs

regulating mRNA translation has been reported. Lettuce (Lactuca

sativa) GDP-L-galactose phosphorylase 2 (LsGGP2) uORF editing

enhanced ascorbic acid (vitamin C) contents and tolerance to

oxidative stress in iceberg lettuce (Zhang et al., 2018). Mutation

of GGP1 uORFs by CRISPR/Cas9 also increased the ascorbic acid

content in wild tomato (Solanum pimpinellifolium) accession

LA1589 and bacterial spot disease resistance (Li et al., 2018).

Editing of the Phosphate 1 uORF induced root inorganic

orthophosphate (Pi) accumulation and Pi deficiency tolerance in

Arabidopsis (Reis et al., 2020). Strawberry (Fragaria vesca) S1-group

basic leucine zipper protein 1.1 editing increased the sugar content

(Xing et al., 2020). CRISPR/Cas9-mediated mutation of Heading

date 2 delayed flowering time in rice (Liu et al., 2021). Previously, it

was difficult to improve crop traits through uORF editing due to

technical limitations, but more convenient methods are

continuously being developed (Si et al., 2020). Therefore, uORF-

mediated translational control is expected to become accessible to

many scientists and contribute to stress resilience in crops.
Conclusions

Global climate change exacerbates abiotic and biotic stresses in

crops, and improving crop stress resilience is essential for

sustainable agriculture. Although advances in biotechnology,

including CRISPR/Cas9 gene editing systems, have facilitated
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c rop improvement , they requ i re iden t ifica t ion and

characterization of genes and their regulatory networks. Since

translational control is an efficient way to increase resistance to

various stresses, it is essential to understand the mechanisms

controlling protein biosynthesis. Numerous global translatome

profiling technologies, such as polysome profiling, ribosome

profiling, translating ribosome affinity purification, and 3′
ribosome-profiling sequencing, have been developed and utilized

to study plant translation (Ingolia et al., 2009; Heiman et al., 2014;

Mazzoni-Putman and Stepanova, 2018; Zhu et al., 2021) and have

facilitated important advances in plant biology. Therefore, we have

provided here an overview of the current understanding of protein

translational control in response to pathogens, hypoxia, heat, and

drought stresses in plants, and discussed a crop improvement

strategy based on translational regulation through editing of

uORFs. Though the translational control mechanisms involved in

stress responses need further study, their exploration and

application in crop breeding are important steps toward

developing stress tolerant crop cultivars without fitness costs.
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