
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Huajian Liu,
University of Adelaide, Australia

REVIEWED BY

Xi Qiao,
Agricultural Genomics Institute at
Shenzhen (CAAS), China
Lingxian Zhang,
China Agricultural University, China

*CORRESPONDENCE

Guoxu Liu

liuguoxu@wfu.edu.cn

Suk Chan Kim

sckim@pusan.ac.kr

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal
Frontiers in Plant Science

RECEIVED 25 January 2023

ACCEPTED 20 March 2023
PUBLISHED 03 April 2023

CITATION

Mbouembe PLT, Liu G, Sikati J, Kim SC
and Kim JH (2023) An efficient tomato-
detection method based on
improved YOLOv4-tiny model
in complex environment.
Front. Plant Sci. 14:1150958.
doi: 10.3389/fpls.2023.1150958

COPYRIGHT

© 2023 Mbouembe, Liu, Sikati, Kim and Kim.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 April 2023

DOI 10.3389/fpls.2023.1150958
An efficient tomato-detection
method based on improved
YOLOv4-tiny model in
complex environment

Philippe Lyonel Touko Mbouembe1, Guoxu Liu2*,
Jordane Sikati 1, Suk Chan Kim1* and Jae Ho Kim1

1Department of Electronics Engineering, Pusan National University, Busan, Republic of Korea, 2School
of Computer Engineering, Weifang University, Weifang, China
Automatic and accurate detection of fruit in greenhouse is challenging due to

complicated environment conditions. Leaves or branches occlusion, illumination

variation, overlap and cluster between fruits make the fruit detection accuracy to

decrease. To address this issue, an accurate and robust fruit-detection algorithm

was proposed for tomato detection based on an improved YOLOv4-tiny model.

First, an improved backbone network was used to enhance feature extraction

and reduce overall computational complexity. To obtain the improved backbone

network, the BottleneckCSP modules of the original YOLOv4-tiny backbone

were replaced by a Bottleneck module and a reduced version of BottleneckCSP

module. Then, a tiny version of CSP-Spatial Pyramid Pooling (CSP-SPP) was

attached to the new backbone network to improve the receptive field. Finally, a

Content Aware Reassembly of Features (CARAFE) module was used in the neck

instead of the traditional up-sampling operator to obtain a better feature map

with high resolution. These modifications improved the original YOLOv4-tiny

and helped the new model to be more efficient and accurate. The experimental

results showed that the precision, recall, F1 score, and the mean average

precision (mAP) with Intersection over Union (IoU) of 0.5 to 0.95 were 96.3%,

95%, 95.6%, and 82.8% for the improved YOLOv4-tiny model, respectively. The

detection time was 1.9 ms per image. The overall detection performance of the

improved YOLOv4-tiny was better than that of state-of-the-art detection

methods and met the requirements of tomato detection in real time.

KEYWORDS

YOLOv4-tiny model, tomato detection, deep learning, computer vision, agriculture
1 Introduction

Recent advances of artificial intelligence technology have allowed wide applications in

every area of life, including agriculture. For a decade, fruit detection has been a very active

research direction. Detecting and sorting single crops plants such as oranges, apples,

tomatoes, etc. are difficult and time intensive due to the number of varieties of the same
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1150958/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1150958/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1150958/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1150958/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1150958&domain=pdf&date_stamp=2023-04-03
mailto:liuguoxu@wfu.edu.cn
mailto:sckim@pusan.ac.kr
https://doi.org/10.3389/fpls.2023.1150958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science

Mbouembe et al. 10.3389/fpls.2023.1150958
fruit and environment conditions such as cluster. With the

development of artificial intelligence, this can be done by robots.

Moreover, Computer vision and related algorithms have been applied

to improve the efficiency, intelligence, and remote interactions of

robots in complex agricultural environments (Cheng et al., 2020).

A series of traditional fruit detection and recognition algorithms

have been proposed. Most of them used non-pattern methods such

as color, texture, and geometry methods for fruit detection. Linker

et al. (2012) used color and texture to classify green apples.

However, sunlight and color-saturation variation which constitute

the illumination variation had a large impact on their results.

Furthermore, Zhao et al. (2016) developed a method based on

segmented mature tomatoes from background using an optimal

threshold on fusion image features, but illumination also affected

their results. Moreover, an optimal threshold extracted from the

intensity histogram of a red-color-difference enhanced image for

apple recognition. But this method was restricted to ripe apples

which present different color to the background. Liu et al. (2019)

proposed a coarse-to-fine method for ripe tomato detection in

greenhouse. A naive Bayes classifier combined with a histogram

of oriented gradients was applied to recognize tomatoes. The

method also used a colour analysis to remove false detection. But

due to the low-level abstraction capabilities of hand-crafted

features, it was difficult to adapt this method on complex

environment changes. Finally, a shape analysis method for

mature apple localization proposed by Kelman and Linker (2014)

used a canny filter to find the edges in the image. The method also

used a pre-processing operation and convexity test to detect the

edges that correspond to three-dimensional convex objects. The

performance was influenced by illumination and leaves that have

similar convex surfaces to apples.

Since the traditional methods were based on handcrafted

features, they had several drawbacks, such as low-level of feature

extraction in certain conditions. These problems were conquered

with the introduction of deep learning (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2014). Deep learning techniques have

great performance in many fields, including vision tasks (Kamilaris

and Prenafeta-Boldu, 2018). First, Sa et al. (2016) merged multi-

modal color (RGB) and near-infrared (NIR) information based on a

Faster R-CNN (Ren et al., 2015) detector for fruit detection. The

model obtained better result than previous models. However, it was

difficult to detect small fruits, and the speed still needed to be

improved for real-time detection for a harvesting robot.

Rahnemoofar and Sheppard (2017) proposed a modified

Inception-Resnet architecture (Szegedy et al., 2017) for fruit

counting and achieved good results. However, the model just

counted fruit and did not detect them. Furthermore, Mu et al.

(2020) and Gao et al. (2020) proposed an R-CNN algorithm

(Girshick et al., 2014) using ResNet (Szegedy et al., 2017) as a

backbone network for the detection, counting and size estimation of

green tomatoes. Afonso et al. (2020) used Mask R-CNN (Kaiming

et al., 2017) to tomato datasets for detection. Many neural networks

were used as backbone to extract feature map.

“You Only Look Once” (YOLO) models were proposed by

Redmon et al. (2016); Redmon and Farhadi (2017); Redmon and

Farhadi (2018); Bochkovskiy et al. (2020), and Wang et al. (2022)
Frontiers in Plant Science 02
for object detection. They had great improvement in both speed and

accuracy compared with the previous region proposal-based

detectors (Girshick et al., 2014; Ren et al., 2015; Kaiming et al.,

2017), which performed detection in a two-stage pipeline. YOLO

models directly predicted the bounding boxes and their

corresponding classes with single feed-forward network. There are

some studies on fruit detection using YOLO models. Liu et al.

(2020) developed a robust model on tomato detection named

YOLO-Tomato based on YOLOv3. The traditional rectangular

box was replaced with a circular bounding box to match the

tomato target. The model achieved an AP of 96.40% with a

detection time of 54 ms. Moreover, Fu et al. (2020) developed an

algorithm based on improved YOLOv3-tiny to detect kiwifruits in

orchard. Xu et al. (2020) proposed a fast method of detecting

tomatoes in a complex scene for picking robots, and their

experimental results showed that the F1 score was 91.92% with

an inferential of 40.35 ms. Furthermore, Wang X et al. (2021) also

proposed an algorithm based on YOLOv3-tiny to detect diseases of

occlusion and overlapping tomato leaves. A YOLOv3-tiny-IRB

algorithm was used to reduce layer-by-layer loss if information

during network transmission. The model got a mAP of 93.1%.

Furthermore, Arunabha and Jayabrata (2021) proposed a detection

method for fine grain based on a modification of YOLOv4 model

and achieve good results. In their model, the Dense Net (Gao et al.,

2018) architecture was inserted in the backbone to enhance feature

map extraction. The result showed the mAP was 96.29% with a

detection time of 70.19 FPS. Rupareliya et al. (2022) proposed a

deep learning-based tomato detection, where different versions of

the YOLO architectures were used. Chenglin et al. (2022) proposed

YOLO-PEFL model to detect pear flowers in the natural

environment based on improved YOLOv4. The AP of the model

was 96.71%, the model size was reduced by 80% approximatively,

and the detection time was 0.027 s. Finally, Tang et al. (2023)

proposed YOLO- Oleifera based on improved YOLOv4-tiny model

and binocular stereo vision, and it achieved an AP of 92.07% with

an average of 31 ms to detect each fruit image.

Although much research has been conducted on fruit detection

in complex environment, the detection accuracy and the efficiency

still need to be improved to meet the requirement of fruit detection

under complicated conditions.

To address the above issues, an efficient tomato-detection

method was proposed based on an improved YOLOv4-tiny model

in this study. Figure 1 shows an overview of the improved model.

The main contributions of this study are as follow:
1 A modified BottleneckCSP module was designed and

inserted in the backbone network to enhance the feature

extraction and to reduce the computational complexity,

2 A tiny version of CSP-SPP module was also designed and

attached to the new backbone network to improve the

receptive field,

3 The CARAFE module was used in the neck to get feature

map with higher feature map,

4 Extensive experiments were conducted on the tomato

datasets to show that the improved YOLOv4-tiny model
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958

Fron
outperformed the original YOLOv4-tiny model and other

state-of the-art object detectors in terms of accuracy (mAP

(0.5)) and reached a real-time detection speed.
2 Theoretical background

2.1 YOLO series

YOLO is a state-of-the-art in real time object detection

methods. YOLOv1, YOLOv2, and YOLOv3 (Redmon et al., 2016;

Redmon and Farhadi, 2017; Redmon and Farhadi, 2018) were the

first versions, and YOLOv2 was proposed with the objective of

increasing the accuracy significantly. The idea of anchors for

detection introduced in YOLOv2 was inspired by Faster R-CNN.

It was also based on some other concepts such as Batch

Normalization (Ioffe and Szegedy, 2015) and Skip connection (He

et al., 2016). YOLOv3 evolved from YOLOv1 and YOLOv2 and

became one of the state-of-the-art methods for object detection. It

used Darknet-53 (Redmon and Farhadi, 2018) as a backbone

instead of Darknet-19 (Redmon and Farhadi, 2017), multi-scale

feature extractors (FPN) (Tsung-Yi et al., 2017), and binary cross-

entropy loss instead of Softmax classification loss. YOLOv4

(Boschkovskiy et al., 2020) was released with the aim of

improving YOLOv3.

Unlike Faster R-CNN, YOLO uses a different approach by

applying a single neural network to a full image. This network

divides the input into an S� S grid and performs detection in each

cell. Each cell predicts bounding boxes along with the confidence of

those boxes. These confidence scores reflect how confident the

model is about whether the box contains an object or not. If it is

confident, the confidence score tells how accurate the IoU of the

ground truth (GT) and the predictions (pred) is. Equation (1) gives

the formula of confidence:

Confidence = P(Object)� IoU(GT , pred) (1)

Where P(Object) ∊ [0,1].

In YOLO model detection, each grid cell predicts C class

probabilities for the object, so (5+ C) values are predicted by each

cell: x, y, h, w, Confidence, and C class probabilities. x and y
tiers in Plant Science 03
are the center coordinates of the box, and w and h are the width and

the height of the box, respectively.
2.2 YOLOv4-tiny architecture

YOLOv4-tiny is a lightweight version of YOLOv4 that makes

the network structure simpler and reduces parameters. It can

achieve real-time detection. It uses a CSPDarknet-19

(Boschkovskiy et al., 2020) network as a backbone network

instead of CSPDarknet-53, which is used in YOLOv4. By

removing the computational bottlenecks that have a higher

amount of calculation in the CSP-block module, it reduces the

amount of calculation while increasing the accuracy. YOLOv4-tiny

uses the LeakyReLU function as an activation function to simplify

the computation process. Batch Normalization (BN) and

Maxpooling are used between the layers of the CNN to speed-up

t r a in ing and se l e c t t he max imum pix e l v a l u e s o f

features, respectively.

In the neck, a Feature Pyramid Network (FPN) is used. It can

integrate different scales for implementing rich semantic

information of a deep network and geometric detail of a shallow

network to strengthen the ability of features extractions and to

increase the object detection speed. The YOLO head uses features

obtained by the FPN to make the final prediction and to form two

prediction scales of 13� 13 and 26� 26.
2.3 Content-aware reassembly of features
(CARAFE)

CARAFE (Jiaqi et al., 2019) is a feature map up-sampling

operator that has two modules: a kernel prediction module and

content-aware module. The kernel prediction module is responsible

for generating the reassembly kernel in a content-aware manner.

Each source location in the input corresponds to the target location

s2 in the output. Each target location requires a kup � kup
reassembly kernel, where kup is the reassembly kernel size. It will

output the reassembly kernels of size Cup �H �W , where Cup =

s2 � k2up.

The kernel prediction module has three sub-modules:
FIGURE 1

An overview of the improved YOLOv4-tiny model.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
- A channel compressor sub-module reduces the channel of the

input feature map by using a convolution layer (from C to Cm)

with kernel size of 1� 1.

- A content encoder sub-module takes the compressed feature

map as input and encodes it to generate reassembly kernels by using

a convolution layer of size kencoder . The parameters of the encoder

are kencoder � kencoder � Cm � Cup.

- A kernel normalizer sub-module uses a Softmax function on

each reassembly kernel.

The content-aware reassembly module reassembles the features

within a local region via the function ∅. This function is just a

weighted sum operator. For a target location l′ and a corresponding

square region N(Inputl , kup) centered at l = (i, j), the reassembly is

shown in Equation (2):

Outputl0 = o
r

n=−r
o
r

m=−r
Wl0(n,m)

· input(i+n,j+m) (2)

where =
kup
2 , Wl′ is the location-wise kernel for each location l‘

based on the input, and l‘ is the neighbor location of l. The

semantics of the reassembly feature maps is stronger with

CARAFE than the original up-sampling operator because the

information from relevant points in a local region is attended.

CARAFE has several advantages: a large field of view, a content-

aware handling, and it is lightweight and fast to compute.
3 Materials and methods

3.1 Image acquisition

The tomato datasets (Liu et al., 2020) used in this research were

taken from December 2017 to November 2019 in Vegetable High-
Frontiers in Plant Science 04
Tech Demonstration Park, Shouguang, China (36°51’44.2’’N and

118°49’27.3’’E). The images were taken using a digital camera (Sony

DSC-W170, Tokyo, Japan) with a resolution of 3648 � 2056 pixels.

The camera has a precision 5× wide-angle zoom Carl Zeiss Vario-

Tessar lens with a range equivalent to a 28-140mm zoom on a

35mm camera, which allows it to take shots in tight spaces or get an

entire group of things in the frame. Moreover, it incorporates Sony’s

Super Steady-shot optical image stabilization to minimize blur

caused by camera shake at slow shutter speeds. All the images

were taken in natural daylight with different conditions including

illumination variation, occlusion, and overlap. A total of 966 images

were taken and divided into a training set and a test set. The training

set had 725 images and contained 2553 tomatoes, while the test set

had 241 images and contained 912 tomatoes. Figure 2 shows some

examples from the datasets under different conditions.
3.2 Image augmentation

To prevent non-convergence phenomenon or over fitting

during the training process, in this study, the images were

augmented using various data-augmentation methods, such as

rotation, noise, brightness transformation, and cutout, as shown

in Figure 3 (Huang et al., 2020; Wu et al., 2020). To help the model

to be insensitive to camera orientation, the original images were

rotated by 90° and 270°. For the noise, we generated “salt and

pepper” noise on the images, which can help the model to be more

robust to noise. For the brightness transformation, we randomly

changed the intensity of the pixels from -70% to 70%. Finally, a

cutout method was adopted to help the model to be more resilient

to object occlusion. All these methods were used before training to

expand the datasets, which can help the model to be more accurate.
A B

D E

C

FIGURE 2

Tomato samples with different growing circumstances. (A) Separated tomatoes, (B) Cluster of tomatoes, (C) Occlusion case, (D) Shading case, and
(E) Sunlight conditions.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
3.3 The improved YOLOv4-tiny
model architecture

One of the advantages of YOLOv4-tiny is the fast detection

speed because of its simplicity. However, due to the reduction of the

number of layers, the feature capability is insufficient, and the

feature utilization of the algorithm is low. This leads to low

detection accuracy. To solve this issue, we propose a new model

based on YOLOv4-tiny. The architecture of the improved model is

shown in Figure 4.
3.3.1 The modified backbone network
To further improve the detection accuracy and robustness of

YOLOv4-tiny model under complex conditions, it is needed to

improve the detection accuracy further. The backbone of YOLOv4-

tiny contains three BottleneckCSP modules, which consist of

multiple convolutional layers, as shown in section 2.2. Even

though the convolution operation can extract the features in the

image, the convolutional kernel has a large number of parameters,

which increases the computation load.

To reduce the number of parameters, the first BottleneckCSP of

the original network is replaced with a Bottleneck module (He et al.,

2016). Moreover, the original Bottleneck CSP module is modified to

enhance feature extraction, capture more information, and reduce

the computational complex. The modified BottleneckCSP is

simpler, faster, lighter, and has better fusion characteristics.

The convolutional layer on the bridge branch of the original

module was removed so that part of the input of the BottleneckCSP
Frontiers in Plant Science 05
is directly connected to the output feature map of the other branch.

This effectively reduces the number of parameters in the module.

Figures 5, 6 show the bottleneck architecture and the difference

between the original BottleneckCSP and the modified

one, respectively.

From the original architecture of BottleneckCSP shown in

Figure 6A, Equations (3) – (5) can be derived:

I0 = I0 0 , I0 0 0f g (3)

where I0 is the input data, I0 0 is the first half of the input data,

and I0 0 0 is the second half of the input data.

IT = ½Bottleneck(I0 0),Conv2d1�1(I0 0 0)� (4)

where IT is the concatenate layer of I0 0 and Bottleneck of I0 0 0 ,

and Conv2d1�1 is a convolutional layer with 1� 1 kernel size.

Y = Conv2d1�1(LeakyReLu,BN(IT) (5)

where Y is the output layer.

Similar to Equation (4), the concatenate layer of IT in the new

BottleneckCSP module is represented in Equation (6).

IT = ½Bottleneck(I0 0), I0 0 0 � (6)

The remaining two original BottleneckCSPs are replaced with

the modified one in the backbone network to make it more efficient

and enhance feature extraction.

Scales-YOLOv4 (Wang CY et al., 2021) introduced a CSP-

Spatial Pyramid Pooling module (CSP-SPP), which used a cross

stage process for down-sampling convolution operations. However,
A B D

E F G

C

FIGURE 3

Some examples of image augmentation operations. (A) original image, (B, C) rotation (90° and 270°), (D) noise (salt and pepper), (E) cutout with five
counts, and (F, G) exposure (brightness changes).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
it was designed for large-scale object detection models with large

numbers of parameters and is not suitable for a tiny object

detection. To adapt it to a tiny object detection, a tiny version of

the CSP-Spatial Pyramid Pooling module is proposed in this study.

It removes 1� 1 and 3� 3 convolutional layers to reduce the

parameters and increase the accuracy of the model. Figure 7 shows

the architecture of the original CSP-SPP and the tiny version of

the module.

Equations (7) – (10) can be derived from the new module

shown in Figure 7B:

f1 = Conv1�1(
I0

2=) (7)

f2 = Maxpooling(f1) (8)

f3 = Conv1�1(½f1, f2�) (9)
Frontiers in Plant Science 06
Y = Conv1�1(½I0, f3� (10)

Where Conv1�1 is a convolutional layer with 1� 1 kernel size,

f1, f2, and f3 are feature maps, and Y is the output layer.
3.3.2 The modified neck network
In the YOLOv4-tiny neck, FPN (Tsung-Yi et al., 2017) is used

to construct a feature pyramid of strong semantics with a top-

down pathway and lateral connections. In the top-down pathway,

a low-resolution feature map is firstly up-sampled twice with the

nearest neighbour interpolation and then fused with a high-

resolution one. It adopts spatial distance between pixels to guide

the up-sampling process, but it considers only sub-pixel

neighbours and fails to capture the rich semantic information

required by dense prediction tasks. In Pixel shuffle (Shi et al.,

2016) up sampling method, the feature map is extracted using sub-

pixel convolution and then expands by a dimensional space.

However, it scales the image size without changing the current

amount of feature information. To solve this issue, all feature

levels is substituted with CARAFE (Jiaqi et al., 2019), as shown in

section 2.3. Figure 8 shows the new architecture. CARAFE is a

region content-based up sampling method that first gets the up-

sampling kernel in the up-sampling kernel prediction module, and

uses it to up sample the corresponding positions of the original

map. Then the new feature is used in the feature reassembly

module to complete the up-sampling process and gets better

output feature with high resolution. In addition, the kernel

prediction module normalizes the features in the up-sampled

region to maintain a constant value after up sampling, thereby
FIGURE 4

The improved YOLOv4-tiny model architecture.
FIGURE 5

Bottleneck module architecture.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
reducing distortion. This modification is smooth, and no extra

change is required. Moreover, it occupies less computing power, is

lighter, and has demonstrated good performance in object

detection and semantic segmentation tasks.
Frontiers in Plant Science 07
3.4 Experimental setup

In this study, the computer used had Intel i5, 64-bit 3.30-GHz

quad-core CPUs (Santa Clara, CA USA), 16 GB of RAM, and an

NVIDIA GeForce GTX 1070Ti GPU. The model framework was

Pytorch with related software CUDA 11.1 and Python 3.8.10. The

batch size was set to 8. The input image size was: 416� 416. The

setting of some hyper parameters used in this study is given as

follows: number of epochs: 400, learning rate: 0.001, optimizer

weight decay: 94.75, STD momentum: 96.3, warm-up initial

momentum: 0.8, batch size: 8, box loss gain: 0.05, classification

loss gain: 0.5, cls BCE loss positive weight: 1.0, object loss gain: 1.0,

and anchor multiple threshold: 4.0.
3.4.1 Evaluation metrics
Evaluation indicators (Padilla et al., 2020) such as precision,

recall, mAP, and F1 score were used to evaluate the model

performance. The indicators are defined as follows:

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)
where TP, FN , and FP are abbreviations for true positive

(correct detection), false negative (miss), and false positive (false

detection), respectively. The mAP was adopted to show the overall

performance of a model under different confidence thresholds. It is

defined as follows:
A B

FIGURE 7

CSP-SPP module architectures. (A) the original module used in Scale-YOLOv4, (B) The tiny version of the CSP-SPP module.
A

B

FIGURE 6

The BottleneckCSP module architectures. (A) Original
BottleneckCSP, (B) The modified module.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
mAP =
1

Nclasses
o
Ncls

a=1
APa (13)

with

AP =o
Q

q
(rq+1 − rq)max

~r≥rq+1
p(~r) (13:a)

where p(~r) is the measured precision at recall ~r, and Ncls is the

number of classes. The F1 score is defined as follows:

F1 =
2� Recall � Precision
Recall + Precision

(14)
3.4.2 Loss function
The loss function in this study considered the regression error

of bounding coordinates, the confidence error of bounding box, and

the classification error of object category. Equation (15) below

shows how we calculated the loss function:

Loss = Lossreg + Lossconf + Losscls (15)

- Loss regression:

Lossreg = 1 − IoU +
d2 (b̂ , bgt)

c2
+ av (15:a)

with

IoU =
b̂ ∩ bgt

b̂ ∪ bgt
(15:b)

and

v =
4
p2 (tan

−1 wgt

hgt
− tan−1

w
h
)2;

a =
v

(1 − IoU) + v
(15:c)

where b and bgt are predicted bounding boxes and ground truth

bounding boxes, respectively, d is the distance between the

predicted center point and the true center point, c is the diagonal

length of the enclosing box covering b and bgt , and a and v are the

positive trade-off and aspect ratio parameter, respectively.

From the equations above, we can see that the loss regression

function works from three aspects: the overlap area, centroid

distance, and the aspect ratio between the bounding box and the

ground truth.
Frontiers in Plant Science 08
- Loss confidence:

To know the confidence loss, we need to calculate the

confidence of the grid cell.

C = P(object)� IoU(b, bgt) (15:d)

then,

Lossconf =o
s�s

i=1
o
NB

j=1
li,j½Cin

:
log(~Ci)log(1 − Ci)�

−o
s�s

i=i
o
NB

j=1
(1 − li,j)½Ci · log ~Ci + (1 − Ci) log (1 − ~Ci� (15:e)

with

li,j =

1, if part of j − th bounding box is in the i − th grid cell

0, otherwise

8>><
>>:

(15:f)

where s� s is the grid cell size, NB is the number of bounding

boxes, ~Ci is the obtained confidence from prediction box, and Ci is

the confidence threshold.

- Loss classification:

Losscls =o
s�s

i=1
o
NB

j=1
li,j o

a∈classes

½pi(a) log (~pi(a)) + (1 − pi(a)) log (1 − ~p(a))�

(15:g)

where pi is the true probability of detecting the object, ~pi is the

probability score from the prediction, and a is a class associated

with target detection. The loss function of YOLOv4-tiny converged

gradually in the training process, such that the position and

confidence of the bounding box are close to the ground truth.
4 Results and discussions

4.1 Ablation study

In this study, three major modifications were studied before

obtaining the final result. Table 1 shows the ablation analysis of the

different modifications. An ablation analysis of the impact of

different modifications to the original YOLOv4-tiny was

performed. Table 1 shows exactly what modifications were made.

First, the modified BottleneckCSP was incorporated into the

backbone instead of the original BottleneckCSP module, which

increased the accuracy by 1.7% and reduced the time by 0.9 ms

compared to the original YOLOv4-tiny. Second, the tiny CSP-SPP

module was attached to the modified backbone, which contributed

another 1.9% improvement to the accuracy, and the time was

reduced by 0.7 ms. Lastly, when the CARAFE module was

adopted in the neck, the accuracy was further increased by 0.8%.

Also, we tested the function of the CARAFE module based on

the modified BottleneckCSP and found that it improved the

accuracy by 1.5%, which is a little lower than that of the CSP-SPP

module. This showed the efficiency and effectiveness of each
FIGURE 8

The FPN architecture with CARAFE.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
modification. In accordance with Table 1, Figure 9 shows that the

accuracy and speed were bo th improved wi th the

proposed modification.

Moreover, experiment was also performed with Pixel shuffle up

sampling method (Shi et al., 2016). It implements sub-pixel method

convolution to extract the feature map and then expands it by a

dimensional space to obtain the up-sampling results. Compared

with CARAFE, the Pixel shuffle has an accuracy of 81.03% and a

detection time of 2.2ms, which are both worse than that

of CARAFE.
4.2 Feature map visualization

Features were visualized in some stages of the algorithms

(original YOLOv4-tiny and the improved YOLOv4-tiny).

Figure 10 focuses on features where the original model was

modified. Figure 10A shows an input image with tomatoes

labeled for better visualization. Figures 10B, C represent stage 2 of

both the original algorithm (the first BottleneckCSP module) and

the modified algorithm (Bottleneck module), respectively.

Figure 10D shows the second feature of the modified CSP-

SPP module.

Stage 4 is shown in Figures 10E, F and represents the second

BottleneckCSP module of the original algorithm and the modified

Bottleneck module. Finally, Figures 10G, H show features in the
Frontiers in Plant Science 09
original up-sampling operator in the neck and the CARAFE

operator module, respectively. Moreover, CARAFE has a large

field of view and can effectively aggregate context information,

resulting in a good feature map. It can be seen in Figure 10H.

Combining all the visualization in Figure 10, each modification has

better features with high resolution than features in the original

algorithm, which means that the improved model is better and

more efficient than the original model.
4.3 Comparison of the improved
YOLOv4-tiny with different one-stage
detection algorithms

The performance of the improved YOLOv4-tiny was compared

with other one stage detection algorithms: MobileNetv1 (Andrew

et al., 2017), YOLOv3-tiny (Redmon and Farhadi, 2018),

ShuffleNetv2 (Ma et al., 2018), MobileNetv3 (Howard et al.,

2019), and YOlOv4-tiny (Boschkovskiy et al., 2020). Table 2

shows that the improved YOLOv4-tiny model has the best

detection performance among all the methods. The mAP

(0.5:0.95) was 7.4%, 11.5%, 6.2%, 5.4%, 0.8% and 4.4%, higher

than those of Mobilenetv1, YOLOv3-tiny model, ShuffleNetv2,

MobileNetv3, YOLOv5s, and YOLOv4-tiny model, respectively.

The average detection time of the improved method was 1.9 ms,

which met the requirement of real-time fruit detection.

As shown in Table 2, compared with MobileNetv1, YOLOv3-

tiny, ShuffleNetv2, and YOLOv4-tiny, the precision of the improved

model increased by 1.2%, 1.2%, 2.2% and 1.0%, respectively.

However, the recall increased by 3.9%, 3.1%, 2.2%, and 1.0%,

respectively. MobileNetv3 had almost the same precision with the

improved model, whereas recall decreased by 4.1%. The F1 score

and the mean average precision with IoU of 0.5 increased by 1.0%

and 0.5% compared with that of the original YOLOv4-tiny model.

Although the detection time of the improved model was slightly

lower than that of MobileNetv1 and shuffleNetv2, the improvement

of his accuracy was far better than that of MobilenetV1 and

ShuffleNetv2. Moreover, the mAP (0.5:0.95) of the improved

model is 0.8% higher than the one of YOLOv5s model, with less

detection time. Performance of the Improved Model under

Different Conditions

To evaluate the performance of the improved YOLOv4-tiny

model under different lighting and occlusion environmental

conditions, the tomatoes were divided into different groups.
FIGURE 9

Speed (ms) versus accuracy (mAP).
TABLE 1 Ablation analysis of the different modifications.

Modified
BottleneckCSP

Modified
CSP-SPP CARAFE mAP (0.5:0.95) (%) Time (ms)

Modification

78.4 3.5

✔ 80.1 2.6

✔ ✔ 82.0 1.9

✔ ✔ 81.6 2.3

✔ ✔ ✔ 82.8 1.9
f
rontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
According to different lighting conditions, the tomatoes were

divided into sunlight and shading groups. Among all the 912

tomatoes, 487 of them are in sunlight conditions and 425 of them

are in shading conditions. According to the degree of occlusion or

overlap conditions, the tomatoes were divided into slight and severe

occlusion cases. Severe cases refer to tomatoes being occluded by

leaves, branches or other tomatoes by more than 50% degree.

Table 3 shows the evaluation results of the improved model

under sunlight and shading conditions. 95.1% of the tomatoes were

correctly detected under sunlight conditions while 94.8% for
Frontiers in Plant Science 10
shading cases. The missed rates are 4.9% and 5.2% for sunlight

and shading cases, respectively. Moreover, the false identification

rates are 3.7% and 3.6% for sunlight and shading cases. This means

that some leaves, branches or other background are falsely detected

as tomatoes, especially when some background presents both

similar color and shape as tomatoes.

Similarly, Table 4 shows the evaluation results of the improved

model under slight and severe occlusion cases. Under slight

occlusion case, 95.2% of the tomatoes were correctly detected,

and 94.4% were detected under severe occlusion case. The results
TABLE 2 A comparison of the different models.

Model Precision (%) Recall (%) F1 (%) mAP (0.5) (%) mAP (0.5:0.95) (%) GFLOPs Time (ms)

MobileNetv1* 95.1 91.1 93.0 96.5 75.4 3 1.7

YOLOv3-tiny 95.1 91.9 93.4 97.4 71.3 10 3.8

ShuffleNetv2* 94.1 92.8 93.4 96.6 76.6 7 1.7

MobileNetv3* 96.4 90.9 93.5 96.8 77.4 8 1.6

YOLOv5s 96.3 94.2 95.2 98.3 81.7 16.8 2.7

YOLOv4-tiny 95.3 94.0 94.6 98.0 78.4 6.8 3.5

The Improved Yolov4-tiny 96.3 95.0 95.6 98.5 82.8 9 1.9
f

*MobileNetv1, Shufflenetv2, and MobileNetv3 were used as backbone network and YOLOv4-tiny head was used for detection.
A B

D E F

G H

C

FIGURE 10

(A) The labeled input image, (B) 29th feature of the first BottleneckCSP of YOLOv4-tiny, (C) 29th feature of the Bottleneck module of the improved
method, (D) 2nd feature of the modified CSP-SPP module, (E) 2nd feature of the second BottleneckCSP, (F) 2nd feature of the modified
BottleneckCSP, (G) 29th feature of original up-sampling operator, (H) 29th feature of CARAFE operator.
rontiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
show that most of the tomatoes could be detected by our improved

model except that are severely occluded by other objects. For the

false identification rate, the results are 3.2% and 4.7%, respectively.
4.4 Qualitative analysis of different one-
stage models

Figure 11 shows the prediction images of the comparison

models, respectively. As shown in Figure 11, compared to the

improved YOLOv4-tiny model, the other detection models have

some either missed detections or false detections.

Moreover, the detection performance of the improved

YOLOv4-tiny model was better and more efficient than that of

the other detection models. The mean average with IoU of 0.5 to

0.95 increased by 4.4% compared to that of the original YOLOv4-

tiny model, and the detection time per image was reduced by 1.6 ms.

This means that the improved model is more accurate, compact and

efficient for fruit detection in complex environment.
4.5 Comparison of the improved model
with two-stage detection models

The performance of the improved model was compared with

that of Faster R-CNN (Ren et al., 2015) and Dynamic R-CNN

(Zhang et al., 2020), which are two-stage detection algorithms.

Table 5 shows that Faster R-CNN took much time which led to

huge amount of computation, whereas mAP with IoU of 0.5 to 0.95

of Faster R-CNN was 1.1% higher than that of the improved model.

The detection time of the improved model was two time less than

the detection time of Faster R-CNN. Moreover, the mAP with IoU

of 0.5 to 0.95 of the improved model is 4.8% higher than that of the

Dynamic R-CNN, with less time of detection. In summary, for the

requirement of fruit detection which are accurate detection and a

low amount of computation, the improved model is much better

than the two-stage detection algorithm.
Frontiers in Plant Science 11
5 Conclusions and future work

To realize the application of tomato detection under complex

environments, it needs a robust and efficient detection algorithm

which is both accurate and fast. However, the existing methods are

either inaccurate or slow for tomato detection, which cannot satisfy

the requirement of tomato detection in the real natural

environment. Thus, this study aims at proposing an efficient

tomato detection algorithm based on YOLOv4-tiny, to obtain a

more robust, fast and accurate tomato detection performance under

complex environment conditions. To make the model more

efficient, a modified backbone was proposed. The BottleneckCSP

modules were replaced in the original backbone with a Bottleneck

and modified BottleneckCSP modules to enhance feature extraction

and reduce the computational complex. Moreover, a light version of

the CSP–SPP module was attached to the modified backbone to

improve the receptive field. Finally, to obtain a better feature map

with high resolution, the traditional up-sampling operator in the

neck was replaced by CARAFE.

Extensive experiments were conducted to verify the

performance of the improved model. An ablation study proved

the effectiveness of each modification. With the above

modifications, the mAP (0.5:0.95) were increased by 1.7%, 1.9%

and 0.8%, respectively, showing that the detection performance was

greatly improved. The precision, recall, F1 score, mAP (0.5), and

mAP (0.5:0.950) were 96.3%, 95.0%, 95.6%, 98.5%, and 82.8%,

respectively. The detection speed reached 1.9 ms per image.

Furthermore, the performance of the improved method under

different lighting and occlusion conditions were evaluated. The

performance of the model was comparable under sunlight and

shading conditions, showing that the model was robust to

illumination variation. However, the model showed a divergence

under different occlusion conditions. Under slight occlusion, 95.2%

of the tomatoes were correctly detected, while 94.4% were detected

under severe occlusion case. This showed that occluded and

overlapped tomatoes could cause inaccurate detections, especially

when the occlusion degree exceeds 50%.
TABLE 4 Performance of the improved model under different occlusion conditions.

Conditions Tomato Count
Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Slight occlusion 609 580 95.2 19 3.2 29 4.8

Severe occlusion 303 286 94.4 14 4.7 17 5.6
fro
TABLE 3 Performance of the improved model under different lighting conditions.

Conditions Tomato Count
Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Sunlight 487 463 95.1 18 3.7 24 4.9

Shading 425 403 94.8 15 3.6 22 5.2
ntiersin.org

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
A B D E

F G IH J

K L M N

C

A’ B’ D’ E’

F’ G’ I’H’ J’

C’

O

K’ L’ M’ N’ O’

P Q R S T

U V W X Y

FIGURE 11

Detection results of different models: (A–E) are the labeled images, (F–J) are prediction images from MobileNetv1, (K–O) are prediction image from
YOLOv3-tiny, (P–T) are prediction images from ShuffleNetv2 detection, (U–Y) are prediction images from MobileNetv3 detection, (A’–E’) are the
prediction images from YOLOv5s detection, (F’–J’) are the prediction images from YOLOv4-tiny detection, (K’–O’) are the prediction images from
the improved YOLOv4-tiny detection. (* MobileNetv1, ShuffleNetv2, and MobileNetv3 were used as backbone network and YOLOv4-tiny head was
used for detection).
Frontiers in Plant Science frontiersin.org12

https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
The improved YOLOv4-tiny model was compared with some

other state-of-the-art algorithms. The results showed that the

improved model performed better than the other one-stage

models. Moreover, the improved algorithm was compared with

two-stage object detection algorithms (Faster R-CNN and Dynamic

R-CNN). The results showed that the detection accuracy of the

improved model could match that of the two-stage detection

models and was faster. This indicates great potential of the

improved model for tomato detection in complex environment.

In future work, based on the proposed model in this study, the

information about tomato ripeness will be incorporated to classify a

tomato in different growing stages. Moreover, further research will be

conducted to improve the accuracy for severely occluded tomatoes.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

PLTM conceived the idea. PLTM and GL designed the

methodology. PLTM and JS performed the experiments and

analysis. PLTM wrote the original draft. JK and SK revised the

manuscript. JK and GL supervised the experiments. All authors

contributed to the article and approved the submitted version.
Frontiers in Plant Science 13
Funding

This study was supported by Weifang Science and Technology

Development Plan (2021GX054), Doctoral Research Foundation of

Weifang University (2022BS70).
Acknowledgments

This research was supported by BK21PLUS, Creative Human

Resource Development Program for IT Convergence.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Afonso, M., Fonteijn, H., Fiorentin, F. S., Lensink, D., and Faber, N. (2020). Tomato
fruit detection and counting in greenhouses using deep learning. Front. Plant Sci. 11,
1759. doi: 10.3389/fpls.2020.571299

Andrew, G. H., Menglong, Z., Bo, C., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). MobileNets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint, arXiv:1704.04861. doi: 10.48550/arXiv.1704.04861

Arunabha, M. R., and Jayabrata, B. (2021). A deep learning enabled multi-class plant
disease detection model based on computer vision. AI 2, 413–428. doi: 10.3390/
ai2030026

Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. M. (2020). YOLOv4: Optimal speed
and accuracy of object detection. arXiv preprint arXiv:2004.10934 doi: 10.48550/
arXiv.2004.10934

Chenglin, W., Wang, Y., Liu, S., Lin, G., He, P., Zhang, Z., et al. (2022). Study on pear
flowers detection performance of YOLO-PEFL model trained with synthetic target
images. Front. Plant Sci 12. doi: 10.3389/fpls.2022.911473

Cheng, Y., Zhang, B., Zhou, J., and Wang, K.. (2020). Real-time 3D unstructured
environment reconstruction utilizing VR and Kinect-based immersive teleoperation for
agricultural field robots. Comput. Electron. Agric. 175, 105579. doi: 10.1016/
j.compag.2020.105579

Fu, L., Yali, F., Wu, J., Liu, Z., Gao, F., Majeed, Y., et al. (2020). Fast and accurate
detection of kiwifruit in orchard using improved YOLOv3-tiny model. Precis. Agric. 22,
754-776. doi: 10.1007/s11119-020-09754-y

Gao, F., Fu, L., Zhang, X., Majeed, Y., Li, R., and Karkee, M. (2020). Multi-class fruit-
on-plant detection for apple in SNAP system using faster r-CNN. Comput. Electron.
Agric. 176, 105634. doi: 10.1016/j.compag.2020.105634

Gao, H., Zhuang, L., Laurens, V. D. M., and Kilian, Q. W. (2018). Densely connected
convolutional networks. In Proceeding of the IEEE conference on computer vision and
pattern recognition., 4700-4708. doi: 10.48550/arXiv.1608.06993

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceeding of the IEEE conference
on Computer vision and pattern recognition., 580-587. doi: 10.48550/arXiv.1311.2524

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer vision and Pattern
Recognition (Las Vegas, NV, USA, IEEE), 770–778. doi: 10.1109/CVPR.2016.90
TABLE 5 A comparison of the improved model and two stage detection model.

Model Precision (%) Recall (%) F1 (%) mAP (0.5) (%) mAP (0.5:0.95)
(%) Time (ms)

Faster R-CNN(VGG-16) 96.5 94.8 95.6 97.8 83.9 3.9

Dynamic R-CNN 95.3 93.2 94.2 96.6 78.0 2.4

The Improved YOLOv4-tiny 96.3 95 95.6 98.5 82.8 1.9
f
rontiersin.org

https://doi.org/10.3389/fpls.2020.571299
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.3390/ai2030026
https://doi.org/10.3390/ai2030026
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.3389/fpls.2022.911473
https://doi.org/10.1016/j.compag.2020.105579
https://doi.org/10.1016/j.compag.2020.105579
https://doi.org/10.1007/s11119-020-09754-y
https://doi.org/10.1016/j.compag.2020.105634
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.1311.2524
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Mbouembe et al. 10.3389/fpls.2023.1150958
Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., et al. (2019).
Searching for MobileNetV3. In Proceeding of the IEEE/CVF international conference on
Computer vision, 1314-1324. doi: 10.48550/arXiv.1905.02244

Huang, L., Pan, W., Zhang, Y., Qian, L., Gao, N., and Wu, Y. (2020). Data
augmentation for deep learning-based radio modulation classification. IEEE Access 8,
1498–1506. doi: 10.1109/Access.2019.2960775

Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, 448-456. doi: 10.48550/arXiv.1502.03167

Jiaqi, W., Kai, C., Rui, X., Ziwei, L., Chen, C. L., and Dahua, L. (2019). CARAFE:
Content-Aware-Reassembly of features. In proceedings of the IEEE/CVF international
conference on computer vision, 3007-3016. doi: 10.48550/arXiv.1905.02188

Kaiming, H., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask r-CNN. In
proceedings of the IEEE international conference on computer vision, 2961-2969.
doi: 10.48550/arXiv.1703.06870

Kamilaris, A., and Prenafeta-Boldu, F. X. (2018). Deep learning in agriculture: A
survey. Compters Electron. Agric. 147, 70–90. doi: 10.1016/j.compag.2018.02.016

Kelman, E. E., and Linker, R. (2014). Vision-based localization of mature apples in
tree images using convexity. Biosyst. Eng. 118, 174–185. doi: 10.1016/
j.biosystemseng.2013.11.007

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Proceedings of the International Conference on
Neural Information Processing Systems, Lake Tahoe, NV, USA, Vol. 25. 1097–1105.

Linker, R., Cohen, O., and Naor, A. (2012). Determination of the number of green
apples in RGB images recorded in orchards. Comput. Electron. Agric. 81, 45–57.
doi: 10.1016/j.compag.2011.11.007

Liu, G., Mao, S., and Kim, J. H. (2019). A mature-tomato detection algorithm using
machine learning and color analysis. Sensors 19, 2023. doi: 10.3390/s19092023

Liu, G., Nouaze, C. P., Touko, M. P. L., and Ho Kim, J. (2020). YOLO-tomato: a robust
algorithm for tomato detection based on Yolov3. Sensors 20, 2145. doi: 10.3390/s20072145

Ma, N., Zhang, X., Tao-Zheng, H., and Sun, J. (2018). ShuffleNet V2: Practical
guidelines for efficient CNN architecture design. In Proceedings of the European
conference on computer vision (ECCV), 116-131. doi: 10.48550/arXiv.1807.11164

Mu, Y., Chen, T. S., Ninomiya, S., and Guo, W. (2020). Intact detection of highly
occluded immature tomatoes on plants using deep learning techniques. Sensors 20,
2984. doi: 10.3390/s20102984

Padilla, R., Netto, S. L., and Eduardo, A. B. (2020). “A survey on performance metrics
for object detection algorithms,” in International Conference on Systems, Signals,
Signals, and Image Processing (IWSSIP), Niteroi, Brazil, IEEE. 237–242. doi: 10.1109/
IWSSIP48289.2020.9145130

Rahnemoofar, M., and Sheppard, C. (2017). Deep count: Fruit counting based on
deep simulated learning. Sensors 17, 905. doi: 10.3390/s17040905

Redmon, J., and Farhadi, A. (2017). “YOLO9000: Better, faster, stronger,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
(Honolulu, HI, USA: IEEE) 7263-7271. doi: 10.1109/CVPR.2017.690

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767. doi: 10.48550/arXiv.1804.02767

Redmon, J., Farhadi, A., Divvala, S., and Girshick, R. (2016). “You only look once:
unified, real-time object detection,” in Proceedings of the IEEE Conference on Computer
Frontiers in Plant Science 14
Vision and Pattern recognition. (Las Vegas, NV, USA: IEEE), 779–788. doi: 10.48550/
arXiv.1506.02640

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Proceedings of the International
Conference on Neural Information Processing Systems: Montreal, Canada, Vol. 39. 91–
99. doi: 10.1109/TPAMI.2016.2577031

Rupareliya, S., Gajjiar, R., and Jethva, M. (2022). “Real-time tomato detection,
classification, and counting system using deep learning and embedded systems,” in
Proceedings of the International e-Conference on Intelligent Systems and Signal
Processing Singapore, Springer, 511–522. doi: 10.1007/978-981-16-2123-9_39

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., andMcCool, C. (2016). Deep fruits: A
fruit detection system using deep neural networks. Sensors 16, 1222. doi: 10.3390/
s16081222

Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, P. A., Bishop, R., et al. (2016). Real-
time single image and video super-resolution using an efficient Sub-pixel convolutional
neural network. In Proceedings of the IEEE conference on Computer vision and pattern
recognition., 874-1883. doi: 10.48550/arXiv.1609.05158

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556. doi: 10.48550/
arXiv.1409.1556

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in Proceedings
of the Thirty-first AAAI conference on Artificial Intelligence, San Francisco, California,
USA, AAAI Press. doi: 10.1609/aaai.v31i1.11231

Tang, Y., Zhou, H., Wang, H., and Zhang, Y.. (2023). Fruit detection and positioning
technology for a camellia oleifera C. Able orchard based on improved YOLOv4-tiny
model and binocular stereo vision. Expert Systems with Applications V211, 118573
doi: 10.1016/j.eswa.2023.118573

Tsung-Yi, L., Piotr, D., Ross, G., Kaiming, H., Bharath, H., and Serge, B. (2017).
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on
Computer vision and pattern recognition, 2117-2125. doi: 10.48550/arXiv.1612.03144

Wang, C. Y., Boschkovskiy, A., and Liao, H. Y. M. (2021). Scaled-Yolov4: Scaling
cross stage partial network. In Proceedings of the IEEE/CVF conference on Computer
vision and pattern recognition, 13029-13038. doi: 10.48550/arXiv.2011.08036

Wang, C. Y., Boschkovskiy, A., and Liao, H. Y. M. (2022). YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696. doi: 10.48550/arXiv.2207.02696

Wang, X., Liu, J., and Liu, G. (2021). Diseases detection of occlusion and overlapping
tomato leaves based on deep learning. Front. Plant Sci 13. doi: 10.3389/fpls.2021.792244

Wu, X., Qi, Z., Wang, L., Yang, J., and Xian, X. (2020). Apple detection method based
on light-YOLOv3 convolutional network. Trans. CSAM 51, 17–25.

Xu, Z., Jia, R., Liu, Y., Zhao, C., and Sun, H. (2020). Fast method of detecting
tomatoes in a complex scene foe picking robots. IEEE Access 8, 55289-55299.
doi: 10.1109/ACCESS.2020.2981823

Zhang, H., Chang, H., Ma, B., Wang, N., and Chen, X. (2020). “Dynamic r-CNN:
Towards high quality object detection via dynamic training,” in European Conference
on Computer Vision (ECCV). 260–275 (Cham: Springer). doi: 10.1007/978-3-030-
58555-6_16

Zhao, Y., Gong, L., Huang, Y., and Liu, C. (2016). Robust tomato recognition for
robotic harvesting using feature images fusion. Sensors 16, 173. doi: 10.3390/s16020173
frontiersin.org

https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.1109/Access.2019.2960775
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1905.02188
https://doi.org/10.48550/arXiv.1703.06870
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.biosystemseng.2013.11.007
https://doi.org/10.1016/j.biosystemseng.2013.11.007
https://doi.org/10.1016/j.compag.2011.11.007
https://doi.org/10.3390/s19092023
https://doi.org/10.3390/s20072145
https://doi.org/10.48550/arXiv.1807.11164
https://doi.org/10.3390/s20102984
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.3390/s17040905
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/978-981-16-2123-9_39
https://doi.org/10.3390/s16081222
https://doi.org/10.3390/s16081222
https://doi.org/10.48550/arXiv.1609.05158
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1016/j.eswa.2023.118573
https://doi.org/10.48550/arXiv.1612.03144
https://doi.org/10.48550/arXiv.2011.08036
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.3389/fpls.2021.792244
https://doi.org/10.1109/ACCESS.2020.2981823
https://doi.org/10.1007/978-3-030-58555-6_16
https://doi.org/10.1007/978-3-030-58555-6_16
https://doi.org/10.3390/s16020173
https://doi.org/10.3389/fpls.2023.1150958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment
	1 Introduction
	2 Theoretical background
	2.1 YOLO series
	2.2 YOLOv4-tiny architecture
	2.3 Content-aware reassembly of features (CARAFE)

	3 Materials and methods
	3.1 Image acquisition
	3.2 Image augmentation
	3.3 The improved YOLOv4-tiny model architecture
	3.3.1 The modified backbone network
	3.3.2 The modified neck network

	3.4 Experimental setup
	3.4.1 Evaluation metrics
	3.4.2 Loss function

	4 Results and discussions
	4.1 Ablation study
	4.2 Feature map visualization
	4.3 Comparison of the improved YOLOv4-tiny with different one-stage detection algorithms
	4.4 Qualitative analysis of different one-stage models
	4.5 Comparison of the improved model with two-stage detection models

	5 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

