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Severity assessment of
wheat stripe rust based
on machine learning

Qian Jiang, Hongli Wang and Haiguang Wang*

College of Plant Protection, China Agricultural University, Beijing, China
Introduction: The accurate severity assessment of wheat stripe rust is the basis

for the pathogen-host interaction phenotyping, disease prediction, and disease

control measure making.

Methods: To realize the rapid and accurate severity assessment of the disease,

the severity assessment methods of the disease were investigated based on

machine learning in this study. Based on the actual percentages of the lesion

areas in the areas of the corresponding whole single diseased wheat leaves of

each severity class of the disease, obtained after the image segmentation

operations on the acquired single diseased wheat leaf images and the pixel

statistics operations on the segmented images by using image processing

software, under two conditions of considering healthy single wheat leaves or

not, the training and testing sets were constructed by using two modeling ratios

of 4:1 and 3:2, respectively. Then, based on the training sets, two unsupervised

learningmethods including K-means clustering algorithm and spectral clustering

and three supervised learning methods including support vector machine,

random forest, and K-nearest neighbor were used to build severity assessment

models of the disease, respectively.

Results: Regardless of whether the healthy wheat leaves were considered or not,

when the modeling ratios were 4:1 and 3:2, satisfactory assessment

performances on the training and testing sets can be achieved by using the

optimal models based on unsupervised learning and those based on supervised

learning. In particular, the assessment performances obtained by using the

optimal random forest models were the best, with the accuracies, precisions,

recalls, and F1 scores for all the severity classes of the training and testing sets

equal to 100.00% and the overall accuracies of the training and testing sets equal

to 100.00%.

Discussion: The simple, rapid, and easy-to-operate severity assessment

methods based on machine learning were provided for wheat stripe rust in this

study. This study provides a basis for the automatic severity assessment of wheat

stripe rust based on image processing technology, and provides a reference for

the severity assessments of other plant diseases.

KEYWORDS

wheat stripe rust, severity, disease assessment, image processing, machine learning,
unsupervised learning, supervised learning
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1 Introduction

Wheat stripe rust (wheat yellow rust), caused by Puccinia

striiformis f. sp. tritici (Pst), is a devastating epidemic disease,

which is widely distributed in wheat growing areas worldwide (Li

and Zeng, 2002; Line, 2002; Chen, 2005; Wellings, 2011; Wang et al.,

2014; Ali et al., 2017; Figueroa et al., 2018). As an air-borne fungal

disease, wheat stripe rust can cause multiple uredinia on wheat

leaves and a large number of Pst urediospores can be produced and

released. The dispersal of Pst urediospores by wind can cause large-

scale epidemics of the disease in wheat growing areas, which can

seriously affect the yield and quality of wheat (Li and Zeng, 2002;

Chen, 2005; Chen et al., 2014; Wang et al., 2014). In China, wheat

stripe rust, one of the most important wheat diseases, has been a

serious threat to wheat production safety because of its high

epidemic frequency and severe destructiveness, and the

pandemics of the disease have occurred many times, resulting in

huge wheat yield losses (Li and Zeng, 2002; Chen et al., 2014; Wang

et al., 2014; Liu et al., 2022). There are three epidemiological region

systems of wheat stripe rust in China, including the northern

China–north-western China–the middle and lower reaches of the

Yangtze River epidemiological region system, Xinjiang

epidemiological region system, and Yunnan epidemiological

region system, and the disease cycles are completed by air

dispersals of Pst urediospores in each epidemiological region

system or across the epidemiological region systems (Li and Zeng,

2002; Chen et al., 2014; Wang et al., 2014). To effectively control the

occurrence and epidemics of wheat stripe rust and to achieve

sustainable management of the disease, it is of great significance

to carry out surveys and monitoring of the disease.

Severity is a key indicator to describe the disease intensity of an

investigated plant unit (a plant or a plant part such as leaf, fruit, or

stem), and different severity levels of a plant disease are usually

classified based on the ratios of the diseased areas of the investigated

plant units to the areas of the corresponding whole investigated

plant units (Nutter et al., 1991; Bock et al., 2022b). Disease severity

assessment should be performed according to the severity grading

standard of a plant disease to ensure the standardization and

integrity of the obtained data. Severity is an important indicator

to be determined in surveys and monitoring of wheat stripe rust. In

China, the severity assessment of wheat stripe rust should be

conducted according to the Rules for Monitoring and Forecast of

theWheat Stripe Rust (Puccinia striiformisWest.) (National Standard

of the People’s Republic China, GB/T 15795–2011). In this standard,

a total of eight severity classes including 1%, 5%, 10%, 20%, 40%, 60%,

80%, and 100%, are classified based on the percentages of the lesion

areas (Generally, the lesion area refers to the area covered by all the

uredinia on a diseased wheat leaf.) in the areas of the corresponding

whole single diseased wheat leaves. According to this severity grading

standard, the disease intensity of a single diseased wheat leaf is treated

as its nearest severity class based on the nearest-neighbor rule, and as

the disease intensity is lower than the severity class of 1%, it is

classified as the severity class of 1%.

At the present time, the severity assessments of wheat stripe rust

are implemented mainly by using the visual observation method.

This kind of artificial method requires assessors/raters with rich
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experience, and it is time-consuming and laborious. Most

importantly, it is difficult to accurately estimate the percentages of

the lesion areas in the areas of the corresponding whole single

diseased wheat leaves according to the severity grading standard of

wheat stripe rust (Jiang et al., 2022), thus it is difficult to obtain

accurate severity assessment results by using this method. Because

the investigation of disease incidence only needs to determine

whether the wheat leaves are diseased or not and it is easier to

accurately investigate or assess disease incidence than disease

severity, it was reported that disease incidence could be used to

estimate the severity of wheat stripe rust (Dong et al., 1990).

However, the quantitative relationship between incidence and

severity (I-S relationship) is affected by the values of disease

incidences, the distribution of lesions on wheat plants, wheat

resistance to Pst, and so on (Dong et al., 1990), leading to great

limitations to the practical applications of the method by utilizing

incidence to estimate severity.

The assessment of plant disease severity based on information

technology has been paid more and more attention (Bock et al.,

2010; Li et al., 2015; Barbedo, 2016; Mahlein, 2016; Bock et al.,

2022a). The rapid development of information technology has

promoted the applications of image processing technology (Bao

et al., 2021; Jiang et al., 2021; Jiang et al., 2022), remote sensing

technology (Huang et al., 2004; Wang et al., 2007; Zhao et al., 2014;

Wang et al., 2016), and near infrared spectroscopy technology (Li

et al., 2015) in severity assessment of wheat stripe rust. Nevertheless,

the methods for severity assessment of wheat stripe rust based on

remote sensing technology and near infrared spectroscopy

technology are rarely used in practical disease surveys and

monitoring due to the high prices of the required instruments

and the need to further improve the applicability of the related

methods in practical wheat production. Studies on severity

assessment of wheat stripe rust based on image processing

technology are increasing (Bao et al., 2021; Jiang et al., 2021;

Jiang et al., 2022).

At present, there are two main methods based on image

processing technology to be utilized to carry out severity

assessment of wheat stripe rust. One method is to directly build

the severity assessment models of wheat stripe rust based on the

extracted features (e.g., color, shape, and texture features) from

disease images and then to carry out disease severity assessment by

using the built models (Bao et al., 2021). The other method is to use

image processing technology to obtain the actual percentages of the

lesion areas in the areas of the whole single diseased wheat leaves,

then to directly compare the actual percentages to the percentages

for the eight severity classes in the severity grading standard of

wheat stripe rust, and to obtain the severity classes of the

corresponding diseased wheat leaves finally (Jiang et al., 2021).

However, the percentage of the lesion area in the area of a whole

single diseased wheat leaf corresponding to a severity class in the

severity grading standard of wheat stripe rust is not the actual

percentage of the lesion area in the area of the whole single diseased

wheat leaf, and importantly, there is a great difference between

them. This has been verified by the studies conducted by Shang et al.

(1990) and Jiang et al. (2022). By using a method based on the

uredinium parameters in combination with actually measuring the
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amplified image of the selected wheat leaf with the most severe

disease symptom in the field, Shang et al. (1990) determined actual

coverage rates of the Pst uredinia corresponding to the severity

classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, which were

0.35%, 1.75%, 3.5%, 7%, 14%, 21%, 28%, and 35%, respectively. By

using image processing software to perform the operations of image

segmentation and pixel statistics based on the acquired single

diseased wheat leaf images, Jiang et al. (2022) obtained the ranges

of the actual percentages of the lesion areas in the areas of the

corresponding whole single diseased wheat leaves for the severity

classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, which were

[0.06%, 0.78%], [0.85%, 1.64%], [1.73%, 3.29%], [3.65%, 6.31%],

[6.76%, 13.88%], [14.22%, 18.43%], [18.90%, 24.15%], and [24.54%,

36.49%], respectively. The severity assessment method by directly

comparing the actual percentage of lesion area in the area of a whole

single diseased wheat leaf to the percentages of lesion areas of the

eight severity classes in the severity grading standard of wheat stripe

rust, can lead to great errors in severity assessments, which will

greatly influence the accurate severity assessments of the disease.

Therefore, it is difficult to accurately assess the severity of wheat

stripe rust by directly comparing the actual percentage of lesion area

in the area of a whole single diseased wheat leaf to the percentages of

lesion areas of the eight severity classes in the severity grading

standard of the disease. To accurately carry out severity assessment

of wheat stripe rust based on the actual percentages of lesion areas in

the areas of the corresponding whole single diseased wheat leaves,

Jiang et al. (2022) proposed two reference-range-based methods for

severity assessment of wheat stripe rust, and satisfactory results with

the assessment accuracies not lower than 85% were achieved by using

the determined reference ranges to conduct severity assessments of

the disease. However, the methods for severity assessment of wheat

stripe rust proposed by Jiang et al. (2022) need to compare the actual

percentages of lesion areas in the areas of the whole single diseased

wheat leaves to the upper and lower limits of the determined

reference range of the actual percentages of lesion areas for each

severity class, and then the severity classes of the single diseased

wheat leaves to be assessed can be determined accordingly.

To timely and accurately obtain the severity information of wheat

stripe rust, it is necessary to develop a simple, rapid, accurate, and

easy-to-operate severity assessment method for wheat stripe rust. On

the basis of the study conducted by Jiang et al. (2022), the severity

assessment methods based on machine learning were developed for

wheat stripe rust in this study. The obtained actual percentages of the

lesion areas in the areas of the corresponding whole single diseased

wheat leaves were clustered into different severity classes by using two

unsupervised learning methods including K-means clustering

algorithm and spectral clustering, respectively, and the built

clustering models were treated as the severity assessment models of

wheat stripe rust based on unsupervised learning. Simultaneously, the

severity assessment models of wheat stripe rust were built with the

obtained actual percentage data by using three supervised learning

methods including support vector machine (SVM), random forest

(RF), and K-nearest neighbor (KNN), respectively. To ensure that

healthy wheat leaves could be assessed, severity assessment models of

wheat stripe rust were also built by using the above five modeling

methods under the condition of considering single healthy wheat
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leaves. Finally, all the built models were used to carry out severity

assessments of the single wheat leaves. The goal of this study is to

overcome the difficulties in severity assessment of wheat stripe rust

and to solve the problem of low assessment accuracy caused by

directly comparing the actual percentages of lesion areas in the areas

of the single diseased wheat leaves to the percentages of lesion areas of

the eight severity classes in the severity grading standard of the

disease. This study will provide rapid and accurate severity

assessment methods for wheat stripe rust based on the actual

percentages of the lesion areas in the areas of the corresponding

whole single diseased wheat leaves, and also provide a reference and

basis for the severity assessments of other plant diseases and the

automatic assessments of plant disease severity.
2 Materials and methods

The main steps for developing the severity assessment methods

of wheat stripe rust based on machine learning in this study are

shown in Figure 1. Especially, to enable the built severity assessment

models to be used for severity assessments of single wheat leaves

including healthy leaves and to implement automatic disease

assessments for acquired single wheat leaves in the future, in this

study, the severity assessment of wheat stripe rust based on

mechanical learning was investigated under two conditions of

considering healthy single wheat leaves or not.
2.1 Disease images and image
processing methods

The images of wheat stripe rust and the corresponding actual

percentages of lesion areas in the areas of the single diseased wheat

leaves used in this study were as same as those acquired by Jiang

et al. (2022). Therefore, the images, data, and relevant methods used

to obtain the images and data, are only briefly described here.

A total of 400 images of wheat stripe rust were used in this study,

which were acquired by using 400 single diseased wheat leaves of

eight severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%

collected on the wheat plants in Shangzhuang Experimental Station

of China Agricultural University, Beijing, China and an artificial

climate chamber in the Laboratory of Macro-Phytopathology, China

Agricultural University, Beijing, China, according to the Rules for

Monitoring and Forecast of the Wheat Stripe Rust (Puccinia

striiformis West.) as described above. For each severity class, 50

images were acquired (one image per single diseased wheat leaf) by

using a Nikon D700 digital camera (Nikon Corp., Tokyo, Japan), a

HUAWEI P30 smartphone, or an iPhone 6S smartphone. The sizes of

the images acquired with the Nikon D700 digital camera, the

HUAWEI P30 smartphone, and the iPhone 6S smartphone were

4256×2832, 3648×2736, and 4032×3024 pixels, respectively, and all

the disease images were in the JEPG format. In the Adobe Photoshop

2022 software (Adobe Systems Incorporated, San Jose, CA, USA), leaf

region segmentation and lesion region segmentation of the single

diseased wheat leaf images were performed, and then the pixel

number of the whole leaf region and the pixel number of the lesion
frontiersin.org
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region/regions for each single diseased wheat leaf were obtained by

pixel statistics. Based on the pixel numbers of the whole leaf region

and the lesion region/regions, the actual percentage of the lesion area

in the area of the whole single diseased wheat leaf was calculated.
2.2 Building of the severity assessment
models of wheat stripe rust based on
machine learning under the condition
without considering single healthy
wheat leaves

The eight severity classes of wheat stripe rust were regarded as

eight categories, i.e., the severity classes of 1%, 5%, 10%, 20%, 40%,

60%, 80%, and 100% were set to the severity categories of 1, 2, 3, 4,

5, 6, 7, and 8, respectively. Each category was composed of 50

single diseased wheat leaf specimens of wheat stripe rust. For each

category, the actual percentages of the lesion areas in the

corresponding whole leaf areas for the 50 specimens were sorted

from large to small, and then, the specimens were sampled to

construct the training set and the testing set by using the system
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specimens in the training set to the number of specimens in the

testing set equal to 4:1 or 3:2. Subsequently, for each modeling

ratio (4:1 or 3:2), the training sets of the eight categories (severity

classes) were merged into new training set (Train840 or Train830)

and the testing sets of the eight categories were merged into testing

set (Test810 or Test820). For the modeling ratio of 4:1, the

training set Train840 consisted of 320 specimens, and the

corresponding testing set Test810 consisted of 80 specimens.

For the modeling ratio of 3:2, the training set Train830 and the

corresponding testing set Test820 consisted of 240 specimens and

160 specimens, respectively.

2.2.1 Building of the severity assessment models
of wheat stripe rust based on unsupervised
learning under the condition without considering
single healthy wheat leaves

The actual percentage of the lesion area in the whole wheat leaf

area and the corresponding category number of each specimen in

the training set Train840, the testing set Test810, the training set

Train830, and the testing set Test820 were input into the data tables
FIGURE 1

Work flow diagram for investigation of severity assessment methods of wheat stripe rust based on machine learning.
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in Microsoft Excel 2016, and the corresponding data tables were

named train840, test810, train830, and test820, respectively. In each

data table, the data in the first column were the actual percentages of

the lesion areas in the corresponding whole wheat leaf areas and

were recorded as X; the data in the second column were the

corresponding severity category numbers and were recorded as Y.

Under the condition without considering single healthy

wheat leaves, based on the actual percentages of the lesion areas

in the areas of the corresponding whole single diseased wheat leaves,

the severity assessment models of wheat stripe rust were built with

the two unsupervised learning methods including the K-means

clustering algorithm and spectral clustering by using the

programming language Python (version: 3.8.12) in the software

Pycharm 2021.2.1, respectively.

The K-means clustering algorithm is an unsupervised learning

clustering algorithm based on distance clustering. It separates the

data samples into different categories by initializing centroids and

constantly updating the clustering centroids, and the clustering will

be accomplished until the data samples in each category does not

change, the maximum number of iterations is reached, or the error is

lower than the expected value (MacQueen, 1967). To build the

severity assessment models of wheat stripe rust with the K-means

clustering algorithm, firstly, the data X and Y were read from the data

tables train840, test810, train830, and test820, respectively, by calling

the read_excel() method from the Pandas library. Then, the reshape

(-1,1) method was used to convert the data X from a one-dimensional

array into a two-dimensional array with one column to meet the

requirements of scikit-learn library (Pedregosa et al., 2011) for input

data. Subsequently, the severity assessment models of wheat stripe

rust were built with different parameters by calling the module

sklearn.cluster from the scikit-learn library. The method fit() was

used to train the models based on the data X of the training sets. The

labels over the data X of a training set after clustering were viewed by

using the labels_ attribute and were recorded as train_label, and the

number of each label was counted by calling the value_counts()

method from the Pandas library. The method predict() was used to

predict the labels of the data X of the corresponding testing sets by

using the trained models. The predicted labels over the data X of a

testing set were recorded as test_label, and the number of each label

was counted by calling the value_counts() method from the Pandas

library. When the severity assessment model of wheat stripe rust was

built with the K-means clustering algorithm based on the training set

Train840, the parameter n_clusters, that is, the number of clusters to

form (i.e., the number of centroids to generate), was set to 8; the

parameter random_state, that is, the generator used to determine

random number generation for centroid initialization, was set to 10;

the parameter n_init, that is, the number of times for random

initialization, was set to 1; the parameter init, that is, the method

for initialization, was set to ‘random’, which means that the initial

centroids were randomly selected from the training data; and the

default values were used for the other parameters. When the severity

assessment model of wheat stripe rust was built with the K-means

clustering algorithm based on the training set Train830, the

parameter n_clusters was set to 8, the parameter random_state was

set to 8, the parameter n_init was set to 1, the parameter init was set to

‘random’, and the default values were used for the other parameters.
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Spectral clustering is an unsupervised learning clustering

algorithm based on graph theory, by firstly establishing the

Laplacian matrix of the data of samples, then calculating the

eigenvalues and eigenvectors of the matrix, subsequently

constructing the eigenvector space, and finally, clustering the

eigenvectors to accomplish the clustering of the data samples with

a traditional clustering algorithm such as the K-means algorithm

(Shi and Malik, 2000; von Luxburg, 2007). To build the severity

assessment models of wheat stripe rust with spectral clustering, the

data X and Y were firstly read from the data tables train840, test810,

train830, and test820, respectively, by calling the method read_excel

() from the Pandas library, and then, the reshape(-1,1) method was

used to convert the data X from a one-dimensional array into a two-

dimensional array with one column to meet the requirements of

scikit-learn library (Pedregosa et al., 2011) for input data.

Subsequently, by calling the module sklearn.cluster from the

scikit-learn library, the severity assessment models of wheat stripe

rust were built with spectral clustering with different parameters.

The method fit() was used to train the models based on the data X of

the training sets. The labels over the data X of a training set after

clustering were found in the labels_ attribute and were recorded as

train_label, and the number of each label was counted by using the

method value_counts() of the Pandas library. The method

fit_predict() was used to predict the labels of the data X of the

corresponding testing sets by using the trained models. The

predicted labels over the data X of a testing set were recorded as

test_label, and the counts of the unique labels were obtained by

using the method value_counts() of the Pandas library. To build the

severity assessment model of wheat stripe rust with spectral

clustering based on the training set Train840, the parameter

n_clusters, that is, the number of clustering dimensions (the

number of clusters to form), was set to 8; the parameter affinity,

that is, the method used to construct the affinity matrix, was set to

‘nearest_neighbors’, which means that the affinity matrix was

constructed by using the nearest neighbors method; the

parameter n_neighbors, that is, the number of neighbors used to

construct the affinity matrix by using the nearest neighbors method,

was set to 10; the parameter assign_labels, that is, the strategy used

to assign labels in the embedding space, was set to ‘discretize’, which

means that discretization approach was used to assign labels in the

embedding space; and the default values were used for the other

parameters. To build the severity assessment model of wheat stripe

rust with spectral clustering based on the training set Train830, the

parameter n_clusters was set to 8, the parameter affinity was set to

‘nearest_neighbors’, the parameter n_neighbors was set to 7, the

parameter assign_labels was set to ‘discretize’, and the default values

were used for the other parameters.

2.2.2 Building of the severity assessment
models of wheat stripe rust based
on supervised learning under the
condition without considering single
healthy wheat leaves

Under the condition without considering single healthy wheat

leaves, based on the actual percentages of the lesion areas in the areas

of the corresponding whole single diseased wheat leaves, the severity
frontiersin.org
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assessment models of wheat stripe rust were built with the three

supervised learning methods including SVM (Cortes and Vapnik,

1995), RF (Breiman, 2001), and KNN (Cover and Hart,

1967), respectively.

By using the C-SVM in the LIBSVM-3.23 package developed by

Chih-Jen Lin Group from National Taiwan University, Taiwan,

China (Chang and Lin, 2011), the severity assessment SVM models

of wheat stripe rust were built in this study. When building a SVM

model for severity assessment of wheat stripe rust, the RBF kernel

function was used. The grid search algorithm was utilized to

determine the optimal values for both penalty parameter C and

kernel function parameter g by searching in a range of 2-10 – 210

with the searching step equal to 0.4. By using the 3-fold cross-

validation method, when the assessment accuracy was the highest

for the training set, the corresponding values of the parameters C

and g were regarded as the optimal parameters to build the optimal

SVM model for severity assessment of wheat stripe rust.

Building of the severity assessment RF models of wheat stripe

rust was implemented in the software MATLAB R2019b

(MathWorks, Natick, MA, USA). When building the severity

assessment RF models of wheat stripe rust based on a training

set, the number of decision trees, a key parameter for modeling, was

set to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100, respectively, and the

other parameters with the default values were used. The model

performance for severity assessment of wheat stripe rust was used to

determine the optimal number of decision trees for modeling. Then,

the determined optimal number of decision trees and the other

parameters with the default values were used to build the optimal

RF model for severity assessment of wheat stripe rust.

Building of the severity assessment KNNmodels of wheat stripe

rust was implemented by using the KNN classifier in the software

MATLAB R2019b. When building the severity assessment KNN

models of wheat stripe rust based on a training set, Euclidean

distance was selected as the default distance metric measure, the

values of the key parameter K were selected in a range of 1–20 with

the searching step of 2, and the other parameters with the default

values were used. According to the assessment accuracies of the

models, the optimal value of K was determined when the

assessment accuracy was the highest for the training set. Then,

the optimal KNN model for severity assessment of wheat stripe rust

was built with the optimal K and the other parameters with the

default values.
2.3 Building of the severity assessment
models of wheat stripe rust based on
machine learning under the condition of
considering single healthy wheat leaves

To ensure that the built severity assessment models of wheat

stripe rust could be used to assess the specimens of healthy wheat

leaves, the actual percentage of the lesion area to the whole leaf area

of a single healthy wheat leaf was set to 0% (i.e., the corresponding

severity class was set to 0%.), and 50 ‘0%’ for healthy wheat leaves

were added and then were numbered, respectively. The severity

category of each healthy wheat leaf was set to 0, and the severity
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categories of the severity classes of 1%, 5%, 10%, 20%, 40%, 60%,

80%, and 100% were set to 1, 2, 3, 4, 5, 6, 7, and 8, respectively. Thus,

the severity classes of wheat stripe rust were regarded as nine

categories (0–8) and each category consisted of 50 single wheat

leaf specimens. By using the method as described above, the actual

percentages of the lesion areas in the corresponding whole leaf areas

for the 50 specimens of each category were sorted from large to

small, and then the specimens were sampled to construct the

training set and the testing set by using the system sampling

method with the modeling ratio of the number of specimens in

the training set to the number of specimens in the testing set equal

to 4:1 or 3:2. Subsequently, the training sets of the nine categories

were merged into new training set Train940 or Train930, and the

testing sets of the nine categories were merged into the

corresponding new testing set Test910 or Test920. For the

modeling ratio of 4:1, the training set Train940 and the

corresponding testing set Test910 consisted of 360 specimens and

90 specimens, respectively. For the modeling ratio of 3:2, the

training set Train930 and the corresponding testing set Test920

consisted of 270 specimens and 180 specimens, respectively.

2.3.1 Building of the severity assessment models
of wheat stripe rust based on unsupervised
learning under the condition of considering
single healthy wheat leaves

By using the same method as described above, the data tables

train940, test910, train930, and test920 were created based on the

training set Train940, the testing set Test910, the training set

Train930, and the testing set Test920, respectively. In each data

table, the data in the first column recorded as X were the actual

percentages of the lesion areas in the corresponding whole wheat

leaf areas and that in the second column recorded as Y were the

corresponding category numbers of disease severity.

By using the similar methods to build the severity assessment

models of wheat stripe rust with the two unsupervised learning

methods under the condition without considering single

healthy wheat leaves as described above, the severity assessment

models of wheat stripe rust under the condition of considering single

healthy wheat leaves were built with the two unsupervised learning

methods including the K-means clustering algorithm and spectral

clustering, respectively, based on the actual percentages of the lesion

areas in the areas of the corresponding whole single wheat leaves by

using the programming language Python (version: 3.8.12) in the

software Pycharm 2021.2.1. To build the severity assessment model of

wheat stripe rust with the K-means clustering algorithm based on the

training set Train940, the parameter n_clusters was set to 9, the

parameter random_state was set to 8, the parameter n_init was set to

1, the parameter init was set to ‘random’, and the default values were

used for the other parameters. To build the severity assessment model

of wheat stripe rust with the K-means clustering algorithm based on

the training set Train930, the parameter n_clusters was set to 9, the

parameter random_state was set to 7, the parameter n_init was set to

1, the parameter init was set to ‘random’, and the default values were

used for the other parameters. To build the severity assessment model

of wheat stripe rust with spectral clustering based on the training set

Train940, the parameter n_clusters was set to 9, the parameter affinity
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was set to ‘nearest_neighbors’, the parameter n_neighbors was set

to 10, the parameter assign_labels was set to ‘discretize’, and the

default values were used for the other parameters. To build the

severity assessment model of wheat stripe rust with spectral clustering

based on the training set Train930, the parameter n_clusters was set

to 9, the parameter affinity was set to ‘nearest_neighbors’, the

parameter n_neighbors was set to 8, the parameter assign_labels

was set to ‘discretize’, and the default values were used for the

other parameters.

2.3.2 Building of the severity assessment models
of wheat stripe rust based on supervised learning
under the condition of considering single healthy
wheat leaves

By using the same methods to build the severity assessment

models of wheat stripe rust with the three supervised learning

methods under the condition without considering single healthy

wheat leaves as described above, the severity assessment models of

wheat stripe rust under the condition of considering single healthy

wheat leaves were built based on the actual percentages of the lesion

areas in the areas of the corresponding whole single wheat leaves with

the three supervised learning methods including SVM, RF, and

KNN, respectively.
2.4 Performance evaluation of the built
severity assessment models of wheat
stripe rust

By using the severity assessment models of wheat stripe rust

built with the two unsupervised learning methods (including the K-

means clustering algorithm and spectral clustering) and the three

supervised learning methods (including the SVM, RF, and KNN),

the severity assessments of the corresponding training sets and

testing sets were carried out. The accuracy, precision, recall, and F1

score of the severity assessments for the specimens of each severity

class in the corresponding training sets and testing sets and the

overall accuracies of the corresponding training sets and testing sets

were calculated, respectively, aiming to evaluate the assessment

performances of the built models and to choose the optimal severity

assessment model of wheat stripe rust for each modeling ratio under

the condition without considering single healthy wheat leaves or

under the condition of considering single healthy wheat leaves. The

accuracy for a severity class of wheat stripe rust is the percentage of

the number of the correctly assessed single leaf specimens in the

total number of single leaf specimens to be assessed. The precision is

the percentage of the number of actual single leaf specimens at a

severity class of wheat stripe rust in the number of the single leaf

specimens assessed as the severity class. Recall is the percentage of

the number of the single leaf specimens assessed as a severity class

of wheat stripe rust in the number of the single leaf specimens

actually at the severity class. F1 score is the harmonic mean of

precision and recall. The overall accuracy is the percentage of the

number of the single leaf specimens that are correctly assessed as the

corresponding severity classes in the total number of single leaf

specimens to be assessed. All the five evaluation indicators of
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severity assessment were calculated according to Formulas (1)–

(5), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
� 100% (1)

Precision =
TP

TP + FP
� 100% (2)

Recall =
TP

TP + FN
� 100% (3)

F1 score =
2�Precision�Recall
Precision + Recall

(4)

Overall accuracy = o Nj j
i=1TPi

o Nj j
i=1(TPi + FNi)

� 100% (5)

where TP (true positive) is the number of the single leaf

specimens actually at a severity class assessed as the severity class;

FN (false negative) is the number of the single leaf specimens

actually at the severity class assessed as the other severity classes; FP

(false positive) is the number of the single leaf specimens actually at

other severity classes assessed as the severity class; TN (true

positive) is the number of the single leaf specimens actually at

other severity classes correctly assessed as the corresponding other

severity classes; N is the number of severity classes; and i is the ith

severity class.
3 Results

3.1 Statistical results of the actual
percentage data of the lesion areas in the
areas of the corresponding whole single
diseased wheat leaves at each severity
class of wheat stripe rust

Statistical analysis of the data of the actual percentages of the

lesion areas in the areas of the 50 corresponding whole single diseased

wheat leaves at each severity class of wheat stripe rust, was conducted

by using the UNIVARIATE procedure in the software SAS 9.4 (SAS

Institute Inc. Cary, NC, USA). The minimum, maximum, mean, and

standard deviation of the actual percentages of the lesion areas

corresponding to each severity class of wheat stripe rust were

obtained, as shown in Table 1. For the actual percentages of the

lesion areas corresponding to the severity classes of 1%, 5%, 10%,

20%, 40%, 60%, 80%, and 100%, the minimum values were 0.06%,

0.85%, 1.73%, 3.65%, 6.76%, 14.22%, 18.90%, and 24.54%,

respectively; the maximum values were 0.78%, 1.64%, 3.29%,

6.31%, 13.88%, 18.43%, 24.15%, and 36.49%, respectively; and the

means were 0.40%, 1.27%, 2.50%, 4.92%, 9.88%, 16.61%, 21.24%, and

30.53%, respectively. The results showed that the actual percentages

of the lesion areas corresponding to each severity class of wheat stripe

rust were obviously lower than the percentage of the lesion area for

the corresponding severity class in the severity grading standard of

wheat stripe rust as described above.
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3.2 Severity assessment results obtained by
using the severity assessment models of
wheat stripe rust built based on the two
unsupervised learning methods including
the k-means clustering algorithm and
spectral clustering under the condition
without considering single healthy
wheat leaves

Under the condition without considering single healthy wheat

leaves, by using the severity assessment models of wheat stripe rust

built based on the two unsupervised learning methods including the

K-means clustering algorithm and spectral clustering, the severity

assessments of the specimens of all the severity classes in the

training and testing sets were carried out. The severity assessment

results obtained by using the two unsupervised learning methods

are shown in Tables 2, 3, respectively.

Under the condition without considering single healthy wheat

leaves, when the modeling ratio was 4:1, the severity assessment

model of wheat stripe rust was built by using the K-means clustering

algorithm based on the training set Train840. By using the built

model to conduct the severity assessments of the specimens in the

training set Train840, the obtained results, as shown in Table 2,

demonstrated that, for all the severity classes of wheat stripe rust,

the lowest accuracy of 93.13% and the highest accuracy of 99.38%

were obtained; the lowest and highest precisions of 71.43% and

100.00% were obtained, respectively; the lowest recall was 70.00%,

and the highest recall was 100.00%; and the lowest F1 score was

73.17%, and the highest F1 score was 97.56%. By using the built

model to conduct the severity assessments of the specimens in the

testing set Test810, the results showed that, for all the severity

classes of wheat stripe rust, the lowest and highest accuracies were

92.50% and 100.00%, respectively; the lowest values for precision,

recall, and F1 score were all 70.00%, and the highest values for

precision, recall, and F1 score were all 100.00%. There were large

differences between the severity assessment results for each severity

class in the training set Train840 or the testing set Test810 obtained

by using the model built based on the K-means clustering

algorithm. In detail, for all the severity classes, the obtained
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accuracies were very high; however, there were large differences in

precision, recall, and F1 score. For the built severity assessment

model, the overall accuracy of the training set Train840 was 87.81%,

and that of the corresponding testing set Test810 was 87.50%.

Under the condition without considering single healthy wheat

leaves, when the modeling ratio was 4:1, the severity assessment

model of wheat stripe rust was built based on the training set

Train840 by using spectral clustering. As shown in Table 3, the

results obtained by using the built model to conduct the severity

assessments of the specimens in the training set Train840

demonstrated that, for all the severity classes of wheat stripe rust,

the lowest accuracy was 98.44% and the highest accuracy was

100.00%; except that the precisions for the severity classes of 5%

and 80% were 88.89% and 93.02%, respectively, the precisions for

all other severity classes were 100.00%; except that the recalls for the

severity classes of 10% and 100% were 87.50% and 92.50%,

respectively, the recalls for all other severity classes were 100.00%;

and the lowest F1 score was 93.33%, and the highest F1 score was

100.00%. By using the built model to conduct the severity

assessments of the specimens in the testing set Test810, the

results showed that, except that the accuracies for the severity

classes of 5% and 10% were both 98.75%, the accuracies for all

other severity classes were 100.00%; except that the precision for the

severity class of 5% was 90.91%, the precisions for all other severity

classes were 100.00%; except that the recall for the severity class of

10% was 90.00%, the recalls for all other severity classes were

100.00%; except that the F1 scores for the severity classes of 5%

and 10% were 95.24% and 94.74%, respectively, the F1 scores for all

other severity classes were 100.00%. For the severity assessment

model of wheat stripe rust built based on the training set Train840

by using spectral clustering, the overall accuracies of the training set

used for modeling and the corresponding testing set Test810 were

97.50% and 98.75%, respectively. The results indicated that very

good severity assessment results of the training and testing sets were

achieved by using the severity assessment model built based on

spectral clustering, when the modeling ratio was 4:1 under the

condition without considering single healthy wheat leaves. There

were relatively small differences among the severity assessment

performances of the built model on all the severity classes of
TABLE 1 Statistics of the actual percentage data of the lesion areas in the areas of the whole diseased wheat leaves for the 50 acquired specimens
corresponding to each severity class of wheat stripe rust including the minimum, maximum, mean, and standard deviation.

Severity
class

Minimum of the actual
percentages of the lesion

areas

Maximum of the actual
percentages of the lesion

areas

Mean of the actual per-
centages of the lesion

areas

Standard deviation of the
actual percentages of the

lesion areas

1% 0.06% 0.78% 0.40% 0.18%

5% 0.85% 1.64% 1.27% 0.23%

10% 1.73% 3.29% 2.50% 0.42%

20% 3.65% 6.31% 4.92% 0.77%

40% 6.76% 13.88% 9.88% 1.95%

60% 14.22% 18.43% 16.61% 1.20%

80% 18.90% 24.15% 21.24% 1.41%

100% 24.54% 36.49% 30.53% 3.17%
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wheat stripe rust in the training set Train840 or the testing

set Test810.

Under the condition without considering single healthy wheat

leaves, when the modeling ratio was 3:2, by using the severity

assessment model of wheat stripe rust built with the K-means

clustering algorithm based on the training set Train830, the

severity assessments of the specimens in the training set Train830
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and the corresponding testing set Test820 were implemented. As

shown in Table 2, for all the severity classes of wheat stripe rust in

the training set Train830, the lowest accuracy was 92.50% and the

highest accuracy was 99.17%; the lowest precision was 68.75% and

the highest precision was 100.00%; the lowest recall was 66.67%,

and the highest recall was 100.00%; and the lowest F1 score was

70.97%, and the highest F1 score was 96.77%. The results showed
TABLE 2 Severity assessment results of the single diseased wheat leaves with the actual percentages of lesion areas of all the severity classes of
wheat stripe rust contained in the training and testing sets, obtained by using the severity assessment models of wheat stripe rust built based on the
K-means clustering algorithm under the condition without considering single healthy wheat leaves.

Dataset Severity category Severity class Accuracy Precision Recall F1 score Overall accuracy

Train840

1 1% 99.38% 95.24% 100.00% 97.56%

87.81%

2 5% 96.25% 79.17% 95.00% 86.36%

3 10% 93.13% 71.43% 75.00% 73.17%

4 20% 93.75% 77.78% 70.00% 73.68%

5 40% 96.88% 100.00% 75.00% 85.71%

6 60% 99.06% 93.02% 100.00% 96.39%

7 80% 98.44% 90.70% 97.50% 93.98%

8 100% 98.75% 100.00% 90.00% 94.74%

Test810

1 1% 98.75% 90.91% 100.00% 95.24%

87.50%

2 5% 95.00% 75.00% 90.00% 81.82%

3 10% 92.50% 70.00% 70.00% 70.00%

4 20% 93.75% 77.78% 70.00% 73.68%

5 40% 97.50% 100.00% 80.00% 88.89%

6 60% 100.00% 100.00% 100.00% 100.00%

7 80% 98.75% 90.91% 100.00% 95.24%

8 100% 98.75% 100.00% 90.00% 94.74%

Train830

1 1% 99.17% 93.75% 100.00% 96.77%

83.75%

2 5% 95.83% 77.78% 93.33% 84.85%

3 10% 92.50% 68.75% 73.33% 70.97%

4 20% 93.33% 76.92% 66.67% 71.43%

5 40% 97.08% 100.00% 76.67% 86.79%

6 60% 96.67% 78.95% 100.00% 88.24%

7 80% 95.00% 82.14% 76.67% 79.31%

8 100% 97.92% 100.00% 83.33% 90.91%

Test820

1 1% 98.75% 90.91% 100.00% 95.24%

83.75%

2 5% 95.00% 75.00% 90.00% 81.82%

3 10% 92.50% 70.00% 70.00% 70.00%

4 20% 93.75% 77.78% 70.00% 73.68%

5 40% 96.88% 100.00% 75.00% 85.71%

6 60% 96.88% 80.00% 100.00% 88.89%

7 80% 95.63% 84.21% 80.00% 82.05%

8 100% 98.13% 100.00% 85.00% 91.89%
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that, for all the severity classes of wheat stripe rust in the testing set

Test820, the lowest and highest accuracies were 92.50% and 98.75%,

respectively; the lowest and highest precisions were 70.00% and

100.00%, respectively; the lowest and highest recalls were 70.00%

and 100.00%, respectively; and the lowest and highest F1 scores

were 70.00% and 95.24%, respectively. In terms of precision, recall,

and F1 score, there were great differences between the severity
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assessment results for each severity class in the training set Train830

or the testing set Test820 achieved by using the model built based

on the K-means clustering algorithm under the condition without

considering single healthy wheat leaves. For the built severity

assessment model, the overall accuracies of the training set

Train830 and the corresponding testing set Test820 were

both 83.75%.
TABLE 3 Severity assessment results of the single diseased wheat leaves with the actual percentages of lesion areas of all the severity classes of
wheat stripe rust contained in the training and testing sets, obtained by using the severity assessment models of wheat stripe rust built based on
spectral clustering under the condition without considering single healthy wheat leaves.

Dataset Severity category Severity class Accuracy Precision Recall F1 score Overall accuracy

Train840

1 1% 100.00% 100.00% 100.00% 100.00%

97.50%

2 5% 98.44% 88.89% 100.00% 94.12%

3 10% 98.44% 100.00% 87.50% 93.33%

4 20% 100.00% 100.00% 100.00% 100.00%

5 40% 100.00% 100.00% 100.00% 100.00%

6 60% 100.00% 100.00% 100.00% 100.00%

7 80% 99.06% 93.02% 100.00% 96.39%

8 100% 99.06% 100.00% 92.50% 96.10%

Test810

1 1% 100.00% 100.00% 100.00% 100.00%

98.75%

2 5% 98.75% 90.91% 100.00% 95.24%

3 10% 98.75% 100.00% 90.00% 94.74%

4 20% 100.00% 100.00% 100.00% 100.00%

5 40% 100.00% 100.00% 100.00% 100.00%

6 60% 100.00% 100.00% 100.00% 100.00%

7 80% 100.00% 100.00% 100.00% 100.00%

8 100% 100.00% 100.00% 100.00% 100.00%

Train830

1 1% 100.00% 100.00% 100.00% 100.00%

97.50%

2 5% 98.75% 90.91% 100.00% 95.24%

3 10% 98.75% 100.00% 90.00% 94.74%

4 20% 100.00% 100.00% 100.00% 100.00%

5 40% 100.00% 100.00% 100.00% 100.00%

6 60% 100.00% 100.00% 100.00% 100.00%

7 80% 98.75% 90.91% 100.00% 95.24%

8 100% 98.75% 100.00% 90.00% 94.74%

Test820

1 1% 100.00% 100.00% 100.00% 100.00%

96.25%

2 5% 98.13% 86.96% 100.00% 93.02%

3 10% 98.13% 100.00% 85.00% 91.89%

4 20% 100.00% 100.00% 100.00% 100.00%

5 40% 99.38% 100.00% 95.00% 97.44%

6 60% 99.38% 95.24% 100.00% 97.56%

7 80% 98.75% 90.91% 100.00% 95.24%

8 100% 98.75% 100.00% 90.00% 94.74%
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Under the condition without considering single healthy wheat

leaves, when the modeling ratio was 3:2, the severity assessment

model of wheat stripe rust built based on the training set Train830 by

using spectral clustering was used to carry out the severity

assessments of the specimens in the training set Train830 and the

corresponding testing set Test820. As shown in Table 3, for the

training set Train830, except that the accuracies for the severity

classes of 5%, 10%, 80%, and 100% were all 98.75%, the accuracies for

all other severity classes were 100.00%; except that the precisions for

the severity classes of 5% and 80% were both 90.91%, the precisions

for all other severity classes were 100.00%; except that the recalls for

the severity classes of 10% and 100% were both 90.00%, the recalls for

all other severity classes were 100.00%; and among the F1 scores for

all the severity classes, the lowest and highest F1 values were 94.74%

and 100.00%, respectively. The results showed that, for all the severity

classes of wheat stripe rust in the testing set Test820, the lowest and

highest accuracies were 98.13% and 100.00%, respectively; the lowest

and highest precisions were 86.96% and 100.00%, respectively; except

that the recalls for the severity classes of 10%, 40%, and 100% were

85.00%, 95.00%, and 90.00%, respectively, the recalls for other

severity classes were all 100.00%; and the lowest and highest F1

scores were 91.89% and 100.00%, respectively. For the built severity

assessment model of wheat stripe rust based on spectral clustering,

the overall accuracies of the training set Train830 and the

corresponding testing set Test820 were 97.50% and 96.25%,

respectively. The results indicated that, under the condition without

considering single healthy wheat leaves, very good severity

assessment results of the training and testing sets by using the

severity assessment model built based on spectral clustering when

the modeling ratio was 3:2, were achieved, and there were relatively

small differences among the severity assessment performances of the

built model on all the severity classes in the training set Train830 used

for modeling or the corresponding testing set Test820.

The results indicated that, when the severity assessments of the

single diseased leaf image datasets of wheat stripe rust without

single healthy wheat leaves were conducted by using the severity

assessment model built based on the two unsupervised learning

methods including the K-means clustering algorithm and spectral

clustering, respectively, the acceptable assessment results could be

achieved. Under the two conditions with the modeling ratios equal

to 4:1 and 3:2, there was little difference between the assessment

performances obtained by using the severity assessment models of

wheat stripe rust built based on each of the two unsupervised

learning methods. However, the assessment performance obtained

by using the severity assessment model built when the modeling

ratio was 4:1, was slightly better than that obtained by using the

severity assessment model built when the modeling ratio was 3:2. In

the case of any modeling ratio, the assessment performance

obtained by using the severity assessment model of wheat stripe

rust based on spectral clustering was better than that obtained by

using the severity assessment model of wheat stripe rust based on

the K-means clustering algorithm, and the severity assessment

model of wheat stripe rust based on spectral clustering could

achieve very ideal assessment results on both the training set and

the corresponding testing set, indicating that the severity

assessment model of wheat stripe rust based on spectral clustering
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could be used as the optimal model for severity assessment of wheat

stripe rust. Therefore, to achieve ideal severity assessment results by

using the severity assessment method of wheat stripe rust based on

unsupervised learning, the spectral clustering method can be used

to build the severity assessment model of the disease. The results

indicated that the wheat stripe rust severity assessment methods

based on unsupervised learning proposed in this study could be

applied to severity assessment of the disease under the condition

without considering single healthy wheat leaves.
3.3 Severity assessment results obtained by
using the severity assessment models of
wheat stripe rust built based on the three
supervised learning methods including
the SVM, RF, and KNN under the condition
without considering single healthy
wheat leaves

Under the condition without considering single healthy wheat

leaves, when the modeling ratio was 4:1, based on the training set

Train840, the optimal SVM model for severity assessment of wheat

stripe rust was built with the optimal parameter C equal to 1.741 and

the optimal parameter g equal to 6.964; the optimal RF model for

severity assessment of wheat stripe rust was built with the optimal

number of decision trees equal to 10; and the optimal KNNmodel for

severity assessment of wheat stripe rust was built with the optimalK of

3. Under the condition without considering single healthy wheat

leaves, when the modeling ratio was 3:2, based on the training set

Train830, the optimal SVM model for severity assessment of wheat

stripe rust was built with the optimal parameter C of 0.758 and the

optimal parameter g of 6.964; the optimal RF model for severity

assessment of wheat stripe rust was built with the optimal number of

decision trees equal to 20; and the optimal KNN model for severity

assessment of wheat stripe rust was built with the optimalK equal to 5.

Under the condition without considering single healthy wheat

leaves, when the modeling ratios were 4:1 and 3:2, the optimal SVM

models and the optimal RFmodels built for severity assessment of wheat

stripe rust were used to carry out the severity assessments of the

specimens in the training sets (Train840 and Train830) and the testing

sets (Test810 andTest820). For all the severity classes ofwheat stripe rust

in the training sets (Train840 andTrain830) and the testing sets (Test810

and Test820), the accuracies, precisions, recalls, and F1 scores were all

100.00%. For eachmodeling ratio, by using the optimal SVMmodel and

the optimal RF model built for severity assessment of wheat stripe rust,

the overall accuracies of the training set that was used for modeling and

the corresponding testing set were both 100.00% (Table 4).

Under the condition without considering single healthy wheat

leaves, when the modeling ratio were 4:1, by using the optimal KNN

model to perform the severity assessments of the specimens in the

training set Train840 for modeling and the corresponding testing set

Test810, the accuracy, precision, recall, and F1 score for the severity class

of 1% in the training set Train840 were 99.69%, 100.00%, 97.50%, and

98.73%, respectively; the accuracy, precision, recall, and F1 score for the

severity class of 5% in the training set Train840 were 99.69%, 97.56%,

100.00%, and 98.77%, respectively; and the accuracies, precisions, recalls,
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and F1 scores for all other severity classes in the training set Train840

and all the severity classes in the testing set Test810were 100.00%.Under

the condition without considering single healthy wheat leaves, when the

modeling ratioswas 3:2, by using the optimal KNNmodel built based on

the training set Train830 for severity assessment of wheat stripe rust, the

accuracies, precisions, recalls, and F1 scores were all 100.00% for all the

severity classes of wheat stripe rust in the training set Train830 and the

testing set Test820. As shown in Table 4, for themodeling ratio of 4:1, by

using the optimal KNN model built for severity assessment of wheat

stripe rust based on the training set Train840, the overall accuracies of

the training set Train840 and the corresponding testing set Test810were

99.69%and 100.00%, respectively. For themodeling ratio of 3:2, by using

the optimal KNNmodel built for severity assessment ofwheat stripe rust

based on the training set Train830, the overall accuracies of the training

set Train830 and the corresponding testing set Test820 were

both 100.00%.

The results showed that, under the condition without

considering single healthy wheat leaves, by using the optimal

SVM, RF, and KNN models for severity assessment of wheat

stripe rust, very good severity assessment performances on the

training sets (Train840 and Train830) and testing sets (Test810 and

Test820) were achieved. In comparison, in the case of the two

modeling ratios of 4:1 and 3:2, among the three kinds of models, the

severity assessment models of wheat stripe rust built based on SVM

and RF were optimal, and the corresponding overall accuracies of

the training sets and the testing sets reached 100.00%. The results

indicated that the methods for severity assessment of wheat stripe

rust based on supervised learning proposed in this study could be

applied to severity assessment of the disease under the condition

without considering single healthy wheat leaves.
3.4 Severity assessment results obtained by
using the severity assessment models of
wheat stripe rust built based on the two
unsupervised learning methods including
the K-means clustering algorithm and
spectral clustering under the condition of
considering single healthy wheat leaves

Under the condition of considering single healthy wheat leaves,

the severity assessment models of wheat stripe rust, built based on
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the two unsupervised learning methods including the K-means

clustering algorithm and spectral clustering, were used to perform

the severity assessments of the specimens of all the severity classes

in the training and testing sets. The severity assessment results

obtained by using the two unsupervised learning methods are

shown in Tables 5, 6, respectively.

Under the condition of considering single healthy wheat leaves,

by using the severity assessment model of wheat stripe rust built

with the K-means clustering algorithm based on the training set

Train940 when the modeling ratio was 4:1, the obtained assessment

results of the training set Train940 as shown in Table 5,

demonstrated that, for all the severity classes of the disease, high

accuracies with the lowest value equal to 93.89% and the highest

value equal to 99.17%, were achieved, but there were large

differences in precision, recall, and F1 score. For all the severity

classes of the disease in the training set Train940, the lowest and

highest precisions were 71.43% and 100.00%, respectively; the

lowest and highest recalls were 70.00% and 100.00%, respectively;

and the lowest and highest F1 scores were 73.17% and 96.39%,

respectively. The overall accuracy of the training set Train940

achieved by using the model was 84.72%. By using the built

model to conduct the severity assessments of the specimens in the

testing set Test910, for all the severity classes of wheat stripe rust,

high accuracies were achieved, with the lowest value equal to

93.33% and the highest value equal to 100.00%; there were also

large differences in precision, recall, and F1 score. The lowest

precision, recall, and F1 score were all 70.00%, and the highest

precision, recall, and F1 score were all 100.00%. For the built

severity assessment model, the overall accuracy of the testing set

Test910 was 85.56%.

As shown in Table 6, under the condition of considering single

healthy wheat leaves, by using the severity assessment model of

wheat stripe rust built with spectral clustering based on the training

set Train940 when the modeling ratio was 4:1, the obtained

assessment results for all the severity classes of wheat stripe rust

in the training set Train940 showed that the lowest and highest

accuracies was 98.33% and 100.00%, respectively; except that the

precisions for the severity classes of 0%, 5%, and 80% were 95.24%,

86.96%, and 93.02%, respectively, the precisions for all other

severity classes were 100.00%; except that the recalls for the

severity classes of 1%, 10% and 100% were 95.00%, 85.00%, and

92.50%, respectively, the recalls for all other severity classes were
TABLE 4 Overall accuracies of the training and testing sets obtained by using the built severity assessment SVM, RF, and KNN models of wheat stripe
rust under the condition without considering single healthy wheat leaves.

Modeling method Modeling ratio Overall accuracy of the training set Overall accuracy of the testing set

SVM
4:1 100.00% 100.00%

3:2 100.00% 100.00%

RF
4:1 100.00% 100.00%

3:2 100.00% 100.00%

KNN
4:1 99.69% 100.00%

3:2 100.00% 100.00%
The table shows only the assessment results of the optimal severity assessment SVM, RF, and KNN models of wheat stripe rust.
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TABLE 5 Severity assessment results of the single wheat leaves with the actual percentages of lesion areas of all the severity classes of wheat stripe
rust contained in the training and testing sets, obtained by using the severity assessment models of wheat stripe rust built based on the K-means
clustering algorithm under the condition of considering single healthy wheat leaves.

Dataset Severity category Severity class Accuracy Precision Recall F1 score Overall accuracy

Train940

0 0% 96.67% 76.92% 100.00% 86.96%

84.72%

1 1% 95.00% 82.35% 70.00% 75.68%

2 5% 95.56% 77.27% 85.00% 80.95%

3 10% 93.89% 71.43% 75.00% 73.17%

4 20% 94.44% 77.78% 70.00% 73.68%

5 40% 97.22% 100.00% 75.00% 85.71%

6 60% 99.17% 93.02% 100.00% 96.39%

7 80% 98.61% 90.70% 97.50% 93.98%

8 100% 98.89% 100.00% 90.00% 94.74%

Test910

0 0% 96.67% 76.92% 100.00% 86.96%

85.56%

1 1% 95.56% 87.50% 70.00% 77.78%

2 5% 95.56% 75.00% 90.00% 81.82%

3 10% 93.33% 70.00% 70.00% 70.00%

4 20% 94.44% 77.78% 70.00% 73.68%

5 40% 97.78% 100.00% 80.00% 88.89%

6 60% 100.00% 100.00% 100.00% 100.00%

7 80% 98.89% 90.91% 100.00% 95.24%

8 100% 98.89% 100.00% 90.00% 94.74%

Train930

0 0% 96.67% 76.92% 100.00% 86.96%

85.19%

1 1% 95.56% 87.50% 70.00% 77.78%

2 5% 95.93% 77.14% 90.00% 83.08%

3 10% 93.70% 70.97% 73.33% 72.13%

4 20% 94.44% 77.78% 70.00% 73.68%

5 40% 97.41% 100.00% 76.67% 86.79%

6 60% 99.26% 93.75% 100.00% 96.77%

7 80% 98.52% 90.63% 96.67% 93.55%

8 100% 98.89% 100.00% 90.00% 94.74%

Test920

0 0% 96.67% 76.92% 100.00% 86.96%

85.56%

1 1% 95.56% 87.50% 70.00% 77.78%

2 5% 96.11% 78.26% 90.00% 83.72%

3 10% 93.89% 71.43% 75.00% 73.17%

4 20% 94.44% 77.78% 70.00% 73.68%

5 40% 97.22% 100.00% 75.00% 85.71%

6 60% 99.44% 95.24% 100.00% 97.56%

7 80% 98.89% 90.91% 100.00% 95.24%

8 100% 98.89% 100.00% 90.00% 94.74%
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TABLE 6 Severity assessment results of the single wheat leaves with the actual percentages of lesion areas of all the severity classes of wheat stripe
rust contained in the training and testing sets, obtained by using the severity assessment models of wheat stripe rust built based on spectral clustering
under the condition of considering single healthy wheat leaves.

Dataset Severity category Severity class Accuracy Precision Recall F1 score Overall accuracy

Train940

0 0% 99.44% 95.24% 100.00% 97.56%

96.94%

1 1% 99.44% 100.00% 95.00% 97.44%

2 5% 98.33% 86.96% 100.00% 93.02%

3 10% 98.33% 100.00% 85.00% 91.89%

4 20% 100.00% 100.00% 100.00% 100.00%

5 40% 100.00% 100.00% 100.00% 100.00%

6 60% 100.00% 100.00% 100.00% 100.00%

7 80% 99.17% 93.02% 100.00% 96.39%

8 100% 99.17% 100.00% 92.50% 96.10%

Test910

0 0% 98.89% 90.91% 100.00% 95.24%

97.78%

1 1% 98.89% 100.00% 90.00% 94.74%

2 5% 98.89% 90.91% 100.00% 95.24%

3 10% 98.89% 100.00% 90.00% 94.74%

4 20% 100.00% 100.00% 100.00% 100.00%

5 40% 100.00% 100.00% 100.00% 100.00%

6 60% 100.00% 100.00% 100.00% 100.00%

7 80% 100.00% 100.00% 100.00% 100.00%

8 100% 100.00% 100.00% 100.00% 100.00%

Train930

0 0% 99.26% 93.75% 100.00% 96.77%

96.67%

1 1% 99.26% 100.00% 93.33% 96.55%

2 5% 98.52% 88.24% 100.00% 93.75%

3 10% 98.52% 100.00% 86.67% 92.86%

4 20% 100.00% 100.00% 100.00% 100.00%

5 40% 99.63% 100.00% 96.67% 98.31%

6 60% 99.63% 96.77% 100.00% 98.36%

7 80% 99.26% 93.75% 100.00% 96.77%

8 100% 99.26% 100.00% 93.33% 96.55%

Test920

0 0% 99.44% 95.24% 100.00% 97.56%

95.56%

1 1% 99.44% 100.00% 95.00% 97.44%

2 5% 98.33% 86.96% 100.00% 93.02%

3 10% 98.33% 100.00% 85.00% 91.89%

4 20% 99.44% 95.24% 100.00% 97.56%

5 40% 98.89% 100.00% 90.00% 94.74%

6 60% 99.44% 95.24% 100.00% 97.56%

7 80% 98.89% 90.91% 100.00% 95.24%

8 100% 98.89% 100.00% 90.00% 94.74%
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100.00%; and the lowest and highest F1 scores were 91.89%

and 100.00%, respectively. By using the built model to conduct

the severity assessments of the specimens in the testing set Test910,

the obtained results showed that, except that the accuracies for the

severity classes of 0%, 1%, 5%, and 10% were all 98.89%, the

accuracies for other severity classes were all 100.00%; except that

the precisions for the severity classes of 0% and 5% were both

90.91%, the precisions for other severity classes were all 100.00%;

except that the recalls for the severity classes of 1% and 10% were

both 90.00%, the recalls for other severity classes were all 100.00%;

except that the F1 scores for the severity classes of 0%, 1%, 5%, and

10% were 95.24%, 94.74%, 95.24%, and 94.74%, respectively, the F1

scores for all other severity classes were 100.00%. For the severity

assessment model of wheat stripe rust built with spectral clustering

based on the training set Train940, the overall accuracies of the

training set Train940 and the corresponding testing set Test910

were 96.94% and 97.78%, respectively. The results indicated that

very good severity assessment results for the specimens in both the

training set and the testing set were achieved by using the severity

assessment model built with spectral clustering when the modeling

ratio was 4:1 under the condition of considering single healthy

wheat leaves.

Under the condition of considering single healthy wheat leaves,

when the modeling ratio was 3:2, by using the severity assessment

model of wheat stripe rust built with the K-means clustering

algorithm based on the training set Train930, the severity

assessment results (Table 5) showed that, for all the severity classes

of wheat stripe rust in the training set Train930, high accuracies were

obtained, with the lowest value equal to 93.70% and the highest value

equal to 99.26%; the lowest and highest precisions were 70.97% and

100.00%, respectively; the lowest and highest recalls were 70.00% and

100.00%, respectively; and the lowest and highest F1 scores were

72.13% and 96.77%, respectively. The overall accuracy of the training

set Train930 achieved by using the built severity assessment model

was 85.19%. The results indicated that there were great differences in

precisions, recalls, and F1 scores for all the severity classes in the

training set Train930 achieved by using the model built based on the

K-means clustering algorithm. The assessment results obtained by

using the severity assessment model of wheat stripe rust built with the

K-means clustering algorithm based on the training set Train930

showed that, for all the severity classes of wheat stripe rust in the

testing set Train920, the lowest and highest accuracies were 93.89%

and 99.44%, respectively; the lowest and highest precisions were

71.43% and 100.00%, respectively; the lowest and highest recalls were

70.00% and 100.00%, respectively; and the lowest and highest F1

scores were 73.17% and 97.56%, respectively. There were also great

differences in precisions, recalls, and F1 scores for all the severity

classes in the testing set Train920 achieved by using the model built

based on the K-means clustering algorithm under the condition of

considering single healthy wheat leaves. For the built severity

assessment model, the overall accuracy of the testing set Test920

was 85.56%.

As shown in Table 6, under the condition of considering single

healthy wheat leaves, by using the severity assessment model of

wheat stripe rust built with spectral clustering based on the training
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set Train930 when the modeling ratio was 3:2, the obtained

assessment results showed that, for all the severity classes of

wheat stripe rust in the training set Train930, the lowest and

highest accuracies were 98.52% and 100.00%, respectively; the

lowest and highest precisions were 88.24% and 100.00%,

respectively; except that the recalls for the severity classes of 1%,

10%, 40%, and 100% were 93.33%, 86.67%, 96.67%, and 93.33%,

respectively, the recalls for other severity classes were all 100.00%;

and the lowest F1 score was 92.86% and the highest F1 score was

100.00%. The assessment results obtained by using the severity

assessment model of wheat stripe rust built with spectral clustering

based on the training set Train930 showed that, for all the severity

classes of wheat stripe rust in the testing set Test920, the lowest and

highest accuracies were 98.33% and 99.44%, respectively; the lowest

and highest precisions were 86.96% and 100.00%, respectively;

except that the recalls for the severity classes of 1%, 10%, 40%,

and 100% were 95.00%, 85.00%, 90.00%, and 90.00%, respectively,

the recalls for all other severity classes were 100.00%; and the lowest

F1 score was 91.89%, and the highest F1 score was 97.56%. For the

severity assessment model of wheat stripe rust built with spectral

clustering based on Train930, the overall accuracies of the training

set Train930 and the corresponding testing set Test920 were 96.67%

and 95.56%, respectively. The results indicated that, under the

condition of considering single healthy wheat leaves, very good

severity assessment performance on both the training set Train930

and the corresponding testing set Test920 were achieved by using

the severity assessment model of wheat stripe rust built with

spectral clustering.

The results showed that, when the severity assessments of the

single wheat leaf image datasets containing single healthy wheat

leaves were conducted by using the severity assessment models,

built based on the two unsupervised learning methods including

the K-means clustering algorithm and spectral clustering,

respectively, the achieved assessment performances were

acceptable. When the modeling ratio was 4:1 or 3:2, the

assessment performance obtained by using the severity

assessment model of wheat stripe rust based on spectral

clustering was better than that obtained by using the severity

assessment model of wheat stripe rust based on the K-means

clustering algorithm, and very ideal assessment performances on

both the training set and the corresponding testing set could be

achieved by using the severity assessment model of wheat stripe

rust based on spectral clustering, indicating that the severity

assessment model of wheat stripe rust based on spectral

clustering could be treated as the optimal model for carrying out

severity assessment of wheat stripe rust. Therefore, to achieve ideal

severity assessment results by using the severity assessment method

of wheat stripe rust based on unsupervised learning under the

condition of considering single healthy wheat leaves, the severity

assessment model of the disease can be built based on spectral

clustering. The results demonstrated that the methods for severity

assessment of wheat stripe rust based on unsupervised learning

proposed in this study could be utilized to carry out severity

assessment of wheat stripe rust under the condition of

considering single healthy wheat leaves.
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3.5 Severity assessment results obtained by
using the severity assessment models of
wheat stripe rust built based on the three
supervised learning methods including the
SVM, RF, and KNN under the condition of
considering single healthy wheat leaves

Under the condition of considering single healthy wheat leaves,

when the modeling ratio was 4:1, based on the training set Train940,

the optimal SVM model for severity assessment of wheat stripe rust

was built with the optimal parameter C of 2.297 and the optimal

parameter g of 4.000. By using this SVM model to carry out the

severity assessments of the specimens in the training set Train940

and the testing set Test910, for the severity class of 0% (healthy

wheat leaves) in the training set Train940, the accuracy, precision,

recall, and F1 score were 99.72%, 97.56%, 100.00%, and 98.77%,

respectively; for the severity class of 1% in the training set Train940,

the accuracy, precision, recall, and F1 score were 99.72%, 100.00%,

97.50%, and 98.73%, respectively; and for all other severity classes in

the training set Train940 and all the severity classes in the testing set

Test910, the accuracies, precisions, recalls, and F1 scores were all

100.00%. For the built optimal SVM model for severity assessment

of wheat stripe rust when the modeling ratio was 4:1 under the

condition of considering single healthy wheat leaves, the overall

accuracies of the training set Train940 and the corresponding

testing set Test910 were 99.72% and 100.00%, respectively (Table 7).

Under the condition of considering single healthy wheat leaves,

when the modeling ratio was 3:2, based on the training set Train930,

the optimal SVM model for severity assessment of wheat stripe rust

was built with the optimal parameter C equal to 194.012 and the

optimal parameter g equal to 0.330. By using this SVM model to

perform the severity assessments of the specimens in the training set

Train930 that was used for modeling and the corresponding testing

set Test920, for the severity class of 1% in the training set Train930,

the accuracy, precision, recall, and F1 score were 99.63%, 100.00%,

96.67%, and 98.31%, respectively; for the severity class of 5% in the

training set Train930, the accuracy, precision, recall, and F1 score

were 99.63%, 96.77%, 100.00%, and 98.36%, respectively; and for all

other severity classes in the training set Train930 and all the severity

classes in the testing set Test920, the accuracies, precisions, recalls,

and F1 scores were all 100.00%. For the built optimal SVM model

for severity assessment of wheat stripe rust when the modeling ratio
Frontiers in Plant Science 16
was 3:2 under the condition of considering single healthy wheat

leaves, the overall accuracies of the training set Train930 and the

corresponding testing set Test920 were 99.63% and 100.00%,

respectively (Table 7).

Under the condition of considering single healthy wheat leaves,

when the modeling ratio was 4:1, based on the training set Train940,

the optimal RF model for severity assessment of wheat stripe rust

was built with the optimal number of decision trees equal to 10; and

when the modeling ratio was 3:2, based on the training set Train930,

the optimal RF model for severity assessment of wheat stripe rust

was built with the optimal number of decision trees equal to 20.

Under the two conditions of the modeling ratios equal to 4:1 and

3:2, the optimal RF models built for severity assessment of wheat

stripe rust were used to conduct the severity assessments of the

specimens in the training sets (Train940 and Train930) and the

testing sets (Test910 and Test920), and for all the severity classes of

wheat stripe rust in the training sets and the testing sets, the

accuracies, precisions, recalls, and F1 scores were all 100.00%. For

each modeling ratio under the condition of considering single

healthy wheat leaves, by using the optimal RF model built for

severity assessment of wheat stripe rust, the overall accuracies of the

training set that was used for modeling and the corresponding

testing set were both 100.00% (Table 7).

Under the condition of considering single healthy wheat leaves,

when the modeling ratio was 4:1, based on the training set Train940,

the optimal KNN model for severity assessment of wheat stripe rust

was built with the optimal K of 9. By using this KNN model to

perform the severity assessments of the specimens in the training set

Train940 and the testing set Test910, for the severity classes of 0%,

5%, and 80% in the training set Train940, the accuracies were all

99.72%, the precision were all 97.56%, the recall were all 100.00%,

and F1 score were all 98.77%; for the severity classes of 1%, 10%,

and 100% in the training set Train940, the accuracies were all

99.72%, the precisions were all 100.00%, the recalls were all 97.50%,

and the F1 scores were all 98.73%; and for all other severity classes

in the training set Train940 and all the severity classes in the testing

set Test910, all the accuracies, precisions, recalls, and F1 scores were

100.00%. As shown in Table 7, for the built optimal KNN model for

severity assessment of wheat stripe rust when the modeling ratio

was 4:1 under the condition of considering single healthy wheat

leaves, the overall accuracy of the training set Train940 was 99.17%,

and that of the corresponding testing set Test910 was 100.00%.
TABLE 7 Overall accuracies of the training and testing sets obtained by using the built severity assessment SVM, RF, and KNN models of wheat stripe
rust under the condition of considering single healthy wheat leaves.

Modeling method Modeling ratio Overall accuracy of the training set Overall accuracy of the testing set

SVM
4:1 99.72% 100.00%

3:2 99.63% 100.00%

RF
4:1 100.00% 100.00%

3:2 100.00% 100.00%

KNN
4:1 99.17% 100.00%

3:2 99.63% 100.00%
The table shows only the assessment results of the optimal severity assessment SVM, RF, and KNN models of wheat stripe rust.
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Under the condition of considering single healthy wheat leaves,

when the modeling ratio was 3:2, based on the training set Train930,

the optimal KNN model for severity assessment of wheat stripe rust

was built with the optimal K equal to 5. By using this optimal KNN

model to perform the severity assessments of the specimens in the

training set Train930 and the testing set Test920, for the severity

class of 0% in the training set Train930, the accuracy, precision,

recall, and F1 score were 99.63%, 96.77%, 100.00%, and 98.36%,

respectively; for the severity class of 1% in the training set Train930,

the accuracy, precision, recall, and F1 score were 99.63%, 100.00%,

96.67%, and 98.31%, respectively; and for all other severity classes in

the training set Train930 and all the severity classes in the testing set

Test920, all the accuracies, precisions, recalls, and F1 scores were

100.00%. As shown in Table 7, for the built optimal KNN model for

severity assessment of wheat stripe rust when the modeling ratio

was 3:2 under the condition of considering single healthy wheat

leaves, the overall accuracies of the training set Train930 and the

corresponding test ing set Test920 were 99 .63% and

100.00%, respectively.

The results indicated that, under the condition of considering

single healthy wheat leaves, very good severity assessment

performances on the training sets (Train940 and Train930) and

testing sets (Test910 and Test920) could be obtained by using the

built optimal SVM, RF, and KNN models for severity assessment of

wheat stripe rust. Furthermore, in the case of the two modeling

ratios of 4:1 and 3:2, the severity assessment performances of the

built optimal RF models were the best, and the overall accuracies of

the training sets and the testing sets were all 100.00%. The obtained

results indicated that the severity assessment methods based on

supervised learning for wheat stripe rust proposed in this study

could be used to carry out severity assessment of wheat stripe rust

under the condition of considering single healthy wheat leaves.
4 Discussion

In this study, the methods for severity assessment of wheat

stripe rust were proposed based on machine learning. Regardless of

whether the healthy wheat leaves were considered or not, acceptable

assessment performances could be obtained by using the severity

assessment models of wheat stripe rust, built with the two

unsupervised learning methods including the K-means clustering

algorithm and spectral clustering, based on the training sets and the

testing sets constructed by using the system sampling method with

the modeling ratios of 4:1 and 3:2. Especially, high accuracies,

precisions, recalls, F1 scores, and overall accuracies were obtained

on both the training sets and the testing sets by using the severity

assessment models of wheat stripe rust built based on spectral

clustering, and the relatively ideal performances for severity

assessments of wheat stripe rust were achieved. Regardless of

whether the healthy wheat leaves were considered or not, very

good assessment results were achieved by using the severity

assessment models of wheat stripe rust built based on the three

supervised learning methods including SVM, RF, and KNN when

the modeling ratio were 4:1 and 3:2. In particular, the accuracies,

precisions, recalls, and F1 scores for all the severity classes of the
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training and testing sets and the overall accuracies of the training

and testing sets, were all 100.00%, by using the optimal models (the

optimal RF models) for severity assessment of wheat stripe rust

obtained by comparing the three modeling methods of SVM, RF

and KNN, and thus, very ideal performances for severity

assessments of wheat stripe rust were achieved by using the

selected optimal models (the optimal RF models). The results

indicated that the methods for wheat stripe rust severity

assessment based on unsupervised learning and supervised

learning proposed in this study could be used for severity

assessment of wheat stripe rust. For the proposed severity

assessment methods of wheat stripe rust in this study, the model

building and severity assessments were conducted based on the

actual percentages of lesion areas in the areas of the corresponding

whole single diseased wheat leaves. The problem that, when severity

assessment of wheat stripe rust is carried out based on the

percentage of the lesion area in the area of a whole single

diseased wheat leaf, the percentage of the lesion area in the area

of the whole single diseased wheat leaf corresponding to a severity

class in the severity grading standard of the disease is not

inconsistent with the actual percentage of the lesion area in the

area of the whole single diseased wheat leaf, was completely solved

in this study. By using the methods proposed in this study, based on

the actual percentage of the lesion area in the whole area of a single

diseased wheat leaf, the severity of the corresponding diseased leaf

can be directly assessed. The results obtained in this study provide a

basis for accurately assessing the severity of wheat stripe rust. The

methods and ideas provided in this study are also applicable to

other plant diseases such as wheat leaf rust caused by Puccinia

triticina, for which the percentage of the lesion area in the

corresponding diseased plant unit area of a severity class in the

corresponding disease severity grading standard is not inconsistent

with the actual percentage of the lesion area in the area of the whole

diseased plant unit. They are also applicable to other plant diseases

for which disease severity assessment of a diseased plant unit is

carried out based on the ratio of the lesion area to the area of the

whole diseased plant unit. They can be used to solve such problems

in the severity assessments of plant diseases. In this study, two

unsupervised learning methods including the K-means clustering

algorithm and spectral clustering and three supervised learning

methods including SVM, RF, and KNN were used to build the

severity assessment models of wheat stripe rust, respectively. By

using the ideas provided in this study, other unsupervised learning

methods and supervised learning methods can be used to build the

severity assessment models of wheat stripe rust in further studies.

The severity assessment methods of wheat stripe rust proposed

in this study were to build the severity assessment models of wheat

stripe rust based on the actual percentages of lesion areas in the

areas of the corresponding whole single diseased wheat leaves by

using the unsupervised learning methods and the supervised

learning methods. Then, by using the built severity assessment

models of wheat stripe rust, the severity classes of the single diseased

wheat leaves with the actual percentages of lesion areas could be

directly assessed. In particular, when an unsupervised learning

method is used to build the severity assessment model of wheat

stripe rust, there is no need to artificially determine the severity
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classes of the single diseased wheat leaves with the actual

percentages of lesion areas, the single diseased wheat leaves can

be classified and assessed by using the unsupervised learning

method according to the number of severity classes in the disease

severity grading standard, and then, through optimization of the

built severity assessment model, a model for severity assessment of

wheat stripe rust with satisfactory assessment performance can be

obtained. Unsupervised learning is conducive to the application of

the developed severity assessment methods in practice, and can

reduce the errors in severity assessments caused by using the visual

observation method. The severity assessment methods of wheat

stripe rust based on machine learning developed in this study has

strong practical applicability and can realize the accurate severity

assessment of the disease, which is of great significance for the

survey, monitoring, prediction, and control of the disease. After the

severity classes of wheat leaves are assessed, disease prevalence

evaluation and disease predication can be performed, and then

suitable control measures can be made. Generally, the evaluated

disease prevalence data or the disease prediction results are

compared to the control threshold or economic threshold of the

disease to determine whether the disease needs to be controlled.

Once the control threshold or economic threshold is reached,

suitable measures, such as spraying fungicides, can be taken to

control the disease.

At the present time, severity assessments of wheat stripe rust

based on image processing technology are mainly realized by

comparing the actual percentage of the lesion area in the area of

a whole single diseased wheat leaf obtained by using image

processing to the percentages for the eight severity classes in the

severity grading standard of the disease (Jiang et al., 2021) or by

building the severity assessment models of wheat stripe rust based

on extracted features of disease images (Bao et al., 2021). The

percentage of the lesion area in the area of a whole diseased wheat

leaf corresponding to each severity class in the severity grading

standard of wheat stripe rust is obviously greater than the actual

percentage of the lesion area in the area of the whole diseased wheat

leaf, which may cause great errors in the disease severity

assessments. Jiang et al. (2022) determined the reference ranges

for severity assessment of wheat stripe rust based on the actual

percentages of lesion areas corresponding to each severity class of

wheat stripe rust, and then obtained satisfactory assessment results

(the severity assessment accuracies for the training sets and testing

sets were not lower than 85%.) of the diseased wheat leaves with the

actual percentages of lesion areas according to the determined

reference ranges. On the basis of the study conducted by Jiang

et al. (2022), the severity assessment models of wheat stripe rust

were built based on machine learning with the actual percentages of

the lesion areas in the areas of the corresponding single leaves of

wheat stripe rust and the corresponding severity category data in

this study. According to the calculating methods, the two indicators

used to evaluate the performances of severity assessment methods,

recall used in this study and severity assessment accuracy used by

Jiang et al. (2022), are the same. In terms of recall used in this study

and severity assessment accuracy used by Jiang et al. (2022), a

comparison of the performances of the methods developed in this

study to those of the methods developed by Jiang et al. (2022) was
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made, and the results showed that the performance of the severity

assessment method based on the K-means clustering algorithm

developed in this study was the worst and that of the severity

assessment method based on RF developed in this study was the

best (Tables 8, 9). The severity assessment methods of wheat stripe

rust based on machine learning developed in this study will greatly

improve the accuracy of image-based severity assessment of the

disease, and can greatly reduce the requirements for the experience

of assessors/raters in disease severity assessment. This is beneficial

to improve the reliability of the monitoring and early warning

information of wheat stripe rust, and is conducive to the

popularization and application of related technologies. This will

be helpful to improve the level of the survey, monitoring and early

warning, and management of wheat stripe rust. The automatization

and intellectualization of plant disease severity assessment is an

inevitable development trend of the science and technology (Wang,

2022). This study provides ideas and basis for accurate severity

assessment of wheat stripe rust based on image processing

technology, which is conducive to the development of automatic

severity assessment system of the disease and the improvement of

the severity assessment level of the disease. This is useful to

promoting the automatization and intellectualization of severity

assessment of wheat stripe rust, and can provide more reliable

support for the prediction, variety resistance identification and

variety breeding, and disease control strategy making of wheat

stripe rust.

In this study, the actual percentages of lesion areas in the areas

of the corresponding whole single diseased leaves infected by wheat

stripe rust were obtained by using image processing technology with

image processing software. The actual percentage data can be

obtained by assessors/raters using the visual observation method.

In addition, the actual percentages of lesion areas can be obtained

by programming to implement the segmentation of lesion images

and the calculation of ratios of the lesion areas to the areas of the

corresponding whole single diseased leaves (Li et al., 2011; Jiang

et al., 2021), by using special software and packages (Lamari, 2008;

Schneider et al., 2012; Pethybridge and Nelson, 2015; Olivoto et al.,

2022), and by actual experimental operation methods such as graph

paper method and paper-weighing method (Li et al., 2011). The

automatic lesion segmentation methods and the automatic

calculation methods of the actual percentages of lesion areas in

the areas of the corresponding whole single diseased leaves can be

combined with the severity assessment methods and models

developed in this study to construct automatic severity

assessment systems of wheat stripe rust, which is conducive to the

implementation of automatic severity assessment of wheat stripe

rust and the more convenient practical applications of related

technical methods.

By using the reference-range-based methods proposed by Jiang

et al. (2022) to assess the severity class of a single diseased wheat leaf

infected with wheat stripe rust, the actual percentage of the lesion

area in the area of the whole single diseased leaf needs to be

compared to the upper and lower limits of the reference ranges of

all the severity classes of the disease. For the severity assessment

methods of wheat stripe rust based on machine learning proposed

in this study, the actual percentage of the lesion area in the area of a
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TABLE 8 Comparison results of the performances of the machine-learning-based methods developed in this study to those of the reference-range-based methods developed by Jiang et al. (2022) when the
modeling/sampling ratio was 4:1, in terms of recall used in this study and severity assessment accuracy used by Jiang et al. (2022) that are the same according to their calculating methods.

Severity assessment accuracy used by Jiang et al.
(2022)

F KNN

The mid-
point-of-
two-adja-

cent-means-
based actual
percentage
reference
range

The 90%
reference
range

The 95%
reference
range

The 99%
reference
range

.00% 100.00% – – – –

.00% 97.50% 100.00% 95.00% 97.50% 100.00%

.00% 100.00% 100.00% 95.00% 100.00% 100.00%

.00% 97.50% 87.50% 90.00% 100.00% 100.00%

.00% 100.00% 97.50% 95.00% 100.00% 100.00%

.00% 100.00% 85.00% 95.00% 95.00% 100.00%

.00% 100.00% 100.00% 92.50% 97.50% 95.00%

.00% 100.00% 97.50% 90.00% 97.50% 100.00%

.00% 97.50% 90.00% 87.50% 100.00% 100.00%

.00% 100.00% – – – –

.00% 100.00% 100.00% 90.00% 100.00% 100.00%

.00% 100.00% 100.00% 90.00% 100.00% 100.00%

.00% 100.00% 90.00% 90.00% 100.00% 100.00%

.00% 100.00% 100.00% 100.00% 100.00% 100.00%

.00% 100.00% 90.00% 100.00% 100.00% 100.00%

.00% 100.00% 100.00% 90.00% 100.00% 100.00%

.00% 100.00% 100.00% 90.00% 100.00% 100.00%

.00% 100.00% 90.00% 90.00% 100.00% 100.00%
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Dataset Severity
class

Recall used in this study

K-means
clustering
algorithm

Spectral
clustering SVM RF KNN

K-means
clustering
algorithm

Spectral
clustering SVM

Training
set

0% – – – – – 100.00% 100.00% 100.00% 10

1% 100.00% 100.00% 100.00% 100.00% 97.50% 70.00% 95.00% 97.50% 10

5% 95.00% 100.00% 100.00% 100.00% 100.00% 85.00% 100.00% 100.00% 10

10% 75.00% 87.50% 100.00% 100.00% 100.00% 75.00% 85.00% 100.00% 10

20% 70.00% 100.00% 100.00% 100.00% 100.00% 70.00% 100.00% 100.00% 10

40% 75.00% 100.00% 100.00% 100.00% 100.00% 75.00% 100.00% 100.00% 10

60% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10

80% 97.50% 100.00% 100.00% 100.00% 100.00% 97.50% 100.00% 100.00% 10

100% 90.00% 92.50% 100.00% 100.00% 100.00% 90.00% 92.50% 100.00% 10

Testing
set

0% – – – – – 100.00% 100.00% 100.00% 10

1% 100.00% 100.00% 100.00% 100.00% 100.00% 70.00% 90.00% 100.00% 10

5% 90.00% 100.00% 100.00% 100.00% 100.00% 90.00% 100.00% 100.00% 10

10% 70.00% 90.00% 100.00% 100.00% 100.00% 70.00% 90.00% 100.00% 10

20% 70.00% 100.00% 100.00% 100.00% 100.00% 70.00% 100.00% 100.00% 10

40% 80.00% 100.00% 100.00% 100.00% 100.00% 80.00% 100.00% 100.00% 10

60% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10

80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10

100% 90.00% 100.00% 100.00% 100.00% 100.00% 90.00% 100.00% 100.00% 10

‘–’ in the table denotes that single healthy wheat leaves were not considered.
R
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TABLE 9 Comparison results of the performances of the machine-learning-based methods developed in this study to those of the reference-range-based methods developed by Jiang et al. (2022) when the
modeling/sampling ratio was 3:2, in terms of recall used in this study and severity assessment accuracy used by Jiang et al. (2022) that are the same according to their calculating methods.

Severity assessment accuracy used by Jiang et al.
(2022)

F KNN

The mid-
point-of-
two-adja-

cent-means-
based actual
percentage
reference
range

The 90%
reference
range

The 95%
reference
range

The 99%
reference
range

.00% 100.00% – – – –

.00% 96.67% 100.00% 93.33% 96.67% 100.00%

.00% 100.00% 100.00% 93.33% 100.00% 100.00%

.00% 100.00% 86.67% 90.00% 96.67% 96.67%

.00% 100.00% 96.67% 96.67% 100.00% 100.00%

.00% 100.00% 86.67% 96.67% 96.67% 96.67%

.00% 100.00% 100.00% 93.33% 96.67% 100.00%

.00% 100.00% 96.67% 93.33% 96.67% 100.00%

.00% 100.00% 90.00% 90.00% 100.00% 100.00%

.00% 100.00% – – – –

.00% 100.00% 100.00% 95.00% 100.00% 100.00%

.00% 100.00% 100.00% 95.00% 100.00% 100.00%

.00% 100.00% 90.00% 90.00% 95.00% 95.00%

.00% 100.00% 100.00% 95.00% 100.00% 100.00%

.00% 100.00% 85.00% 95.00% 95.00% 100.00%

.00% 100.00% 100.00% 90.00% 100.00% 100.00%

.00% 100.00% 100.00% 90.00% 100.00% 100.00%

.00% 100.00% 90.00% 85.00% 100.00% 100.00%
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Dataset Severity
class

Recall used in this study

K-means
clustering
algorithm

Spectral
clustering SVM RF KNN

K-means
clustering
algorithm

Spectral
clustering SVM

Training
set

0% – – – – – 100.00% 100.00% 100.00% 10

1% 100.00% 100.00% 100.00% 100.00% 100.00% 70.00% 93.33% 96.67% 10

5% 93.33% 100.00% 100.00% 100.00% 100.00% 90.00% 100.00% 100.00% 10

10% 73.33% 90.00% 100.00% 100.00% 100.00% 73.33% 86.67% 100.00% 10

20% 66.67% 100.00% 100.00% 100.00% 100.00% 70.00% 100.00% 100.00% 10

40% 76.67% 100.00% 100.00% 100.00% 100.00% 76.67% 96.67% 100.00% 10

60% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10

80% 76.67% 100.00% 100.00% 100.00% 100.00% 96.67% 100.00% 100.00% 10

100% 83.33% 90.00% 100.00% 100.00% 100.00% 90.00% 93.33% 100.00% 10

Testing
set

0% – – – – – 100.00% 100.00% 100.00% 10

1% 100.00% 100.00% 100.00% 100.00% 100.00% 70.00% 95.00% 100.00% 10

5% 90.00% 100.00% 100.00% 100.00% 100.00% 90.00% 100.00% 100.00% 10

10% 70.00% 85.00% 100.00% 100.00% 100.00% 75.00% 85.00% 100.00% 10

20% 70.00% 100.00% 100.00% 100.00% 100.00% 70.00% 100.00% 100.00% 10

40% 75.00% 95.00% 100.00% 100.00% 100.00% 75.00% 90.00% 100.00% 10

60% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10

80% 80.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10

100% 85.00% 90.00% 100.00% 100.00% 100.00% 90.00% 90.00% 100.00% 10

‘–’ in the table denotes that single healthy wheat leaves were not considered.
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whole single diseased wheat leaf infected with wheat stripe rust

needs to be input into the built severity assessment models, and

then, the severity class of the single diseased wheat leaf to be

assessed can be determined. The severity assessment methods of

wheat stripe rust proposed in this study are different from those

proposed by Jiang et al. (2022), however, by using all these methods,

satisfactory assessment results can be achieved. Both the severity

assessment methods developed in this study and those proposed by

Jiang et al. (2022) can be automated by computer programming.

According to the actual situation, these methods can be integrated

with disease image processing systems, and the severity assessment

functions of these systems can be improved or the severity

assessment functions can be added to these systems, to realize the

automation of severity assessment of wheat stripe rust.

In the surveys and assessments of wheat stripe rust, severity and

infection type are two different terms. Generally, infection type is

used as an important indicator to evaluate the resistance of wheat to

stripe rust. The same strain or physiological race of Pst can cause

different infection types on different wheat varieties. Determination

of infection type is a kind of qualitative evaluation, which can be

implemented by using extracted image features to identify the

categories of infection types based on image processing

technology (Hayit et al., 2021). Different severity classes of wheat

stripe rust can also be qualitatively identified based on image

processing technology (Bao et al., 2021). In fact, the actual

percentage of lesion area is a continuous variable. Therefore, the

disease severity assessment method based on the actual percentages

of the lesion areas should be the best solution to implement severity

assessment of wheat stripe rust.
5 Conclusions

In this study, efforts were made to solve the problems existing in

the severity assessment methods of wheat stripe rust and to develop

new methods for severity assessment of the disease based on

machine learning. The acquired actual percentage data of the

lesion areas of single diseased wheat leaves were used to construct

the training sets and the corresponding testing sets by using the

system sample method with two modeling ratios under the two

conditions of considering healthy single wheat leaves or not, and

then, the two unsupervised learning methods including K-means

clustering algorithm and spectral clustering and the three

supervised learning methods including SVM, RF, and KNN were

used to build the severity assessment models of wheat stripe rust,

respectively. By using the built models to carry out the severity

assessments of the training and testing sets, satisfactory assessment

results were achieved. In particular, the severity classes of all the

specimens in the training and testing sets can correctly assessed by

using the built optimal RF models for severity assessment of wheat

stripe rust. The results indicated that good assessment performance

can be achieved by using the disease severity assessment methods

developed in this study, and that the methods are suitable for the

severity assessment of wheat stripe rust. The severity assessment
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methods of wheat stripe rust based on machine learning were

provided in this study. For the methods, the obtained actual

percentages of lesion areas in the areas of the whole single

diseased wheat leaves were directly used to build the severity

assessment models of wheat stripe rust, and then, the built

models were used to conduct severity assessments of single wheat

leaves based on the obtained corresponding actual percentages of

lesion areas of the leaves. The methods are simple, rapid, and easy-

to-operate, and by using these methods, very highly accurate

assessment results of single wheat leaves can be achieved. More

importantly, the severity assessment methods proposed in this

study can provide a reference for the severity assessments of all

the plant diseases for which the severity assessments are performed

based on the actual ratios of lesion areas to the areas of the diseased

plant units, and this study can provide a basis for the

implementation of automatic severity assessments of plant

diseases by computer programming based on computer vision

technology and image processing technology. In future studies,

automatic severity assessment systems of plant diseases can be

developed based on the proposed severity assessment methods. It is

feasible for UAV (unmanned aerial vehicle) applications in field

environments under the conditions that actual ratios of lesion areas

of plant units could be obtained.
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