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Introduction: The cooperative strategy of phenotypic traits during the growth of

plants reflects how plants allocate photosynthesis products, which is the most

favorable decision for them to optimize growth, survival, and reproduction

response to changing environment. Up to now, we still know little about why

plants make such decision from the perspective of biological genetic

mechanisms.

Methods: In this study, we construct an analytical mapping framework to explore

the genetic mechanism regulating the interaction of two complex traits. The

framework describes the dynamic growth of two traits and their interaction as

Differential Interaction Regulatory Equations (DIRE), then DIRE is embedded into

QTL mapping model to identify the key quantitative trait loci (QTLs) that regulate

this interaction and clarify the genetic effect, genetic contribution and genetic

network structure of these key QTLs. Computer simulation experiment proves

the reliability and practicability of our framework.

Results: In order to verify that our framework is universal and flexible, we applied

it to two sets of data from Populus euphratica, namely, aboveground stem length

- underground taproot length, underground root number - underground root

length, which represent relationships of phenotypic traits in two spatial

dimensions of plant architecture. The analytical result shows that our model is

well applicable to datasets of two dimensions.

Discussion: Our model helps to better illustrate the cooperation-competition

patterns between phenotypic traits, and understand the decisions that plants

make in a specific environment that are most conducive to their growth from the

genetic perspective.

KEYWORDS

Populus euphratica, differential equation, cooperation-competition, QTL mapping,
genetic regulatory network
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1 Introduction

In the growth and development of plants, there are always

intimate communication and connection among organs or various

parts of the same organ, so that plants can maintain the optimum

condition to obtain natural resources and adapt phenotypically to

living environment (Niklas and Spatz, 2006; Poorter et al., 2009;

Freschet et al., 2015; Weraduwage et al., 2015; Freschet et al., 2018;

Tumber-Dávila et al., 2022). The communication and connection

are specifically manifested as allocation patterns of biomass

(Hermans et al., 2006; Poorter et al., 2012; Wang et al., 2022),

which forms different allometric relationships and shapes plant

morphology, such as the restrictive relation between aboveground

stem and underground roots, height and diameter of stem, etc.

(Niklas and Spatz, 2006; Fu et al., 2017). Besides external

environmental factors, heredity is a critical driving force for

individuals to show a variety of phenotypic characteristics.

(Cunniff et al., 2015; Magar et al., 2021).

Quantitative trait locus (QTL) mapping can locate QTLs or

genes related to complex quantitative traits on chromosome, which

is always the interest of biogenetics and has been successfully

applied to many breeding projects (Tang et al., 2010; Wei et al.,

2012; Sonah et al., 2015; Fu et al., 2016; Xia et al., 2018). However,

traditional QTL mapping mainly focuses on phenotypic data of one

trait at one time point, ignoring that plant growth is a dynamic and

continuous process. Functional mapping is a QTL mapping method

to identify QTLs that regulate the dynamic growth change of target

trait during a period of time (Wu and Lin, 2006; Sun and Wu, 2015;

Fu et al., 2017).

In this paper, we establish a general and universal model

framework, which takes into account the dynamic characteristics

of plant growth and the interaction between two traits, screens out

key QTLs regulating this pattern, and figures out the genetic

structure (Figure 1). Our model is based on the Differential

Interaction Regulatory Equations (DIRE) to describe the growth

of two closely related phenotypic traits and the potential interaction

pattern between them. The basic form of this equation comes from

the Lotka-Volterra (LV) equation, which described the ecological

interaction of two species (Lotka, 1920; Volterra, 1928; May, 1973).

Our model identifies a number of genetic loci that determine the

cooperation or competition pattern of target traits. According to the

genetic effects of these key loci, the genetic network among them is

further constructed. We applied the model on two sets of data, stem

length - taproot length and root number - root length, which

represent the vertical and horizontal relationships of plant

architecture, respectively. The balance of competition or

cooperation between stem length and taproot length should not

only meet the requirements of plants to absorb, synthesize and

transport nutrients needed for life, but also ensure plant

morphology and stability. Specifically, the extension of root

system under the ground makes plants absorb water, minerals

elements and other substances in the soil, while stem transports

carbohydrate to root and provides support for leaves to ensure

effective photosynthesis. And root system shall provide enough

resistance to prevent the plant from being pulled out (Modrzyński

et al., 2015). The relation between root number and root length
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reflects the morphological characteristics of root system. Such

comparison enables us to have a new understanding of the

coordinated variation between traits from two dimensions of

plant structure and the genetic mechanism. At the same time, it

provides a reference for plant genetic breeding according to the

cooperative relationship of traits by means of technical means.

Finally, the simulation experiment verifies the reliability of

our model.
2 Materials and methods

2.1 Plant materials

We used the published experimental data to validate the utility

of our model (Zhang et al., 2017; Zhang, 2019). A full-sib F1 family

of 321 members was derived from hybridization between two

dioecious trees of Populus euphratica (Zhang et al., 2017). In

spring 2014, cut the male and female flowering branches from the

two trees and conduct artificial hybridization in water. After more

than 4 months, the catkins gradually ripened, and the harvested

seeds were cultured in a glass tube (40 mm in diameter and 400 mm

in length) which contains 350 ml of 1/2 Murashige and Skoog

medium (pH 6.0) under a sterile condition. The tube was placed in a

phytotron set at 14-h-day/10-h-night cycle, 28°C day and 22°C

night with 800 mmol m−2s−1 photosynthetically active radiation.

Two phenotypes, namely stem height (mm) and taproot length

(mm) were measured repeatedly for each progeny since seed

germination. Measurements were undertaken 16 times: 1, 3, 5, 7,

18, 20, 22, 24 26, 28, 31, 34, 38, 47, 54, 62 days after seed

germination, respectively. The full-sib population with the same

dioecious parents was planted (Zhang, 2019). In 2014, the flowering

branches of the male parent were cultured in water in a phytotron

set, and the mature pollen was stored in the EP tube at -20°. The

whole plant of the female parent was planted in the greenhouse.

After the female flower matures, the male parent's pollen is used for

artificial pollination. The mature seeds were obtained in the middle

of June. After the seeds were planted in vitro for 4 months, the

seedlings were transplanted to the substrate for cultivation, and 408

full-sib offspring were finally obtained. Through the clonal

experiment and the expansion and preservation experiment of

408 individuals in the population, 156 groups that can take root

on the rooting medium and grow normally into complete plants

were finally obtained. Vitro inoculation experiments on 156 groups

were conducted. Intercept the terminal buds (about 10 mm, 4-6

leaves) with the same growth status from each single plant and

inoculate them into a cylindrical flat-bottomed glass tube (45 mm in

diameter and 300 mm in length) for culture. All tubes were added

with 260 ml of rooting medium, and placed under the uniform

culture conditions in the tissue culture room at 16-h-day/8-h-night

cycle, 22°C with 1500lx light. Root length (cm) and root number

(count) were collected for each progeny once every 5 days from the

13th day to the 78th day after cultivation. Through the high-

throughput sequencing, we obtained 8305 single-nucleotide

polymorphisms (SNPs) distributed throughout 19 linkage groups

(labeled as Q1-Q8035). All SNP markers can be divided into
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testcross markers (lm×ll and nn×np) and intercross hybrid markers

(hk×hk) according to Mendelian genetic segregation rules, with

6886 and 1419 markers, respectively.
2.2 Differential interaction
regulatory equations

The biomass allocation among phenotypic traits results in

diverse allometric growth relationship. The relationship is a trade-

off made by trees after they adapt to the external environment,

which largely depends on their internal biological mechanisms. The

multiphasic growth model shows that the growth of most organisms

is composed of multiple “S”-shaped phases, which is superior to

single-phase growth (Koops, 1989; Van der Klein et al., 2020; Gong

et al., 2021). The seedling stage of trees is a “S”-shaped phase.

According to the basic principles of biophysics and biochemistry,

Logistic growth curve shows an "S" shape and consists of

exponential growth, linear growth and asymptotic growth (West

et al., 2001). Lotka-Volterra equation is derived from the Logistic

growth curve and is originally used as dynamic model for growth

and decline of amount on predators and prey in biological systems.

Its feasibility and effectiveness in describing the microbial

abundance under coculture and the predator-prey relationship in

the ecosystem have been fully proved (Fujikawa et al., 2014; Jiang

et al., 2018). We propose a DIRE model to quantify allometric

growth relationship of different traits, and its basic form comes

from Lotka-Volterra equation. DIRE describes the cooperation or

competition between two traits in the growth process to make full

use of survival resources. DIRE model is expressed as

dN1
dt = D1(N1) + I1(N1,N2)

dN2
dt = D2(N2) + I2(N1,N2)

8<
:

DIRE consists of two parts:

D1(N1) = r1 · N1 · (1 − ( N1
K1
)s1 )

D2(N2) = r2 · N2 · (1 − ( N2
K2
)s2

8<
:

representing the independent growth of target character, and

I1(N1,N2) = r1 · N1 · a · N2
K1

I2(N1,N2) = r2 · N2 · b · N1
K2

8<
:

representing interactive growth of two traits, where N1 and N2

represent phenotypic values of two characters, K1 and K2 are the

asymptotic value of independent growth, r1 and r2 represent the

independent growth rate, scale parameters s1 and s2 control the

independent growth rate, a and b is the interaction coefficient. The

values of a and b reflect interaction types between traits. We can

use strategic coordinate system to summarize all interaction types.

According to the strategy coordinate system (Figure 2C), the

strategies for interaction of two traits are divided into three

categories: (1) Win-win cooperation: (I1, I2) ∈ (+, +), two traits

promote the growth of each other; (2) Predation-prey: (I1, I2) ∈
(+,−) ∪ (−, +), one character is conducive to the other while the
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latter is harmful to the former. (3) Internecine: (I1, I2) ∈ (−,−),

both traits are inhibited by the other.
2.3 Statistical model for identifying
key QTLs

QTL mapping based on DIRE identifies QTLs that mediate the

dynamic growth and interaction between traits (Wu et al., 2011; Sun

and Wu, 2015). We design a full-sib mapping population of n

seedlings. All samples are genotyped for p SNPs. Phenotypic values

for trait 1 and trait 2 are obtained at a series of time points (t=1,…,

T), the phenotypic value of seedling i is

~yi = (~y1i;~y2i) = (y1i(1), y1i(2),…, y1i(T); y2i(1), y2i(2),…, y2i(T))

where~yi obeys bivariate normal distribution with mean vector~m
and covariance matrix S, i.e.

~yi eN(~m,S)

where the length of ~m is 2T, and S is a 2T � 2T symmetric

matrix. In other words, ~m and S represent the characteristics of the

phenotype data for target population. ~m is obtained by DIRE,

corresponding to parameter set Wm = (K1, r1, s1,a ,K2, r2, s2, b). S
can also be estimated by a set of parameters WS using first-order

structured antedependence (SAD (1)) model (Jaffrézic et al., 2003;

Zhao et al., 2005a; Zhao et al., 2005b).

Based on the following hypotheses, we can detect whether a

QTL regulates the interaction growth:

H0 : Wj = W versus H1 :Wj ≠ W for j = 1,…, J

where Wj = (Wmj ;WSj
) and W = (Wm ;WS). The null hypotheses

H0 means that parameters are independent of genotypes, and the

alternative hypotheses H1 indicates that there are genotype

differences in the parameter sets.

Hypotheses test is realized by maximum likelihood estimation

(MLE). The likelihood function of n samples for the null hypotheses

is

L0(~y) =
Yn
i=1

f (~yi;W)

where f (~yi) is a bivariate probability density function. And the

likelihood function for the alternative hypotheses is expressed as

L1(~y) =
YJ
j=1

Ynj
i=1

fj(~yi;Wj)

where J is the number of genotypes of target QTL, nj is the

number of samples with genotype j (j = 1,…, J), which satisfies

oJ
j=1nj = n. The likelihood values L0 and L1 are calculated,

respectively, and the test statistic log-likelihood ratio (LR) is

calculated as

LR = −2(logL0 − logL1)

LR follows the law of chi-square distribution according to its

construction principle, and its degree of freedom is the difference
frontiersin.org
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between the number of parameters of H0 and H1. p value is

compared with the critical threshold after FDR (False Discovery

Rate) correction to reduce false positives.

In the process of hypotheses test solution, parameter estimation

is realized by Expectation Maximization (EM) algorithm (Moon,

1996; Do and Batzoglou, 2008). According to EM algorithm, we give

an initialization parameter, and estimate the likelihood function

value, then iterate and optimize it so that the likelihood function

value approximates the local optimal value to obtain new

parameters. When the increased value of the likelihood function

is less than the target threshold, the iteration ends. We can obtain

parameter sets W and Wj of each locus within certain precision, in

which the solution of DIRE depends on the fourth-order Runge-

Kutta algorithm (Blum, 1962).
2.4 Construction of genetic network

The significant QTLs obtained from hypotheses test play key

roles in regulating the growth of phenotypic traits. By constructing

the genetic network of these QTLs, we can better understand the

genetic mechanism of phenotypic variation. We introduce the

replication factor equation (Wu and Jiang, 2021), which regards

the observed value of the target variable as the sum of its own

strategy and interactive strategies with its counterparts. The two

parts are referred to as the independent part and the interactive

part, respectively, and they are expressed in the form of a nonlinear

differential equation system. If these significant QTLs are regarded

as a system, the overall genetic effect of each QTL in this system can

be decomposed into independent part and the interactive part

affected by other QTLs.

g1k = (g1k(1),⋯, g1k(T))、 g2k = (g2k(1),⋯, g2k(T)) denote the

overall genetic effects of QTL k (k=1, 2,…, K) for trait 1 and trait 2,

respectively. We only retain QTLs that have a greater impact on

QTL k through variable selection in the LASSO regression model:

g·k(t) = o
K

k0=1,k0≠1
bk0g·k0 (t) + ak + ek(t)

where g·k represents the overall genetic effect of QTL k, bk0 is the

regression coefficient of QTL   k0, ak is a constant and   ek(t)

represents residual. LASSO (Wang and Leng, 2008) selects the

most important set of QTLs for the target QTL, and the

connections among them are determined by means of a nonlinear

differential equation:

dg·k
dt

= G0
k(g·k;Qk) + o

K 0

k0=1,k0≠k
Gk k0 (g·k0 ;Qk k0 ), k = 1,⋯,K 0

where the overall genetic effect g·k is decomposed into two parts:

G0
k(g·k;Qk) describes the independent genetic effect of QTL k;oK

k0=1,k0≠k

Gl k0 (g·k0 ;Qk k0 ) represents interaction produced by other QTLs on

QTL k,Qk andQk k0 are parameter sets, respectively. The fourth-order

Runge-Kutta algorithm is required to solve the differential equation to

determine the extent of interaction among QTLs.

On the other hand, the number of nodes in the network may be

more than that of time points. To ensure the accuracy, Legendre
Frontiers in Plant Science 04
orthogonal polynomial (LOP) is firstly applied to fit the genetic

effect curve of this QTL and obtain more time point information by

interpolation on the curve.
2.5 Coefficient of variation

Coefficient of Variation (CV) is a normalized measure to

evaluate the dispersion of probability distribution. It can be used

to compare the dispersion of data among different phenotypic traits

on the basis of eliminating influence of dimension. We use it to

quantitatively describe the change of dispersion of each phenotypic

trait over time. The calculation formula is as follows:

CV =
s
m

where s represents standard deviation and m represents mean.
2.6 Phenotypic variation explained

We define the proportion of phenotypic variation caused by

genetic factors (or heritability explained by chosen QTLs) as

phenotypic variation explained (PVE), and it is calculated by

means of variance analysis. First of all, take the target trait

phenotype as the dependent variable and genotypes as the

independent variables to conduct generalized linear regression,

and then perform variance analysis on the regression result to

obtain the PVE value (Xu et al., 2016; Gong et al., 2021).
3 Results

3.1 Phenotypic variation analysis

Phenotypic traits are expected to be variable among individuals

within a species, which is one kind of manifestation of intraspecific

variability (Cianciaruso et al., 2009; Albert et al., 2010) and may be

caused by genetic factors or phenotypic plasticity induced by

environment (Miner et al., 2005). Here, specific performance of

this variation is discrepancy in quantitative characters among

progeny seedlings, which may not be clear at the seed

germination stage, but morphological variation and structural

differences within the population become more and more obvious

over time. Figure 2A illustrates the distribution of stem length -

taproot length and root number – root length from F1 population of

Populus euphratica at a series of time points. Phenotypic values of

them both display bigger dispersion with time. The width of the

violin gradually narrows, while the vertical height constantly

increases, indicating that the differences among progenies increase

over time. Taking taproot length as an example for detailed analysis,

the height range of the violin at 3 days is 0-20mm, that is, taproot

length of all samples does not exceed 20mm at this time. The widest

width of the violin shows the concentrated distribution of taproot

length in F1 population, and the taproot length of most seedlings is

between 1 and 5mm. By the 18th day, the height of the violin has a
frontiersin.org
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significant increase, meaning that some samples grow very fast

during this period, while some grow slowly. At the moment, the

range of the violin is about 1-10mm, i.e., taproot length of most

samples is relatively close, about 1-10mm. By the 62nd day, the

distribution range of the taproot length has expanded to 0-150mm,

and the shape of the violin is very close to a line, indicating that the

differences among samples further enlarge, some of the taproots are

150mm long, while others are only about 10mm long. The growth

of underground roots also shows similar characteristics, the

difference among samples increases with time (Figure 2A). This

phenomenon is shown on the violin diagram that the violins are

both wide and short in the early stage but narrow and high in the

late stage. One potential cause of phenotypic variation may be that

those samples have different genotypes, suggesting that there may

be QTLs regulating woody growth.

The CV curve of stem length varies widely, with the maximum

value reaching 2 mm at the 3rd day (Figure 2D). And it decreases

rapidly from the 3rd day to the 18th day, then rises slowly after the

18th day. Above variation trend is caused by the characteristic of

sample growth. At the 3rd day, the stem length of most samples is 0,

which results in data dispersion. As time goes by, the stems of some

samples begin to grow, and the data dispersion begins to decrease.

However, there are still some samples with stem length of 0 before

the 18th day, so the CV values before the 18th day are always large.

After 18 days, basically all samples grow stems, and the CV value is

the lowest in the whole growth process. Then, affected by individual

differences, some of the samples grow well, while the others grow

slowly, with slight phenotypic changes. Therefore, the degree of data

dispersion gradually increases, and the CV shows an upward trend.

Compared with the stems with slow growth in the early stage, the

development of root is earlier, that is, during the growth of

seedlings, young individuals tend to allocate more biomass to root

growth rather than stem growth. During the whole culture process,

the CV value of taproot growth remains at about 1, and decreases

slightly after 38 days. The CV curve of root number rises slowly

before the 33rd day and remains basically unchanged after the 33rd

day. The CV curve of root length decreases slowly before the 33rd
Frontiers in Plant Science 05
day, and remains basically unchanged after the 33rd day, which is

completely opposite to that of root number.
3.2 Curve fitting and QTL detection
of DIRE

Based on the least square method, we used DIRE to fit the growth

trajectory of target traits. Unlike some classical growth equations, such

as Logistic equation, Gompertz equation and Richards equation, which

describe the target character separately, DIRE considers the growth of

two traits as a whole, gives the potential internal interaction pattern

between them, that is, how trait 1 promotes or inhibits the growth of

trait 2, and conversely, how trait 2 affects the growth of trait 1. DIRE

can fit the growth data of stem length, taproot length, root number and

root length for most progenies well (Supplementary Figure 1,

Supplementary Figure 2, Supplementary Figure 3 and Supplementary

Figure 4). The residual distribution diagram shows that the residual

value randomly distributed, indicating the robustness of the fitting

results (Supplementary Figure 5). Table 1 shows the estimated

parameters and evaluation information of the average growth value

of the two groups of data by Logistic equation, Gompertz equation and

Richards equation and DIRE equation. The evaluation criteria include

the residual sum of squares (RSS), the coefficient of determination (R2),

Akaike information criterion (AIC) and Bayesian Information

Criterion (BIC). The evaluation result shows that our model has a

netter fitting effect than most traditional equations, except that

Gompertz equation fits the growth of root number – root length

slightly better than DIRE, which indicates that internal interaction

indeed affects the growth of the two traits (Table 1).

Our model divides the overall growth of the target trait into two

parts, namely, the independent growth part and the interaction

part. According to the symbols of (I1, I2), which are determined by

the symbols of interaction parameters a and b , we can judge the

interaction strategies between two traits (Table 1; Figure 2C). The

interaction strategy of stem and taproot belongs to predation-prey

strategy. Stem length growth is inhibited by taproot length growth;

conversely, taproot growth benefits from stem length (Figure 2B).

The growth pattern of root number and root length follows a win-

win cooperation strategy, they promote the growth of each other.

However, the degree of mutual benefit is not completely equal. It is

obvious that the interactive curve of root length is significantly

higher than 0 horizontal line, while that of root number is close to 0

horizontal line, meaning that root length growth gains more

benefits from root number growth (Figure 2B).

DIRE quantitatively describes the growth of two characters as a

whole interacting with each other. Different growth patterns show

different growth curve trajectories, corresponding to different

parameter sets Wm = (K1, r1, s1,a ,K2, r2, s2, b). Significant QTLs

that regulate the growth of target traits can be identified from the

whole genome through a series of hypothesis tests on parameter sets.

We obtained 94 significant QTLs regulating the growth of stem

length - taproot length and 93 significant QTLs regulating the growth

of root number - root length at the threshold of 0:1� 10−10

(Figure 3A). These QTLs are sporadically distributed in each

linkage group. QTLs regulating the growth of stem length - taproot
FIGURE 1

Schematic diagram of our model framework. It is applied to the data
of stem length and taproot length from Populus euphratica
seedlings to identify key QTLs regulating the growth interaction
between aboveground and underground, and clarify the
architecture of genetic network. It is also used to analyze the data of
root number and root length to understand the genetic mechanism.
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length mainly locate in Linkage Group 8, 11, 12 and 17, accounting

for 10.64%, 22.34%, 10.64% and 12.77% of all key QTLs,

respectively (Figure 3B).

A number of QTLs are annotated to biological functions closely

related to the growth of Populus euphratica, or are homologous with

some genes that play key roles in the growth of other trees. For

example, the gene annotated by Q3009 (nn_np_12066, Linkage Group

5) encodes pentapeptide repeat containing protein At4g14850, which

is a homologous protein of LOI1 (Zhang et al., 2017). LOI1 is a

component of mitochondria and a regulator of isoprenoid

biosynthesis, affecting the synthesis of ATPQ, RNA and other

biological macromolecules (Kobayashi et al., 2007). LOI1 interacts

with MEF14 and participates in mitochondrial editing and

cytochrome c, while the cytochrome c, as an important component
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of the electron transport chain, has the oxidation-reduction ability,

participates in the oxidative phosphorylation KEGG pathway, and is

active in mitochondria, organelle envelope and cytoplasm. Q2345

(nn_np_11278, Linkage Group 4) is homologous with LOC7486368,

the gene encoding sugar transport protein (STP) 10 in Poplus

tricocarpa. STP is a plant-specific transport protein, which is

responsible for absorbing glucose from the apoplast into plant cells.

It is an important member of monosaccharide transporters and plays a

crucial role in the division andmorphogenesis of organs such as seeds.

They are the components of organ development in co-plastic isolated

tissues, such as seeds, pollen and fruit. (Cheng et al., 2015; Rottmann

et al., 2018; Bavnhøj et al., 2021). The key QTLs that control the

growth of root number - root length are mainly distributed in Linkage

Groups 1 and 4, in which Linkage Groups 1 contains the largest
A

B

D

C

FIGURE 2

Analysis of the growth of seedlings from a full-sib family of Populus euphratica. (A) Violin plots of stem length, taproot length, root number and root
length of all samples at a series of times. (B) Growth curves of stem length, taproot length, root number and root length. Each red line is the fitting
curve of average growth for corresponding trait, which consists of independent growth (broke lines) and interactive growth with another trait (dot
lines). (C) Strategic coordinate system of interaction types between two traits. According to the sign of (I1, I2), the strategy plane is divided into four
regions, representing four interaction types between traits. (D) CV curves of stem length, taproot length, root number and root length of all samples
at a series of times.
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number of QTLs, reaching 39, accounting for 41.94% of all the key

QTLs (Figure 3C). These QTLs are also annotated to rich biological

functions. In particular, some QTLs are closely related to the growth of

plant roots. The gene annotated by Q910 (nn_np_11836) in Linkage

Group 1 encodes a leucine-rich repetitive receptor-like protein kinase

family protein, which is mainly located in the membrane system. This

gene is involved in ATP synthesis, cytokinin regulation and

endocytosis transport of cell membrane. In Arabidopsis research, it

has been proved that this gene controls root growth by mediating

cytokinin. The increase of At2g33170 will promote the growth of root

length in Arabidopsis (Hove et al., 2011). Supplementary Table S1 and

Supplementary Table S2 show the basic information of these key

QTLs, including the linkage group, genetic distance, annotated gene

function information, etc.
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3.3 Genetic architecture analysis

Genetic factors contribute to phenotypic variation. We

calculated heritability i.e. phenotypic variation explained (PVE) of

93 and 94 significant QTLs by quantifying the dynamic genetic

contribution of markers to growth (Figure 4). There is dramatic

variation in the temporal pattern of heritability (PVE) for stem

length, and these patterns can be roughly clustered into three

categories (Figure 4A): ① PVE increases and then decreases

(pink); ② PVE increases monotonously over time (yellow); ③ PVE

decreases consistently over time (green). And the temporal patterns

of heritability for taproot length can be sorted into similar three

groups (Figure 4B). Among the significant loci, the variation trends

of PVE at the same QTL for two traits are different and even
TABLE 1 The estimated parameters and the evaluation information of DIRE.

DIRE Logistic

Root number-
Root length

Stem length-
Taproot length

Root number-
Root length

Stem length-
Taproot length

Root number
(count)

Root length
(cm)

Stem length
(mm)

Taproot length
(mm)

Root number
(count)

Root length
(cm)

Stem length
(mm)

Taproot length
(mm)

57.3800
(K1)

61.4581
(K2)

182.1515
(K1)

20.1145
(K2)

50.5633
(A)

68.6949
(A)

71.8931
(A)

167.0514
(A)

0.1864
(r1)

0.2565
(r2)

0.2040
(r1)

0.1193
(r2)

0.0695
(k)

0.0731
(k)

0.0897
(k)

0.0574
(k)

0.2190
(s1)

0.1781
(s2)

0.1694
(s1)

1.1515
(s2)

38.3047
(B)

53.3358
(B)

193.497
(B)

33.5669
(B)

0.0141
(a)

0.0731
(b))

–0.0394
(a)

2.3619
(b)

/ / / /

RSS = 2.1483 RSS = 5.9005 RSS = 10.1548 RSS =12.4238

R2 = 0.9997 R2 = 0.9995 R2 = 0.9987 R2 = 0.9990

AIC = –63.0931 AIC = 32.8029 AIC = –16.3991 AIC = –14.4475

BIC = –51.8835 BIC = –21.5934 BIC = –8.4059 BIC = –6.0403

Gomperz Richards

Root number-
Root length

Stem length-
Taproot length

Root number-
Root length

Stem length-
Taproot length

Root number
(count)

Root length
(cm)

Stem length
(mm)

Taproot length
(mm)

Root number
(count)

Root length
(cm)

Stem length
(mm)

Taproot length
(mm)

67.6613
(A)

95.4887
(A)

409.2132
(A)

797.0535
(A)

67.1708
(A)

113.8355
(A)

113.8355
(A)

284.7532
(A)

0.0322
(k)

0.0325
(k)

0.0201
(k)

0.0140
(k)

0.0313
(k)

0.0333
(k)

0.0314
(k)

0.0208
(k)

5.3221
(B)

5.9905
(B)

7.9497
(B)

5.3180
(B)

0.2922
(B)

0.245
(B)

0.5157
(B)

0.1581
(B)

/ / / /
0.9402
(m)

0.9700
(m)

0.9008
(m)

0.9637
(m)

RSS = 1.9778 RSS = 8.9263 RSS = 4.64788 RSS = 37.4267

R2 = 0.9998 R2 = 0.9993 R2 = 0.9998 R2 = 0.9998

AIC = –62.2073 AIC = –24.3657 AIC = –34.2822 AIC = 24.1250

BIC = –54.2141 BIC = –15.9586 BIC = –23.6246 BIC = 34.7827
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completely opposite. Taking Q5033 as an example, for taproot

length, PVE of it increases monotonously over time, while PVE of it

for the growth of stem length decreases with time, displaying a

completely opposite trend. It means that the genetic contribution to

the growth of taproot length increases with time, and the genetic

contribution to the growth of stem length decreases gradually. At

the same time, the PVE variation trend of a pair of characters on the

same QTL may be similar, for example, PVE of Q4017 for stem

length and taproot length (Figures 4A, B) both increases with time.

The temporal patterns of heritability for other traits (Figures 4C, D)

can also be sorted into three clusters.

The growth of phenotypic traits is largely influenced by key QTLs.

Although these identified QTLs jointly regulate the overall growth of

target trait, there are great differences in their roles and importance in

the genetic network. These QTLs do not exist independently, they are

subject to epistatic effects from other QTLs besides direct genetic

effects produced by themselves. We renumbered these QTLs and

constructed their genetic effect network to clarify their interactions

and how these QTLs directly or indirectly affect the growth of target

traits. These genetic networks, including stem length network, taproot

length network, root number network and root length network, share

similarities in structure (Figure 5). Several dominant core QTLs

regulate most other QTLs, while most QTLs are in a relatively

secondary position, they receive epistatic influence from core QTLs

in the form of stimulation or inhibition. For example, in stem length

network (Figures 5A, B), only 28 core QTLs play major regulatory

roles, accounting for 29.8% of all nodes. In the root number network
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(Figures 5C, D), only 6 QTLs play regulatory roles, accounting for

only 6.45% of all QTLs, in which the roles of S42 (Q1538,

hk_hk_1218) and S82 (Q7296, nn_np_9326) are particularly

critical. The number of links generated by the two QTLs accounts

for 79.6% of the total network links, and there are also links among

them, which means that the leading QTLs not only produce direct

genetic effects, but also indirectly affect the expression of other QTLs,

thus directly and indirectly affect the growth of root. In the genetic

network of other traits, the situation is similar. On the other hand,

genetic networks contain a variety of mutual regulatory relationships

between QTLs, including unidirectional and bidirectional

relationships through promotion or inhibition, which are

determined by the characteristics of genetic effects produced by the

QTL itself and the QTL interacting with it. In the taproot network

(Figure 5A), there are mutually promotion QTL pairs S16↔S93. In

the genetic network of root number (Figure 5C), there is S42↔S20, in

which S42 stimulate S20, while S20 inhibits the expression of S42. By

counting the number of link type between QTLs in each genetic

network, Figure 5B and Figure 5D shows that the number of

activation links is more than the number of inhibition links, and

the former is 1-2 times that of the latter.
3.4 Simulation

In order to further verify the accuracy and validity of our model,

we simulated and analyzed the growth data of Populus euphratica
A B

C

FIGURE 3

Manhattan plot (A) of p-values over 19 linkage groups of Populus euphratica, where the threshold (red horizontal line) is determined by FDR
correction. The proportion of significant QTL regulating stem length - taproot length (B) and root number - root length (C) in 19 linkage groups.
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under different sample size (n) and heritability (H2). The sample

size n is set to 100 and 300 respectively, and the heritability H2, that

is, the proportion of genetic variation in the simulated phenotypic

variation, is set to 0.05 and 0.1 respectively. According to the

analysis results on real data, the growth of stem length and

taproot length is regulated by Q681 of linkage group 1, and the

growth of root number and root length is regulated by Q5518 of

linkage group 11. In the simulation experiment, we conducted 100

effective simulation calculations based on the parameters of the two

genotypes of above two significant QTLs under different sample

sizes and heritability. Since Q681 and Q5518 are markers of test

cross and have two genotypes, we record these two genotypes as ll

and lm respectively. Our model is applied to analyze phenotypic

data and genotype data obtained from simulation experiment. The

Maximum Likelihood Estimation algorithm is implemented to

obtain the likelihood function values of the null hypothesis and

alternative hypothesis in hypothesis testing and parameter set Wm =

(K1, r1, s1,a ,K2, r2, s2, b) combined with fourth-order Runge-Kutta,

Expectation Maximization (EM), Least Square Method and local

search optimization algorithm BFGS. We can find that there are
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some differences between the parameters obtained from the

simulation experiment and the real parameters (Tables 2, 3), but

the differences come smaller with the increase of heritability or

sample size. Here, the parameter values obtained from the

simulation experiment are the average values of 100 groups

of parameters.

The parameter set of the simulation result is presented in the

form of growth curve, which helps us more intuitively observe the

similarity and difference between the simulation experiment result

and the real growth data (Figure 6). According to the average

parameter values of estimated parameters of 100 groups of

simulation experiments under four simulation conditions

respectively (n=100, 300; H2=0.05, 0.1), we depicted their

corresponding growth curves, including the overall growth curve,

independent growth curve and interactive growth curve. By

comparing the estimation curves of different heritability levels

and different simulated sample sizes with real growth curves, we

find that the simulation effect of the estimation curve with

heritability of 0.1 is better than that of 0.05, and the simulation

effect of the estimation curve with simulation quantity of 300 is
A B

DC

FIGURE 4

Heat maps and hierarchical clustering trees of heritability are explained by 93 significant QTLs for stem length (A), taproot length (B), and 94
significant QTLs for root number (C), root length (D) of Populus euphratica, respectively. Heat maps of heritability are explained by several selected
QTLs. Significant QTLs are clustered into 3 categories (pink, green and yellow).
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obviously better than that of 100. In Figure 6, the simulation curve

with larger heritability or sample size is closer to the real curve,

especially the curve with heritability of 0.1 and sample size of 300,

which is the closest to the real curve. This is consistent with our

expected results, that is, the simulation effect increases with the

increase of sample size and heritability.
4 Discussion

In the process of tree growth and development, different

organs or different tissues of the same organ do not exist
Frontiers in Plant Science 10
independently. We cannot ignore the interaction between them.

DIRE not only quantitatively describes cooperation and

confrontation between two traits under a certain environment,

but also explains the genetic regulation mechanism behind this

collaboration. It is calculated on two groups of data with different

characteristics: stem length - taproot length, root number - root

length. Simulation experiments verify that all groups of data have

achieved good results, indicating the validity and universality of

our model. The characters that affect and restrict each other in the

growth process of tree include but are not limited to above traits.

With appropriate modifications and adjustments, DIRE can be

extended to describe the relationship between more characters
A

B

D

C

FIGURE 5

Genetic effect networks (A), bar chart for activating links and inhibitory links and bar chart for outgoing nodes and incoming nodes in networks (B)
for stem length and taproot length. Genetic effect networks (C), bar chart for activating links and inhibitory links and bar chart for outgoing nodes
and incoming nodes in networks (D) for root number and root length. Each node represents a QTL. The edges connecting nodes represent the
interaction among QTLs, the dotted links represent the inhibitory effect, the solid links represent facilitation. The red nodes represent QTLs that
stimulate or inhibit other QTLs.
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such as height and diameter of stem, stem and leaves, then tap the

genetic driving force behind them.

The competition and cooperation between different characters

exist in the whole process of tree growth. In this paper, we mainly

focus on the seedling stage, which is only a very short period for

trees whose life span in years, and its time units are days. But this

does not mean that our model is only suitable for describing the

growth of the seedling stage. We can extend it to describe the

dynamic changes of characters in the process of tree growth for

several years or even more than ten years, or consider different

growth stages of trees.

The data materials in this paper are cultivated under the

condition of controlling environmental variables, but in reality,

the environment in which trees grow is uncontrollable, and the

genetic effect in the whole growth and development of trees is also
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affected by environmental stimulus. Therefore, our model can be

applied to the response of the genetic structure of tree growth to

environmental changes, including in different light, temperature,

soil and so on (Srikanth and Schmid, 2011; Xie et al., 2012; Boyce

et al., 2020). In particular, by comparing the genetic regulation

mechanism of tree growth under some extreme conditions, such as

drought, salt stress, etc., it can help to explore the survival

mechanism of plants under extreme conditions from a genetic

perspective (Wang et al., 2021).

In addition, the model can be extended from two-dimensional

to multi-dimensional model, so as to mine the key quantitative trait

loci that regulate the synergetic growth of multiple complex traits. It

is more reasonable to consider the integrity of plant growth, but this

expansion will largely increase the complexity of the model and

computational difficulty to a certain extent.
TABLE 3 Comparison between the real parameter set and the parameter set of simulation experiment results for root number (count) and root length
(cm).

TRUE
H2 = 0.05 H2 = 0.1

n=100 n=300 n=100 n=300

lm ll lm ll lm ll lm ll lm ll

K1 188.4385 193.0498 78.7291 158.5078 157.5352 165.9129 157.5352 165.9129 155.3674 164.7949

r1 0.1179 0.1288 0.0934 0.1055 0.1057 0.1141 0.1056 0.1141 0.1049 0.1143

s1 0.6105 0.4320 1.1293 0.7173 0.9500 0.6104 0.9500 0.6104 0.9846 0.5930

a -0.789 -0.3113 -0.2289 -0.3624 -0.8135 -0.3354 -0.8135 -0.3354 -0.8372 -0.3287

K2 23.2003 26.3170 24.7709 26.3031 22.9606 26.2959 22.9606 26.2959 22.9184 26.4386

r2 0.0978 0.0976 0.0844 0.0892 0.0916 0.0930 0.0916 0.0930 0.0915 0.0930

s2 1.2007 1.2964 1.2145 1.3195 1.2148 1.3108 1.2148 1.3108 1.2191 1.3151

b 2.4344 2.4917 2.4205 2.5593 2.4739 2.5427 2.4739 2.5427 2.4979 2.5627
fron
TABLE 2 Comparison between the real parameter set and the parameter set of simulation experiment results for stem length (mm) and taproot length
(mm).

TRUE
H2 = 0.05 H2 = 0.1

n=100 n=300 n=100 n=300

lm ll lm ll lm ll lm ll lm ll

K1 50.7415 58.6190 53.3361 52.9417 54.2914 58.1174 52.9674 58.7834 53.7712 56.8819

r1 0.1473 0.1444 0.1240 0.1404 0.1230 0.1402 0.1409 0.1406 0.1452 0.1411

s1 0.2641 0.3651 0.3785 0.4437 0.3418 0.3976 0.3113 0.3928 0.2713 0.3865

a -0.0024 0.0618 -0.0153 0.1162 -0.0156 0.0838 -0.0179 0.0699 -0.0121 0.0718

K2 62.1173 68.2784 58.7068 70.1069 66.0069 69.8684 62.8763 70.2909 58.2741 67.4328

r2 0.2530 0.1893 0.1598 0.1912 0.1504 0.1772 0.1991 0.1869 0.2084 0.1868

s2 0.1664 0.2843 0.3349 0.2930 0.3053 0.3040 0.2359 0.2909 0.2213 0.2944

b 0.0315 0.1340 0.0809 0.1364 0.0086 0.1375 0.0266 0.1311 0.0579 0.1421
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We have carried out simulation experiments based on real data,

and the simulation results show that our model has good statistical

properties, which provides an effective analytical framework for

describing the dynamic interaction patterns between different traits

during plant growth and development.
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FIGURE 6

Growth curves of stem length (A), taproot length (B), root number (C) and root length (D) of two genotypes with a heritability of 0.05 and 0.1. The
overall growth (solid line) for each trait is decomposed into independent part (broken line) and interactive part (dotted line). The sample sizes are 100
and 300. Black line represents the real curve, red represents the estimation curve with the sample size of 100 and a heritability of 0.05, blue
represents the estimation curve with the sample size of 100 and a heritability of 0.1, the green represents the estimation curve with the sample size
of 300 and a heritability of 0.05, the orange represents the estimation curve with the sample size of 300 and a heritability of 0.1.
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