AUTHOR=Zhu Qiufang , Liu Lijia , Lu Xiaofeng , Du Xinxin , Xiang Ping , Cheng Bosi , Tan Meng , Huang Jiaxin , Wu Lijiao , Kong Weilong , Shi Yutao , Wu Liangyu , Lin Jinke TITLE=The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.) JOURNAL=Frontiers in Plant Science VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1149182 DOI=10.3389/fpls.2023.1149182 ISSN=1664-462X ABSTRACT=
As the main flavor components of tea, the contents of epigallocatechin-3-gallate (EGCG), theanine and caffeine are regulated by ambient temperature. However, whether the biosynthesis of EGCG, theanine and caffeine in response to temperature is regulated by endogenous hormones and its mechanism is still unclear. In this study, tea cuttings cultivated in the phytotron which treated at different temperatures 15℃, 20℃, 25℃ and 30℃, respectively. The UPLC and ESI-HPLC-MS/MS were used to determine the contents of EGCG, theanine, caffeine and the contents of phytohormones in one leaf and a bud. The results showed that indoleacetic acid (IAA), gibberellin 1(GA1) and gibberellin 3 (GA3) were significantly correlated with the content of EGCG; Jasmonic acid (JA), jasmonate-isoleucine (JA-Ile) and methyl jasmonate (MeJA) were strongly correlated with theanine content; IAA, GA1 and gibberellin 4 (GA4) were significantly correlated with caffeine content at different temperatures. In order to explore the internal intricate relationships between the biosynthesis of these three main taste components, endogenous hormones, and structural genes in tea plants, we used multi-omics and multidimensional correlation analysis to speculate the regulatory mechanisms: IAA, GA1 and GA3 up-regulated the expressions of