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Automatic segmentation of
cotton roots in high-resolution
minirhizotron images based on
improved OCRNet
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1College of Agriculture, Shihezi University, Shihezi, China, 2College of Information Science and
Technology, Shihezi University, Shihezi, China, 3School of Information Engineering, Huzhou
University, Huzhou, China
Root phenotypic parameters are the important basis for studying the growth

state of plants, and root researchers obtain root phenotypic parameters mainly

by analyzing root images. With the development of image processing

technology, automatic analysis of root phenotypic parameters has become

possible. And the automatic segmentation of roots in images is the basis for

the automatic analysis of root phenotypic parameters. We collected high-

resolution images of cotton roots in a real soil environment using

minirhizotrons. The background noise of the minirhizotron images is extremely

complex and affects the accuracy of the automatic segmentation of the roots. In

order to reduce the influence of the background noise, we improved OCRNet by

adding a Global Attention Mechanism (GAM) module to OCRNet to enhance the

focus of the model on the root targets. The improved OCRNet model in this

paper achieved automatic segmentation of roots in the soil and performed well

in the root segmentation of the high-resolution minirhizotron images, achieving

an accuracy of 0.9866, a recall of 0.9419, a precision of 0.8887, an F1 score of

0.9146 and an Intersection over Union (IoU) of 0.8426. The method provided a

new approach to automatic and accurate root segmentation of high-resolution

minirhizotron images.

KEYWORDS

plant root, image processing, computer vision, semantic segmentation, attentionmechanism
1 Introduction

The root system is the nutrient organ of plants, which plays an important role in

promoting plant growth. In root studies, the root phenotypic parameter is an important

measure of root growth status. Since soil is an opaque medium, it is not possible to survey

roots directly to obtain root phenotypic parameters, except by some methods. Excavation is

a traditional method of obtaining roots that can expose the roots to the soil for the purpose
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of direct root survey and can be divided into methods such as

shovelomics method (Trachsel et al., 2011), core method (Wasson

et al., 2016) and trench profile method (Faye et al., 2019). But

excavation is a destructive sampling method and also requires

considerable time and labor. Hydroponics can be selected to

cultivate plants in order to monitor their growth status and

obtain plant root information (Li et al., 2018). Although root

information is more readily available through hydroponic

cultivation of plants than through excavation, the findings from

studies using hydroponics cannot be generalized to root studies in

the soil environments. In order to obtain root information quickly

and easily in the soil environments without damaging plants, root

researchers have used sensors to monitor plant roots non-

destructively, such as X-ray computed tomography (CT) to

reconstruct the three-dimensional structure of rice roots

(Teramoto et al., 2020), nuclear magnetic resonance (NMR)

imaging technology to analyze the root structure of wheat

(Pflugfelder et al., 2022), and minirhizotrons to photograph

cotton roots (Shen et al., 2020). Although all of these methods

can obtain in situ non-destructive images of roots, these methods

are applicable to different scenarios. The implementation of CT and

NMR imaging technology requires expensive and highly technical

equipment, and both methods are in most cases only applicable to

the observation of plant roots in small potted plants. In contrast,

minirhizotrons are less expensive and simpler to operate, and

minirhizotrons can be inserted into the soil in the field to observe

the roots. Therefore, minirhizotrons are well suited to be used to

collect in situ images of plant roots in the field to analyze root

phenotypic parameters.

Traditional root segmentation is achieved manually by image

processing software which is time-consuming and labor-intensive.

To address the drawbacks of manual root segmentation, machine

learning methods are applied by root researchers for automatic root

segmentation. Machine learning is a method that allows machines

to simulate or learn human behavior, and common machine

learning methods include OTSU (Otsu, 1979), Support Vector

Machine (SVM) (Cortes and Vapnik, 1995) and Random Forests

(Breiman, 2001). A segmentation method based on color features of

the roots of wheat seedlings was implemented: firstly, the root

image was converted from RGB color space to HCI color space,

then the threshold of the chroma component was set to extract the

binary image, and finally, the image was processed with local fuzzy

c-means clustering algorithm to get the segmentation result

(Goclawski et al., 2009). The OTSU method was applied to the

study of automatic root segmentation of the images acquired by

desktop scanners, and this method is an image segmentation

algorithm based on a dynamic threshold (Chen and Zhou, 2010).

The threshold segmentation methods are usually only applicable to

the automatic segmentation of root images with simple

backgrounds. Moreover, the threshold segmentation methods

need to be set with suitable thresholds in advance, which leads to

the poor generalization of the threshold segmentation methods.

The Convolutional Neural Network (CNN) is a method proposed

to compensate for the previous machine learning’s inability to learn

autonomously like the human brain. LeNet-5 (Lecun et al., 1998), as
Frontiers in Plant Science 02
one of the earliest CNNs, successfully realized the recognition of

handwritten fonts. Later, the CNN-based AlexNet (Krizhevsky et al.,

2012) was proposed to achieve the automatic classification of images.

The proposal of FCN (Long et al., 2015) gave CNNs the ability of

semantic segmentation. Then, excellent semantic segmentation

methods such as U-Net (Ronneberge et al., 2015), PSPNet (Zhao

et al., 2017), DeepLabv3+ (Chen et al., 2018) and OCRNet (Yuan et al.,

2020) were created. With the development of image segmentation

algorithms for deep learning, many root researchers have applied

CNN-based image segmentation models in automatic root

segmentation research. An improved DeepLabv3+ model was used

for the automatic segmentation of cotton roots, where root images were

acquired from minirhizotrons installed in the field, and experimental

results showed that this improved semantic segmentation model

worked well for root segmentation of minirhizotron images with a

real soil environment as the background (Shen et al., 2020). U-Net was

applied to the segmentation of soybean seedling roots, and

experimental results showed that the method could achieve accurate

segmentation of soybean seedling roots (Xu et al., 2022). CNN-based

segmentation methods have been widely used in automatic root

segmentation research and have achieved good performance. These

methods not only do not need to be set with suitable thresholds in

advance but also can be applied to root segmentation in real soil

environments. To further improve the performance of semantic

segmentation models, many root researchers have added attention

mechanisms to the segmentation models to enhance the root

segmentation capability of the models.

The attention mechanism is an information processing

mechanism that focuses on useful information and ignores useless

information. The classical attention mechanisms contain Squeeze-

and-Excitation (SE) (Hu et al., 2018), Convolutional Block

Attention Module (CBAM) (Woo et al., 2018) and Non-Local

(Wang et al., 2018). The recently proposed attention mechanisms

contain Efficient Channel Attention (ECA) (Wang et al., 2020),

Coordinate Attention (CA) (Hou et al., 2021) and Global Attention

Mechanism (GAM) (Liu et al., 2021). Since the attention

mechanism can enhance the focus of the segmentation model on

the root targets, the attention mechanism has been applied in some

root segmentation studies for improving the segmentation model

and enhancing the root segmentation capability of the model. For

example, an improved U-Net with the SE attention module was

applied to the study of rice root segmentation, which achieved

automatic precision segmentation of rice seedling roots in the

images (Gong et al., 2021).

Nowadays, most of the root segmentation researchers still use

DeepLabv3+ and the previous semantic segmentation models. As a

model proposed in recent years, OCRNet uses the object region to

which each pixel belongs as the region for extracting contextual

representation, which is a better way to obtain contextual

representation for each pixel than DeepLabv3+. Moreover, the

background of in situ images is a real soil environment, and there

are many noises in the soil that interfere with automatic root

segmentation, and these noises will affect the accuracy of

automatic root segmentation. An attention mechanism can be

added to the model, which can enhance the model’s attention to
frontiersin.org
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the root targets and improve the model’s ability to distinguish the

roots from the background. Therefore, this work aims to explore the

application of an advanced semantic segmentation network model

improved by an attention mechanism for cotton root segmentation

of minirhizotron images with a real soil environment as the

background. The specific objectives achieved here are as follows:
Fron
(1) Collect high-resolution in situ cotton root images using

minirhizotrons and annotate these images.

(2) Improve OCRNet by adding the GAM attention module to

optimize the pixel representations output by the backbone.

(3) Compare and evaluate the improved method with the

mainstream semantic segmentation methods.
2 Materials and methods

2.1 Data collection

The high-resolution minirhizotron images were collected at the

experimental station of Shihezi University College of Agriculture in

Shihezi, Xinjiang Uygur Autonomous Region (85°59′43.7064″E, 44°
19′21.1044″N). In 2018, we selected two areas in the cotton field,

installed two minirhizotrons in each area, and collected data eight

times (July 6, July 10, July 14, July 18, July 22, July 26, July 30, and

August 3). Each minirhizotron was used to scan cotton roots at

three different depths at a time. We acquired a total of 96 high-

resolution minirhizotron images, each with a size of 2271 ×

2550 pixels.
2.2 Data annotation

We screened the high-quality images among these 96 high-

resolution minirhizotron images. In this process, we removed four

images that were blurred, leaving 92 high-quality root images. We

used the LabelMe 3.16.7 (Russell et al., 2008) annotation tool to

annotate these 92 high-resolution minirhizotron images and
tiers in Plant Science 03
generate corresponding annotated images, with the roots marked

in red and the background in black (Figure 1). The average

annotation time per image was 8 hours.
2.3 Data augmentation

In order to expand the dataset and improve the generalization

ability of the model obtained from subsequent training, we

performed data augmentation on these 92 high-resolution

minirhizotron images after data annotation was completed. We

used five ways of data augmentation, namely, increasing luminance,

decreasing luminance, isometric enlargement, isometric reduction,

and adding salt-and-pepper noise. Finally, the number of images

was expanded to 552, and the number of annotated images was also

expanded to 552 accordingly to form the final high-resolution

minirhizotron image dataset. We generated 460 new annotated

images from 92 annotated images by corresponding transformation

operations according to the data augmentation, so the 460 new

images generated from 92 original images by data augmentation do

not need to be manually annotated again. We divided the 552 high-

resolution minirhizotron images into the training set, the validation

set and the test set in the ratio of 6: 2: 2. There are 330 images in the

training set, 111 images in the validation set and 111 images in the

test set. The training set was used for training the network model,

and the validation set was used to select the model weights that

performed best during model training to evaluate the model

performance by using the test set.
2.4 Segmentation model

OCRNet is a semantic segmentation method that makes the

classification of each pixel and the segmentation of each class more

accurate by augmenting the representation of each pixel with the

object-contextual representation (OCR) (Yuan et al., 2020). We

applied the OCRNet semantic segmentation model to the root

segmentation of high-resolution minirhizotron images. In the

semantic segmentation model, the backbone plays the role of
BA

FIGURE 1

Data Annotation. (A) Original image. (B) Annotated image.
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representation extraction which has an important impact on the

performance of the segmentation model.

HRNetV2 (Sun et al., 2019a) is a network that retains high-

resolution representations well and is well suited for segmentation

of high-resolution images with elongated or tiny objects. In the

high-resolution minirhizotron image dataset we acquired, the

resolution of each image is relatively high, and the roots in each

image are very fine, so the model used must be able to notice the

minute details of the roots to achieve accurate segmentation of it.

Therefore, HRNetV2 is well suited for extracting root

representations from high-resolution minirhizotron images. We

used HRNetV2 as the backbone of OCRNet to extract pixel

representations. HRNetV2 contains four stages with four parallel

subnetworks. In HRNetV2, the resolution is gradually decreased to

a half and accordingly the number of channels is increased to the

double. The first stage contains 4 residual units where each unit, the

same to the ResNet-50 (He et al., 2016), is formed by a bottleneck

with 64 channels, and is followed by one 3×3 convolution reducing

the number of channels of feature maps to C (C represents the

number of channels of the high-resolution subnetworks in the last

three stages). The 2nd, 3rd and 4th stages contain 1, 4 and 3

exchange blocks, respectively. One exchange block contains 4

residual units where each unit contains two 3 × 3 convolutions in

each resolution and an exchange unit across resolutions. In

summary, there are a total of 8 exchange units, i.e., 8 multi-scale

fusions are conducted. Unlike HRNetV1 (Sun et al., 2019b),

HRNetV2 concatenates the representations of the four resolution

subnetworks in the last stage, making full use of the representations

of each resolution subnetwork. The network structure of HRNetV2

is shown in Figure 2. We chose HRNetV2-W48 as the final

backbone, where 48 represents the number of channels (C) of the

high-resolution subnetworks in the last three stages. The number of

channels in the other three parallel subnetworks is 96, 192 and 384

for HRNetV2-W48.

After extracting the pixel representations by using HRNetV2-

W48 as the backbone of OCRNet, a coarse semantic segmentation

result is output by FCN to obtain K soft object regions (soft object

region refers to the region consisting of pixels of each class in the

coarse semantic segmentation result). K equals 2 because there are

only two classes in the annotation of our high-resolution

minirhizotron images, i.e., background and root. After obtaining

the soft object regions, the pixel representations output from the

backbone and the semantic representations of the corresponding K
Frontiers in Plant Science 04
soft object regions are weighted and summed to obtain the K object

region representations. The calculation of each object region

representation is shown as follows:

f k =o
i∈I

~mkixi (1)

where f k is the representation of the kth object region. xi is the

representation of pixel i. I refers to the set of pixels in the image. ~mki

is the normalized degree for pixel i belonging to the kth

object region.

Then, the pixel-region relation is obtained by computing the

relation between each pixel and each object region according to the

self-attention (Vaswani et al., 2017), which is shown as follows:

wik =
ek(xi,  f k )

oK
j=1e

k(xi ,  f j)
(2)

where wik is the relation between the ith pixel and the kth object

region. k(xi,   f i) = ∅ (x)⊤y(f ) is the unnormalized relation

function, ∅ ( · ) and y( · ) are two transformation functions

consisting of a 1×1 convolution layer, a Batch Normalization

(BN) layer and a ReLU function. K is the number of object regions.

After obtaining the pixel-region relation, the object contextual

representations are calculated based on the pixel-region relation

and the object region representations. The calculation of the object

contextual representation for each pixel is shown as follows:

yi = r(o
K

k=1

wikd(f k)) (3)

where yi is the object contextual representation of pixel i. r( · ) and
d( · ) are two transformation functions consisting of a 1×1 convolution

layer, a BN layer and a ReLU function. K is the number of object

regions. wik is the relation between the ith pixel and the kth object

region. f k is the representation of the kth object region.

Finally, the augmented representation for each pixel is

calculated as the aggregation of the original representation for

each pixel and the object contextual representation for each pixel,

which is shown as follows:

zi = g(½x ⊤i y ⊤i �⊤) (4)

where zi is the augmented representation for pixel i. g( · ) is a

transformation function used to fuse the original representation

and the object contextual representation, consisting of a 1×1
FIGURE 2

HRNetV2 network structure.
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convolution layer, a BN layer and a ReLU function. xi is the

representation of pixel i . yi is the object contextual representation

of pixel i. The whole OCR module takes the pixel representations

output by the backbone as input and the augmented representations

as output, as illustrated in Figure 3. After obtaining the augmented

representations, the output with the number of classes equal to the

number of channels is obtained by a 1×1 convolution layer, and then

the output is restored to the original scale by bilinear up-sampling to

obtain the final semantic segmentation prediction result.
2.5 Model improvement

GAM is a global attention mechanism that focuses on the

interaction of the three dimensions of widths, heights, and the

number of channels in the feature maps (Liu et al., 2021).

Therefore, GAM reduces information reduction and magnifies

global dimension-interactive features, which allows the network

model to focus on the features of the targets in a comprehensive

manner. In our collected high-resolution minirhizotron images, the

color of the roots is similar to the color of the soil in the background,

which causes the model to have more difficulty in distinguishing the

roots from the soil in the background. And the images we collected

include a variety of complex background noises, such as stones,

worms, soil cracks, residual plastic film, etc. These background noises

can interfere with the model in distinguishing the roots from the

background. And enhancing the model’s focus on the roots is a key

way to improve the model’s ability to distinguish the roots from the

background. Because of the role of making the model to focus on the

features of the targets in a comprehensive manner, the addition of

the GAMmodule in the model can enhance the model’s focus on the

roots to improve the model’s ability to distinguish the roots from the

background. Therefore, we improved OCRNet by adding the GAM

module. And by this improvement, the model’s ability to identify and

segment the roots can be improved. GAM follows the structure of
Frontiers in Plant Science 05
CBAM in which the channel attention submodule and spatial

attention submodule are connected in series. But GAM redesigned

the channel attention submodule and the spatial attention submodule

in the structure. In GAM, given an input featuremap, GAM outputs a

three-dimensional channel attention map through the channel

attention submodule, multiplies the input and output of the

channel attention submodule to obtain the input of the spatial

attention submodule, and then outputs a three-dimensional spatial

attention map, and multiplies the input and output of the spatial

attention submodule to obtain the final output. The overall attention

process can be summarized as:

F2 = MC F1ð Þ⊗ F1 (5)

F3 = MS F2ð Þ⊗ F2 (6)

where ⊗ denotes element-wise multiplication. F1 is the feature map

input by GAM and F1 ∈ RC�H�W. MC is the output of the channel

attention submodule of GAM and MC ∈ RC�H�W. F2 is the result

of multiplying MC and F1. MS is the output of the spatial attention

submodule of GAM and MS ∈ RC�H�W. F3 is the final output

of GAM.

In the channel attention submodule of GAM, the 3D

information of the feature map is retained by a 3D permutation

module, magnified by a two-layer Multi-Layer Perceptron (MLP),

converted into 3D information in the original dimensional order by

a 3D reverse permutation module, and finally input into a sigmoid

function to obtain the channel attention map. The structure of the

channel attention submodule of GAM is shown in Figure 4.

In the spatial attention submodule of GAM, the number of

channels of the feature map is first reduced to C/r by a 7×7

convolutional layer, followed by a 7×7 convolutional layer to

restore the number of channels to C, and finally input into a

sigmoid function to obtain the spatial attention map. The

structure of the spatial attention submodule of GAM is shown

in Figure 5.
FIGURE 3

OCR module.
FIGURE 4

Channel attention submodule of GAM.
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The pixel representations are involved in the computation

several times throughout the OCR module, affecting the

individual outputs in the module (Figure 5). It shows that the

pixel representations are closely related to the segmentation effect of

OCRNet. In order to optimize the pixel representations and thus

improve the segmentation effect of OCRNet, we improved the OCR

module by adding the GAMmodule. In the improved OCRmodule,

the pixel representations are input to the GAM module, and the

GAM module outputs the optimized pixel representations. Instead

of the original pixel representations, the optimized pixel

representations participate in the computation of the object

region representations, the pixel-region relation, and the object

contextual representations. The improved OCR module is shown

in Figure 6.
2.6 Network training

The OCRNet we designed has two outputs, one is the coarse

semantic segmentation result output by using FCN as the object

region generator, and the other is the final prediction result output

by the whole model. For both outputs, we used two pixel-wise cross-

entropy loss functions to calculate these two loss values separately,

with the loss weight set to 0.4 for the former and 1 for the latter.

Since the root segmentation is a pixel-level binary classification

problem, the calculation of the cross-entropy loss is shown as

follows:

Loss = −
1
No

N

i=1
½yilnpi + (1 − yi)ln(1 − pi)� (7)

where N is the number of pixels, yi is the label of pixel i, and pi is the

predicted probability value.

Due to the limited GPU memory and the fact that the model

parameters, gradients, optimizer states and intermedia activations

cost the GPU memory during training, the size of the images input

to the network model during training cannot be too large. During

the training process, we set up a random crop pipeline so that the
Frontiers in Plant Science 06
high-resolution original images were randomly cropped into sub-

images of size 512 × 512 pixels before being input into the network

model. We used the polynomial decay method to achieve the decay

of the learning rate, the initial learning rate was set to 0.01, the

power of the polynomial was set to 0.9, and the minimum learning

rate was set to 0.0001. In order to make the model training more

stable and converge better, we used the SGDM optimizer with

momentum set to 0.9 and weight decay set to 0.0005. We set the

batch size to 4 and the total number of iterations to 40,000. In the

process of training the network model, we saved the model weights

every 500 iterations, tested the model weights using the validation

set, and selected the best-performing model weights to evaluate the

model performance by using the test set. The detailed

hyperparameters during network training are shown in Table 1.

The server environment was Windows 10, and the program was

compiled and run in Python 3.7. The model was trained, validated,

and tested under PyTorch 1.8.1 and CUDA 11.1. The server was
FIGURE 5

Spatial attention submodule of GAM.
FIGURE 6

Improved OCR module.
TABLE 1 Hyperparameters during network training.

Hyperparameters Value

Loss function Cross-entropy loss

Random crop size 512 × 512 pixels

Input size 512 × 512 pixels

Learning rate decay strategy Polynomial decay

Initial learning rate 0.01

Power of polynomial decay 0.9

Minimum learning rate 0.0001

Optimizer SGDM

Momentum of SGDM 0.9

Weight decay 0.0005

Batch size 4

Max iterations 40000
frontiersin.org

https://doi.org/10.3389/fpls.2023.1147034
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2023.1147034
equipped with an NVIDIA GeForce RTX 3080 Laptop (16G)

graphics card for model training acceleration.
2.7 Evaluation

In order to objectively and reasonably evaluate the root

segmentation performance of our model, we utilized five

evaluation metrics, i.e., accuracy, recall, precision, F1 score, and

Intersection over Union (IoU):

Accuracy =
TP + TN

TP + FP + FN + TN
(8)

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

F1 =
2� Precision� Recall

Precision+Recall
(11)

IoU =
TP

TP+FP+FN
(12)

In Equations 8, 9, 10, 11 and 12, the TP, FP, FN , and TN denote

the true positive (the area which is both predicted and annotated as

root area), false positive (the area which is predicted as root area but

annotated as background), false negative (the area which is

predicted as background but annotated as root area) and true

negative (the area which is both predicted and annotated as

background) measurements. Accuracy is the proportion of the

number of correctly predicted samples to the total number of

samples. Recall is the proportion of samples that are correctly

predicted as positive cases to all samples with true labels as

positive cases. Precision is the proportion of samples correctly

predicted as positive cases to all samples predicted as positive

cases. F1 score is the harmonic mean of precision and recall. IoU

is a commonly used measure in semantic segmentation to evaluate

the overlap ratio of predicted results to ground truth.
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3 Results and analysis

3.1 Training set loss and validation set loss

We set the number of model training iterations to 40,000 and

used our high-resolution minirhizotron image dataset to train our

improved OCRNet model. The total training time of the network

model is 23.5 h. The training set loss is shown in Figure 7A. With

the increasing number of training iterations, the training set loss

decreased in the general trend. After 35,000 iterations, the training

set loss was stabilized within 0.03, which indicates that the

training set loss converged and the model was well trained. The

validation set loss is shown in Figure 7B. With the increasing

number of training iterations, the validation set loss also decreased

under the general trend. Although the fluctuation of the validation

set loss was a bit large in the middle two periods, it was within

the reasonable range of the fluctuation of the validation set loss.

After 35000 iterations, the validation set loss was stabilized within

0.029, which indicates that the validation set loss converged

and stabilized.
3.2 Segmentation performance of
improved OCRNet

In the process of training the network model, we saved the

model weights every 500 iterations and tested the model weights

using the validation set. Since IoU is one of the most common

evaluation metrics in semantic segmentation, we selected the model

weights with the highest IoU values for root segmentation in three

randomly selected high-resolution minirhizotron images and

compared the segmented images with the manually annotated

images, as shown in Figure 8. Our improved OCRNet had good

segmentation performance for root segmentation of the high-

resolution minirhizotron images. In the segmentation results of

these three randomly selected high-resolution minirhizotron

images, many taproots and lateral roots were accurately identified

and segmented. The overall segmentation results are very close to

the annotated images.
A B

FIGURE 7

Training set loss and validation set loss. (A) Training set loss. (B) Validation set loss.
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3.3 Comparison with mainstream
segmentation methods

To compare our improved method with the current mainstream

semantic segmentation methods, we selected the original OCRNet,

DeepLabv3+, PSPNet and FCN as comparison models, and the

hyperparameters of each model during training were the same as

those set during the training of our improved OCRNet. We used

HRNetV2-W48 as the backbone of the original OCRNet and

ResNet-50-C (He et al., 2019) as the backbone of DeepLabv3+,

PSPNet and FCN. All comparison models were trained by using the

high-resolution minirhizotron image dataset we produced.

Similarly, we set the model weights to be saved and tested using

the validation set every 500 iterations. The model weights with the

highest IoU values for each semantic segmentation method when

being tested using the validation set were used to evaluate the model

segmentation performance by using the test set. As shown in

Table 2, the five best model weights were used to obtain the

values of each evaluation metric for each segmentation method,

and the values of each evaluation metric were accurate to four

decimal places. Although the precision values of our improved
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OCRNet model are slightly lower than that of DeepLabv3+, our

improved OCRNet has the highest accuracy values, recall values, F1

score values and IoU values. The precision is the proportion of

samples correctly predicted as positive cases to all samples predicted

as positive cases. If there is a more serious under-segmentation of

the model’s root segmentation results, then the precision may be

high instead. Therefore, the precision cannot determine how well a

model performs root segmentation. The IoU is a commonly used

measure in semantic segmentation to evaluate the overlap ratio of

predicted results to ground truth, so it is better than precision to

evaluate the segmentation performance of a model. And our

improved OCRNet achieved the highest IoU value of 0.8426. It

illustrates that our improved semantic segmentation method has a

stronger segmentation capability.

As shown in Figure 9, we selected a high-resolution

minirhizotron image with very intricate roots to show the results

of root segmentation of this image by using the five semantic

segmentation methods in Table 2. As a whole, the integrity of the

roots segmented in this image by each method is relatively high.

Due to the high resolution of this root image, in Figure 9, we

marked a red box in the original image as well as in the same
B CA

FIGURE 8

Comparison of our improved OCRNet segmented images and the corresponding annotated images. (A) Original images. (B) Annotated images.
(C) Improved OCRNet segmented images.
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location of each segmented image. Then, we zoomed in on the

marked red box area of each segmented image to compare the

segmentation details of each method, as shown in Figure 10.

In Figure 10, we marked six regions in the original image. At the

position corresponding to region 1 in the original image, the root

segmentation results of FCN and PSPNet were over-segmented, and

the root contour segmented by DeepLabv3+ was very rough. At the

position corresponding to region 2 in the original image, the root

segmentation results of FCN and PSPNet were very rough because

FCN and PSPNet identified some background parts of the two root

gaps as root parts. At the position corresponding to region 3 in the

original image, the root segmentation result of DeepLabv3+ was

under-segmented. At the position corresponding to region 4 in the

original image, the root segmentation results of FCN, PSPNet and

DeepLabv3+ were under-segmented, and the root segmentation

result of OCRNet was slightly over-segmented. At the position

corresponding to region 5 in the original image, OCRNet identified

the background noise as the root. At the position corresponding to
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region 6 in the original image, none of the five semantic

segmentation methods segmented the gap between the roots very

accurately, among which FCN and PSPNet did not identify the gap

part between the roots basically. From the segmentation results of

the six regions, there were more under-segmented regions in the

root segmentation results for DeepLabv3+. This suggests that there

may also be many under-segmented regions in the root

segmentation results of DeepLabv3+ for other images, which may

be the reason why the precision values of DeepLabv3+ are higher in

Table 2. Overall, our improved OCRNet can pay attention to more

root details and has better segmentation performance.
3.4 Segmentation performance in
complex backgrounds

The root images we collected include a variety of complex

background noises, such as stones, worms, soil cracks, residual
B C

D E F

A

FIGURE 9

Comparison of the segmentation results of the five methods. (A) Original image. (B) Segmentation result of FCN. (C) Segmentation result of PSPNet.
(D) Segmentation result of DeepLabv3+. (E) Segmentation result of OCRNet. (F) Segmentation result of improved OCRNet.
TABLE 2 Comparison between the different methods.

Method Backbone Accuracy Recall Precision F1 score IoU

FCN ResNet-50-C 0.9826 0.9344 0.8511 0.8908 0.8031

PSPNet ResNet-50-C 0.9826 0.9367 0.8495 0.8901 0.8034

DeepLabv3+ ResNet-50-C 0.9852 0.9121 0.8949 0.9034 0.8239

OCRNet HRNetV2-W48 0.9859 0.9330 0.8875 0.9097 0.8343

Improved OCRNet HRNetV2-W48 0.9866 0.9419 0.8887 0.9146 0.8426
Bold values indicates the maximum values in their columns.
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plastic film, etc. We selected some regions of the root images with

these background noises to show the results of our method to

segment these regions, as shown in Figure 11. In Figure 11A, this

region contains background noise such as stones, and in Figure 11B,

our method segmented the roots of this region accurately and was

largely unaffected by the stones in the background. In Figure 11C,

this region contains a white worm, and in Figure 11D, although our

method was also able to segment the roots in this region, it
Frontiers in Plant Science 10
identified the body of this white worm as a root as well, which

may be caused by the similarity of the body size and color of such

white worms to the roots. In Figure 11E, there are some soil cracks

in this region, and the shape of both the cracks and the roots are

bar-shaped, and in Figure 11F, our method accurately separated the

roots from the soil cracks. In Figure 11G, the left side of this region

contains the residual plastic film in the soil, and in Figure 11H, our

method classified only a very small portion of the residual plastic
B C D

E F G H

A

FIGURE 11

Various complex noises in the soil. (A) The region with stones in the background. (B) Segmentation result of the region with stones in the
background. (C) The region with a white worm in the background. (D) Segmentation result of the region with a white worm in the background. (E)
The region with some soil cracks in the background. (F) Segmentation result of the region with some soil cracks in the background. (G) The region
with residual plastic film in the background. (H) Segmentation result of the region with residual plastic film in the background.
B C

D E F

A

FIGURE 10

Comparison of the segmentation details of the five methods. (A) Original image. (B) Segmentation result of FCN. (C) Segmentation result of PSPNet.
(D) Segmentation result of DeepLabv3+. (E) Segmentation result of OCRNet. (F) Segmentation result of improved OCRNet.
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film as roots. Therefore, our method was able to distinguish the

roots from other types of complex background noise relatively

accurately, except for not identifying white worms as background

noise. We believe that the small number of samples containing

white worms in the background is also the reason why our trained

model was unable to learn enough such cases to distinguish between

roots and white worms correctly.
4 Discussion

The root images acquired in the real environments contain a

variety of complex background noises. And these complex

background noises can seriously interfere with automatic root

identification and segmentation. Therefore, many root

segmentation studies usually adopt the method of cultivating

roots in ideal laboratory environments to exclude these

interfering factors (Krzyzaniak et al., 2021; Xu et al., 2022; Zhao

et al., 2022). The root images taken in ideal laboratory

environments have less complex background noise, which is more

favorable for root image segmentation. But the segmentation

models trained by using the root images taken in ideal laboratory

environments cannot meet the requirements for root segmentation

in real soil environments. Minirhizotrons can be used to obtain in-

situ root images non-destructively (Xu et al., 2020). To make our

research applicable to actual production environments, we collected

root images by minirhizotrons in a real soil environment.

The original images collected by minirhizotrons are basically

high-resolution (Shen et al., 2020; Bauer et al., 2022). And there is

usually not enough memory in the GPU to load high-resolution

images for training due to the limited GPU memory (Gong et al.,

2021). If the high-resolution images are resized so that the high-

resolution images can be input into the network model for training,

the resolution of the images will be reduced, and many details of the

roots will be lost. It will prevent the model from learning enough

root representations, resulting in a decrease in the model’s ability to

distinguish the roots from the background. To solve this problem,

we added a random cropping pipeline so that the root images were

randomly cropped into sub-images of size 512 × 512 pixels before

being input into the model for training. By adding a random

cropping pipeline to reduce the size of the input images, the

images were able to be input into the model for training while

retaining the root details. However, in order to obtain high-level

semantic information, in the process of extracting representations,

the usual semantic segmentation model will first obtain low-

resolution representations through down-sampling, and then the

low-resolution representations will be restored to high-resolution

representations by up-sampling, and this approach will lose a lot of

valid information in the process of up-sampling and down-

sampling (Sun et al., 2019b). Therefore, we used HRNetV2 as the

backbone of the segmentation model to extract the root

representations, which retained the high-resolution root

representations through the parallel multi-resolution subnetworks

in HRNetV2.

The traditional method of manually segmenting the roots in the

images is very inefficient. Not only the speed of manual root
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segmentation is slow, but also the results of manual root

segmentation may not be completely correct due to the visual

fatigue problem in manual root segmentation (Abramoff et al.,

2004; Le Bot et al., 2010). Therefore, an accurate and rapid root

segmentation method is needed to replace inefficient manual root

segmentation (Smith et al., 2020). In this study, our improved

OCRNet model achieved automatic segmentation of roots in the

soil and performed well in the root segmentation of the high-

resolution minirhizotron images we acquired, achieving an

accuracy of 0.9866, a recall of 0.9419, a precision of 0.8887, an F1

score of 0.9146 and an IoU of 0.8426, as shown in Table 2. And our

improved OCRNet has the highest accuracy values, recall values, F1

score values and IoU values. It indicates the superiority of our

improved method. It can be seen from Figure 8 that the root

segmentation results of our improved method are very close to the

manually annotated images. Moreover, our method takes about 0.3

seconds to segment a root image of size 2271 × 2550 pixels, while we

manually annotate the same root image in about 8 hours. It shows

that our method is much faster than manual annotation. In terms of

the accuracy of segmentation and the time taken for segmentation,

our method has basically reached the level of replacing

manual annotation.

Although our method has been able to achieve automatic root

segmentation of high-resolution minirhizotron images taken

under a real soil environment, it has some shortcomings in root

segmentation. After comparing and analyzing the original images

and the segmented images, we found that our method did not

segment the filamentous roots and the light-colored roots

accurately enough. As shown in Figure 12, we selected a region

containing the filamentous roots and a region containing the

light-colored roots to show the segmentation results of our

method for these regions. In Figure 12A, this region contains

many filamentous roots which are very fine and occupy very few

pixels. In Figure 12B, the root parts in the segmentation result of

our method for this part of the region were generally wider than

those in the original image, and our method did not identify some

very fine roots in the region. In our opinion, because of the small

pixel area occupied by the filamentary roots, the model did not

learn enough samples of these roots, which led to inaccurate

segmentation results for these roots. In Figure 12C, this region

contains many light-colored roots which are buried by the soil, so

these roots are lightly colored in the image. In Figure 12D, our

method did not identify some light-colored roots. It may be that

the characteristics of the light-colored roots are not obvious,

which makes it difficult for the model to accurately distinguish

these roots from the background.

In the future, we will continue to collect and annotate more in

situ cotton root images, especially those containing complex

background noise, to expand our dataset. By expanding the

dataset, the model will learn more samples, which will improve

the generalizability of the model and the model’s ability to

distinguish the roots from the background. Meanwhile, we will

continue to improve our root segmentation model already

improved in this paper to solve the problem of difficult

segmentation of the filamentous roots and the light-colored roots

by enhancing the superiority of the model framework.
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5 Conclusion

To solve the problem of low efficiency of traditional manual root

segmentation and to achieve automatic root segmentation of high-

resolution minirhizotron images taken in a real soil environment, we

improved the OCRNet by adding the GAM attention module and

achieved accurate automatic segmentation of cotton roots using the

improved OCRNet. Firstly, in order to make our research applicable

to actual production environments, we collected images of roots in a

real soil environment using minirhizotrons and produced a dataset.

Then, we applied the OCRNet to the root segmentation of high-

resolution minirhizotron images and selected HRNetV2 as the

backbone of the OCRNet. Meanwhile, the structure of the original

OCRNet was improved by adding the GAM attention module after

the pixel representations output by HRNetV2, which made the pixel

representations augmented. The pixel representations augmented by

the attention mechanism were used to participate in the calculation of
Frontiers in Plant Science 12
relevant parameters in the OCR module, which subsequently

improved the ability of the model to distinguish the roots from the

background. Next, we trained our improved OCRNet by using the

high-resolution minirhizotron image dataset and set up a random

cropping pipeline to preserve the details in the high-resolution

minirhizotron images within the GPU memory limit. Finally, our

improved OCRNet model achieved automatic segmentation of roots

in the soil and performed well in the root segmentation of the high-

resolution minirhizotron images we acquired, achieving an accuracy

of 0.9866, a recall of 0.9419, a precision of 0.8887, an F1 score of

0.9146 and an IoU of 0.8426, as shown in Table 2. And our improved

OCRNet has the highest accuracy values, recall values, F1 score values

and IoU values. This method provided a new approach to automatic

and accurate root segmentation of high-resolution minirhizotron

images taken in the soil environments, which laid the foundation for

automatic analysis of root phenotypic parameters in the field of

root research.
B

C D

A

FIGURE 12

The filamentous root region and the light-colored root region. (A) The filamentous root region. (B) Segmentation result of the filamentous root
region. (C) The light-colored root region. (D) Segmentation result of the light-colored root region.
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