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gene Rht-B1b on coleoptile
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Wheat coleoptile is a sheath-like structure that helps to deliver the first leaf from

embryo to the soil surface. Here, a RIL population consisting of 245 lines derived

from Zhou 8425B × Chinese Spring cross was genotyped by the high-density

Illumina iSelect 90K assay for coleoptile length (CL) QTLmapping. Three QTL for CL

were mapped on chromosomes 2BL, 4BS and 4DS. Of them, two major QTL

QCL.qau-4BS andQCL.qau-4DSwere detected, which could explain 9.1%–22.2% of

the phenotypic variances across environments on Rht-B1 and Rht-D1 loci,

respectively. Several studies have reported that Rht-B1b may reduce the length of

wheat CL but no study has been carried out at molecular level. In order to verify that

the Rht-B1 gene is the functional gene for the 4B QTL, an overexpression line Rht-

B1b-OE and a CRISPR/SpCas9 line Rht-B1b-KO were studied. The results showed

that Rht-B1b overexpression could reduce the CL, while loss-of-function of Rht-B1b

would increase the CL relative to that of the null transgenic plants (TNL). To dissect

the underlying regulatory mechanism of Rht-B1b on CL, comparative RNA-Seq was

conducted between Rht-B1b-OE and TNL. Transcriptome profiles revealed a few

key pathways involving the function of Rht-B1b in coleoptile development, including

phytohormones, circadian rhythm and starch and sucrose metabolism. Our findings

may facilitate wheat breeding for longer coleoptiles to improve seedling early vigor

for better penetration through the soil crust in arid regions.

KEYWORDS

wheat, coleoptile length, Rht-B1b, QTL, transcriptome
Introduction

Wheat (Triticum aestivum L.) is one of the most important food crops in the world,

providing large amounts of starch, rich protein and dietary fiber for humans (Asseng et al.,

2020). Maintenance of high and stable wheat yields is crucial for global food security
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(Boyer, 2004). Drought is an important abiotic stress seriously

limiting wheat production (Gupta et al., 2020). Arid and semi-

arid regions account for about 60% of global crop production, and

drought stress caused by frequent extreme weather events often

leads to severe reduction of wheat production (Puttamadanayaka

et al., 2020). To ensure the emergence rate under drought stress,

deeper sowing is often adopted for better utilization of the water in

soil (Zhao et al., 2022). However, a sowing depth beyond the

coleoptile length (CL) will result in poor stand establishment, late

emergence, and slow early leaf development (BR, 1976; Schillinger

et al., 1998). Wheat coleoptiles facilitate the stem and the first leaf to

break the ground, and directly determine the maximum sowing

depth (Rebetzke et al., 2007a; Rebetzke et al., 2014). However, the

short coleoptiles of modern semi-dwarf wheat varieties reduce

emergence when sown deep (Zhao et al., 2022). Understanding

the genetic basis for CL will help developing high-yield semi-dwarf

varieties with longer coleoptiles and suitable for deep sowing.

Previous studies have demonstrated that CL has high heritability

and additive effects and is controlled by multiple genes (Rebetzke

et al., 2004; Rebetzke et al., 2007b). Hence, it is feasible to increase

the CL through genetic manipulation.

In the 1960s and 1970s, the wide application of dwarf genes

Rht1 (Rht-B1b) and Rht2 (Rht-D1b) combined with the increased

application of chemical fertilizer greatly promoted the increase of

wheat yield, which was called the “Green Revolution” of wheat

(Peng et al., 1999; Hedden, 2003). However, compared with the wild

type Rht-B1a, the dwarf gene, while improving the resistance to

colonization and harvesting index, led to increased nitrogen

fertilizer requirement, decreased 1000-grain weight, lower grain

protein content, drought tolerance, lower anthers exposure rate and

susceptibility to scab (Tang et al., 2009; Lanning et al., 2012; Zhang

et al., 2013; He et al., 2016). Genetic analysis has also predicted that

Rht-B1b and Rht-D1b loci have certain shortening effects on the CL

of wheat, but there has been no further evidence for this speculation

(Ellis et al., 2004; Rebetzke et al., 2007b; Yu and Bai, 2010; Li et al.,

2011). In contrast, other two widely used Rht genes, Rht8 and Rht24,

have been proved to have no negative effect on CL, providing an

opportunity to breed semi-dwarfing wheat cultivars with long

coleoptiles (Würschum et al., 2017; Chai et al., 2022; Tian et al.,

2022; Xiong et al., 2022).

Here, we demonstrated that Rht-B1 is the functional gene

underlying a CL QTL on chromosome 4B and its dwarfing allele

(Rht-B1b) reduces the CL through multiple pathways such as

phytohormones, circadian rhythm and starch and sucrose

metabolism. These results provide valuable information for wheat

breeding of longer coleoptiles to improve the seedling early vigor

and penetration through soil crust in arid regions.
Materials and methods

Plant materials and phenotyping

A total of 245 F2:10 RILs derived from the cross of Zhou 8425B ×

Chinese Spring were used in this study. Zhou 8425B (Pedigree:

Zhou 78A/Annong 7959) and Chinese Spring are an elite facultative
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wheat line and Chinese landrace, respectively. Zhou 8425B contains

two dwarfing alleles Rht-B1b and Rht-D1b and has a short coleoptile

length (CL) of about 3.3 cm. Chinese Spring contains two wildtype

alleles Rht-B1a and Rht-D1a, which contribute to a long CL of about

4.8 cm. Seeds were sampled from plants grown and harvested at

Shijiazhuang of Hebei Province and Qingdao of Shandong Province

during the 2020–2021 and 2021–2022 cropping seasons,

respectively. Good-quality seeds without any visible damage were

selected for all lines. Seeds of all parental and progeny lines were

sown in cylindrical pots (100 mm high and 80 mm in diameter) at a

sowing depth of 2 cm below the soil surface. The CL was

determined from the scutellum to the tip of the coleoptile.
SNP genotyping and QTL analysis

For the Zhou 8425B × Chinese Spring population, the 245 RILs

and their parents were genotyped with the 90K iSelect SNP array

(Wang et al., 2014). Twenty-one linkage groups corresponding to

the 21 chromosomes were constructed from 14,955 polymorphic

markers. All linkage maps covered 2290.06 cM with marker

densities of 7.04 (A), 8.60 (B) and 2.19 (D) markers per cM (Wen

et al., 2017). Broad-sense heritability was estimated using

IciMapping 4.1 software (https://isbreeding.caas.cn/index.htm).

Quantitative trait loci (QTLs) mapping was conducted using

IciMapping 4.1 software with inclusive composite interval

mapping (ICIM) algorithm (Li et al., 2007). The CL of all lines

and the average phenotypic values from the two environments were

used for QTL detection. The mapping parameters were chosen as

step=1.0 cM and PIN = 0.01. A LOD threshold of 2.5 was chosen for

declaration of putative QTLs.
Plant materials for Rht-B1 functional study
and RNA-Seq analysis

To study the association between Rht-B1 and the 4B QTL in

the current study, an overexpression line and loss of function line

of Rht-B1 were created. The complete coding sequence (CDS) of

Rht-B1b (GenBank: MG681100.1) was overexpressed in a

hexaploid wheat cultivar Fielder (Rht-B1b and Rht-D1a) under

driving by maize ubiquitin promoter (All primers were listed

in Table S1). CRISPR/SpCas9 was used to create knockout line

o f Rht -B1b . The sgRNA (PAM-gu ide s equence 5 ’ -

GGAGCCGTTCATGCTGCAG-3’) was designed to target

conserved regions of Rht-B1b. The resultant construct was

transformed into immature embryos by the Agrobacterium

tumefaciens (Ishida et al., 2015). Sixty good-quality seeds of

each transgenic null lines (TNL), Rht-B1b overexpression lines

(Rht-B1b-OE) and Rht-B1b CRISPR/SpCas9 edited lines (Rht-

B1b-KO) were evenly sown in ten 10 cm (top diameter) ×

8.9 cm (height) plant pots with a sowing depth of 2 cm below

the soil surface. Before the coleoptile broke the ground, coleoptile

tips and whole coleoptiles of ten TNL and Rht-B1b-OE plants were

collected and immediately put into liquid nitrogen for RNA-Seq.

Each group included three biological replicates.
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RNA-Seq and data analysis

Total RNA of three biological replicates was extracted using the

TRIzol® reagent, and mRNA was purified from total RNA using

poly-T oligo-attached magnetic beads. The first strand cDNA was

synthesized using random hexamer primer and RNase H.

Subsequently, the second strand cDNA synthesis was obtained

using DNA Polymerase I and RNase H. Library preparation for

RNA-Seq was conducted by Novogene and sequenced on an

Illumina Novaseq platform with 1 ug of total RNA (http://

www.novogene.com/).

IWGSC RefSeq v2.1 and annotation v2.1 were used for the

reference genome and gene model annotation (Zhu et al., 2021).

Raw data were processed to obtain clean reads by removal of

adapter, ploy-N and low-quality reads. Paired-end clean reads

were aligned to the reference genome using Hisat2 (Kim et al.,

2019). FeatureCounts was used to count the read numbers mapped

to each gene (Liao et al., 2014). Differential expression analysis was

performed using the DESeq2 R package (Love et al., 2014). Genes

with an adjusted P-value < 0.05 found by DESeq2 were assigned as

differentially expressed genes (DEG). GO and KEGG enrichment

analysis of DEGs were implemented by the TBtools (Chen et al.,

2020). GO terms and KEGG pathways with corrected P-value lower

than 0.05 were considered as significantly enriched by the DEGs.
Results

QTL analysis of coleoptile length

The parental lines, Zhou 8425B and Chinese Spring, differed

significantly (P < 0.05) for coleoptile length (CL). Based on data

averaged across all environments, CL ranged from 2.5 to 6.1 cm

with an average of 4.0 cm. CL showed continuous variation in RIL

population and had a high heritability of 0.86 (Figure 1A). Three

QTLs for CL were identified on chromosomes 2BL, 4BS and 4DS in

the Zhou 8425B × Chinese Spring population (Table 1). Two major

QTLs, QCL.qau-4BS and QCL.qau-4DS, were stably detected in all

environments, which explained 9.1%–22.2% of the phenotypic

variance across environments (Table 1). Based on the genomic

position of the flanking markers, we found that QCL.qau-4BS and

QCL.qau-4DS spanned the Rht-B1 and Rht-D1 loci, respectively.

QCL.qau-2BL explained about 3.0%–3.1% of phenotypic variance,

and thus was a minor QTL for CL.
Validation of the effect of Rht-B1b on
coleoptile development

Many studies have reported CL QTL on the Rht-B1 locus,

indicating that Rht-B1b may reduce wheat CL (Botwright et al.,

2001; Li et al., 2017). However, there has been no direct evidence for

this speculation. Here, Rht-B1b overexpression and CRISPR/

SpCas9 gene-editing were performed and homozygous plants

were generated by self-crossing for CL evaluation. The results

demonstrated that Rht-B1b overexpression could reduce the CL
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about 8.6%, while loss-of-function of Rht-B1b would increase the

CL about 17.9% relative to that of null transgenic plants (TNL)

(Figures 1B, C). Thus, Rht-B1 can be a target gene of QCL.qau-4BS.
Transcriptome analysis of Rht-B1 on
coleoptile development

Although Rht-B1b is known to reduce the CL, the underlying

regulatory mechanism remains unclear. To dissect the regulatory

mechanism, whole coleoptiles and coleoptile tips of TNL and Rht-

B1b-OE were collected for RNA-Seq analysis before the coleoptile

breaks the ground. Compared with those of TNL, 142/523 and 191/

1993 differentially expressed genes (DEG) were upregulated/

downregulated by Rht-B1b in the transcriptome of whole

coleoptile and coleoptile tips (Table S2 and S3). There were more

down-regulated DEGs than up-regulated DEGs, indicating that

Rht-B1b mainly represses the gene expression in coleoptiles. GO

enrichment analysis of coleoptile tips revealed that Rht-B1b mainly

reduces the CL via the process of “photosynthesis”, “oxidation-

reduction process”, “nitrate assimilation carbohydrate metabolic

process”, and “pigment biosynthetic process”. In the whole

coleoptile, DEGs were enriched in the GO processes of

“oxidation-reduction”, “glucan metabolism” and “cellular

carbohydrate metabolism” (Table 2). In the coleoptile tips, DEGs

were mainly enriched in the GO processes of “photosynthesis”,

“oxidation-reduction”, “nitrate assimilation”, “carbohydrate

metabolism” and “pigment biosynthetic process” (Table 2).

Previous studies showed that hypocotyl elongation is regulated

by endogenous regulators, such as phytohormones, circadian clock,

sucrose, and environmental stimuli (Saibo et al., 2003; Simon et al.,

2018). Interestingly, many DEGs were enriched in the KEGG

pathway of plant hormone signal transduction, alpha-linolenic

acid metabolism (jasmonic acid), brassinosteroid biosynthesis,

carotenoid biosynthesis (abscisic acid), cysteine and methionine

metabolism (ethylene), diterpenoid biosynthesis (gibberellin),

tryptophan metabolism (auxin), zeatin biosynthesis (cytokinine),

circadian rhythm, and starch and sucrose metabolism (Figure 2).

Thus, Rht-B1b might play an important role in integrating multiple

signal transduction pathways in the wheat coleoptile development.
Discussion

Adaptation of semi-dwarf modern wheat
to drought conditions

Numerous studies have demonstrated a positive association

between wheat CL and plant number under deep sowing

(Hadjichristodoulou et al., 1977; Matsui et al., 2002). However,

the two gibberellin-insensitive dwarfing genes, Rht-B1b and Rht-

D1b, tend to cause shorter CL and low seedling emergence rate

(Schillinger et al., 1998; Rebetzke et al., 2007b). Here, we generated

Rht-B1b over-expressing and CRISPR/SpCas9 editing plants to

study its influence on coleoptile development. As a result,

overexpression of Rht-B1b reduced the CL, while its loss of
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function increased the CL. Rht-B1b encodes an N-terminal

truncated DELLA protein (lack of DELLA and TVHYNP motifs),

which is gibberellin-insensitive protein in wheat (Van De Velde

et al., 2021). DELLA proteins encoded by the Rht-B1a gene are the

downstream repressors of GA signal transduction and, GA induces
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the degradation of DELLA proteins via the ubiquitin/proteasome

pathway (Itoh et al., 2003). Thus, Rht-B1b led to a reduction of CL

compared with tall allele Rht-B1a since the GA-induced seedling

growth was repressed (Alabadiı ́ et al., 2004). So far, there has been

no study to validate the effect of Rht-B1b on CL, not to mention the
TABLE 1 QTL for coleoptile length (CL) in the Zhou 8425B/Chinese Spring RIL population.

Envia QTL Pos (cM) Marker interval Pos (Mb) LOD PVE (%) Addb

CL1 QCL.qau-4BS 24 IWB24098-IWB56078 26.4-34.9 17.9 22.2 -0.3

CL1 QCL.qau-4DS 17 IWB53820-IWB8050 14.1-32.9 8.6 10 -0.2

CL2 QCL.qau-2BL 167 IWB5439-IWB66206 638.6-784.5 2.9 3 0.1

CL2 QCL.qau-4BS 24 IWB24098-IWB56078 26.4-34.9 16.7 18.4 -0.3

CL2 QCL.qau-4DS 18 IWB8050-IWA7344 32.9-50.6 8.4 9.1 -0.2

CL QCL.qau-2BL 167 IWB5439-IWB66206 638.6-784.5 3.2 3.1 0.1

CL QCL.qau-4BS 24 IWB24098-IWB56078 26.4-34.9 19.7 21.1 -0.3

CL QCL.qau-4DS 16 IWB53820-IWB8050 14.1-32.9 11 13.2 -0.2
aCL1, CL2 and CL indicated that phenotypic data were collected from Shijiazhuang in 2021, Qingdao in 2022 and average phenotypic data.
bNegative “additive effect” indicates an increasing effect from Chinese Spring; positive “additive effect” indicates an increasing effect from Zhou 8425B.
A B

C

FIGURE 1

Frequency distributions of RILs for CL and effects of Rht-B1b on coleoptiles of wheat. (A) Frequency distributions of 245 recombinant inbred lines
(RILs) in Zhou 8425B × Chinese Spring population for mean values of coleoptile length (CL). Arrows indicate mean values of the parental lines.
Coleoptile length (B) and image of seedlings (C) of Rht-B1b overexpressing lines (OE), Rht-B1b knockout lines (KO) and transgenic null lines (TNL).
Bars represent standard deviations of thirty biological replicates. Different letters on the bars indicate significant differences in given traits at P < 0.05
between different lines.
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TABLE 2 Enrichment analysis of the most significant GO processes in the transcriptome of coleoptile tips and whole coleoptiles.

Groupsa GO_ID GO_Name DEGb FDRc

Tip GO:0015979 photosynthesis 67 0

Tip GO:0055114 oxidation-reduction process 214 3.80E-10

Tip GO:0042128 nitrate assimilation 5 0.0020535

Tip GO:0005975 carbohydrate metabolic process 71 0.0175129

Tip GO:0046148 pigment biosynthetic process 5 0.0172859

Coleoptile GO:0055114 oxidation-reduction process 94 1.55E-10

Coleoptile GO:0044042 glucan metabolic process 12 6.08E-04

Coleoptile GO:0044262 cellular carbohydrate metabolic process 13 0.0012301
aTip and Coleoptile represent coleoptile tip and whole coleoptile.
bDEG stands for Differentially expressed genes.
cFDR stands for False Discovery Rate. FDR < 0.05 represents the DEG were significantly enriched in the GO process.
FIGURE 2

Putative key downstream genes of Rht-B1b for coleoptile development. TNL, OE, Tip and CL represents transgenic null plant, Rht-B1b-OE plant,
coleoptile tip and whole coleoptile, respectively. Orange and blue colors show genes with low and high expression level, respectively.
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underlying genetic pathway. To uncover the regulatory mechanism

of Rht-B1b on CL, a transcriptome analysis was conducted to dissect

the underlying genetic pathway.

A few studies have demonstrated that, in Arabidopsis, SCL3 and

DELLA antagonize each other in modulating downstream GA

responses and maintaining GA homeostasis via feedback regulation

of GA biosynthetic genes (Zhang et al., 2011). SCL3 functions as a

positive regulator of GA signaling, which induces the expression of GA

biosynthesis genes and autoregulates its own expression via direct

interaction with DELLA. In our transcriptome, 16 genes related to GA

biosynthesis, three GA receptor GID1 genes and three SCL3 genes were

identified as DEGs between Rht-B1b-OE and TNL, indicating that

wheat SCL3 and DELLA antagonize each other in maintaining GA

homeostasis and GA responses as in Arabidopsis (Figure 2, 3). In

addition, DELLAs can physically interact with and block PIF3 and PIF4

activities by sequestering the transcription factors from binding to their

targets, which ultimately results in the inhibition of hypocotyl

elongation (De lucas et al., 2008; Feng et al., 2008). JAZ could

interrupt DELLA–PIF3 interaction, allowing more PIF transcription

factors to activate plant growth (Yang et al., 2012). In our

transcriptome, several homologs of JAZs were down-regulated by

Rht-B1b-OE (Figure 2, 3). HY5 is a key transcription factor for the

regulation of seedling photomorphogenesis. COP1 negatively regulates

HY5 by directly and specifically interacting with HY5 (Ang et al.,

1998). BBX25 and BBX24 additively enhance COP1 and suppress HY5

functions to regulate of seedling deetiolation process in Arabidopsis

(Gangappa et al., 2013). RUP1 is induced by CRYs in response to blue

light, which is dependent on HY5 (Tissot and Ulm, 2020). These genes

are key factors for cryptochrome blue-light signaling and their

homologs in wheat were identified as DEGs, indicating that light and

GAs might antagonistically regulate coleoptile in wheat (Figure 2, 3).
Breeding for longer coleoptiles with
previously reported genetic loci

The response of plants to drought is dependent on multiple

factors, including duration and severity of drought conditions,

frequency of drought, and the growth stage when subjected to the
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drought stress (Jatayev et al., 2020). Although wheat can be grown

in a variety of harsh environments, rising temperature and

unpredictable drought exacerbate the impact of drought stress on

wheat yield. If drought stress occurs when sowing, farmers tend to

sow more seeds in a deeper depth to increase the seedling

establishment rate. Short coleoptiles severely hider the application

of deep sowing in wheat production since it influences the

emergence rate of wheat seedlings, particularly in fields with thick

stubble or crusted soil surface (Rebetzke et al., 2014). Most modern

semi-dwarf wheat varieties harboring Rht-B1b or Rht-D1b have

short coleoptiles and low yields under drought stress relative to tall

plants (Li et al., 2017; Sidhu et al., 2020). Wheat CL is a typical

quantitative trait controlled by multiple genes (Rebetzke et al.,

2007a). Pyramiding of multiple QTLs in modern semi-dwarf

wheat cultivars can efficiently increase the CL. Thus, a

comprehensive screening was conducted on the genetic locus for

CL by QTL mapping and genome wide association analysis

(GWAS) from previous studies and assembled them on wheat

chromosomes according to their physical locations (Figure 4). So

far, a total of 114 QTLs for CL traits in wheat have been found from

20 studies of CL-related QTL mapping in wheat (Figure 4 and Table

S4) (Rebetzke et al., 2001; Rebetzke et al., 2007b; Landjeva et al.,

2008; Landjeva et al., 2010; Li et al., 2010; Yu and Bai, 2010; Li et al.,

2011; Zhang et al., 2013; Nagel et al., 2014; Rebetzke et al., 2014;

Zhang et al., 2014; Singh et al., 2015; Elbudony, 2017; Liu et al.,

2017; Mo et al., 2018; Zhang et al., 2018; Bovill et al., 2019;

Puttamadanayaka et al., 2020; Francki et al., 2021; Ren et al.,

2021). About 33 GWAS loci were found to be associated with CL

(Figure 4 and Table S5) (Li et al., 2017; Ma et al., 2020; Sidhu et al.,

2020). These genetic loci were used for QTL-rich cluster (QRC)

detection, which was defined when markers from at least two

independent studies were physically located in 10 Mb range (Cao

et al., 2020). The genomic positions of flanking markers were

obtained from the IWGSC RefSeq V2.1 (Zhu et al., 2021). A total

of 18 QTL-rich clusters (QRC) for CL were found in this study

(Table 3). Of them, Rht-B1 and Rht-D1 are strong candidate genes

of QRC 4B-I and 4D-I, respectively. These QRC of CL provide

valuable gene resources for marker-assisted selection breeding for

longer coleoptiles.
FIGURE 3

A simplified model underpinning Rht-B1b modulating coleoptile length. Black letters in the box show non-differentially expressed genes. Red and
green letters show upregulated and downregulated genes by Rht-B1b, respectively. The +u represents ubiquitylation. GA represent gibberellin. The
arrows show promotion of gene expression; the lines with blunt ends show repression of gene expression; the bold lines represent direct binding.
The species latin prefixes in gene names are not shown.
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Breeding for longer coleoptiles with the
wild allele Rht-B1a

In the 1960s and 1970s, the wide application of semi-dwarf genes

Rht-B1b and Rht-D1b combined with the increased application of

chemical fertilizer greatly promoted the wheat yield improvement,

which was referred to as the “Green Revolution” of wheat (Hedden,
Frontiers in Plant Science 07
2003). However, semi-dwarf wheat with Rht-B1b/Rht-D1b alleles

produce lower grain yield than taller plants with Rht-B1a/Rht-D1a

under drought environment (Zhang, J et al., 2013; Jatayev et al.,

2020). Compared with wild-type Rht-B1a, semi-dwarf allele Rht-B1b

resulted in shorter coleoptile. Seeds of semi-dwarf wheat cultivars are

generally sown shallower than taller wheat varieties to ensure the

emergence of semi-dwarf seedlings and early vigour (Rebetzke et al.,
FIGURE 4

Distribution of genetic loci for wheat coleoptile length (CL) on chromosomes. QTLs and GWAS loci are indicated in black and pink colors, respectively.
The black and cyan bars in chromosomes indicate the positions of centromeres and QTL-rich clusters (QRC), respectively.
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2007a; Jatayev et al., 2020). Shallow seeding in dry fields reduces

emergence for varieties with short coleoptile length (Rebetzke et al.,

2001; Jatayev et al., 2020). It is likely that taller wheat cultivars with

Rht-B1a/Rht-D1a have higher rate of emergence than semi-dwarf

wheat genotypes under early drought environment. Thus, improving

lodging resistance of tall wheat has become an important research

direction. Besides of reducing the height of plants, an alternative way

is to breed wheat varieties with solid-stemmed stems to enhance

lodging resistance in wheat (Liang et al., 2022). Wheat with tall plant

height Rht-B1a/Rht-D1a allele combined with solid-stemmed stems

alleles of TdDofmight have high lodging and drought tolerances, long

coleoptile and produce higher yield in drought field (Jatayev et al.,

2020; Nilsen et al., 2020).
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TABLE 3 Detailed information and candidate genes for QTL-rich clusters of coleoptile length.

QRC Interval
(Mb)a

CL Locus Candidate genes

1A-I 52.1-65.1 QCL_IWA1583; Lcol-A1; QCL_IWA3399

1B-I 3.3-8.5 QCLR-WY-1BL; QCL.daw.1B-1

2A-I 4.2-18.6 QCl2A; QCL.sdsu-2AS

2B-I 42.2-44.9 QCL.WY.2B; QCl.sicau-2B.1

2D-I 122.3-133.1 QCL_gwm515c; QCL_wmc18

3A-I 700.2-710.2 QCl.sicau-3A.2; QCl3A

3B-I 6.29-29.4 QCL_wPt-8855; qCL.3B.2; qCL.3B.1; QCL.sdsu-3BS

3B-II 756.5-770.4 QCL_abg75c; QL_WMC56, GWM299; QCl.sicau-3B.1

3B-
III

785.4-786.0 qCL.3B.3; QCl.sicau-3B.2

4B-I 21.0-43.5 QL_Xgwm540; QCL.daw.4B; QL_barc193; qCL.4B.1; Rht1; Rht-B1; Rht-B1b; QCL_Rht-B1b; qScl-4B; QCL_IWA1846;
QCL.sdsu-4BS

Rht-B1

4B-II 165.6-183.0 QCl.iari_4B; QCL.stars-4BS1; QCL.qau-4BS

4D-I 19.1 Rht2; QCL_Rht-D1b; QL_Rht2; QL_Rht-D1; QCL.qau-4DS Rht-D1

4D-II 54.9-70.3 QCL_IWA4580; QCL.stars-4DC1; QL_Xbarc288

4D-
III

498.9-505.9 QCl.sicau-4D.2; QL_Xgwm194

5B-I 43.6-44.0 QCL.WL.5B; QCL_IWA2609

6B-I 672.9-683.7 QCL_barc178; QCL_gwm219

6B-II 702.1-714.9 QCL_IWA5709; QCL.sdsu-6B

7B-I 702.2-713.4 QCL-7B.2; QCL_IWA3387
aThe intervals of QTL-rich clusters (QRC) were defined according to IWGSC RefSeq v2.1.
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