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Cotton fiber as a model
for understanding shifts
in cell development
under domestication

Josef J. Jareczek1,2, Corrinne E. Grover1

and Jonathan F. Wendel1*

1Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA,
United States, 2Biology Department, Bellarmine University, Louisville, KY, United States
Cotton fiber provides the predominant plant textile in the world, and it is also a

model for plant cell wall biosynthesis. The development of the single-celled

cotton fiber takes place across several overlapping but discrete stages, including

fiber initiation, elongation, the transition from elongation to secondary cell wall

formation, cell wall thickening, andmaturation and cell death. During each stage,

the developing fiber undergoes a complex restructuring of genome-wide gene

expression change and physiological/biosynthetic processes, which ultimately

generate a strikingly elongated and nearly pure cellulose product that forms the

basis of the global cotton industry. Here, we provide an overview of this

developmental process focusing both on its temporal as well as evolutionary

dimensions. We suggest potential avenues for further improvement of cotton as

a crop plant.
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1 Introduction

Cotton is the most widely used plant textile in the world, derived from single-celled

epidermal seed trichomes produced by four domesticated species in the genus Gossypium.

In addition to these four species, the genus is both species-rich and highly variable

morphologically, with over 50 species spread across the tropics and subtropics of the world

(Wendel and Grover, 2015; Hu et al., 2021). All of these species produce varying degrees of

fiber (long, strong seed hairs used in seed dispersal and textile production) and/or fuzz

(shorter hairs unsuitable for textiles), with a few notable exceptions, such as the Australian

species that produces fat bodies on the seed (Applequist et al., 2001; Wendel and Grover,

2015; Hu et al., 2021). The broad evolutionary relationships among these species are well

documented, with Gossypium divided into 8 monophyletic diploid genome groups

(designated A-G and K) and a single monophyletic allotetraploid group (AD) (Wendel

and Grover, 2015; Hu et al., 2021). This latter group includes G. hirsutum, or Upland
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cotton, which is the most widely-grown textile crop in the world

(90% of commercial cotton production; Fang, 2018).

Beyond the value of cotton as a crop species, it has also been

developed into a model system for studying polyploidy and

domestication (Figure 1). Although at present G. hirsutum and a

second allotetraploid species (i.e., G. barbadense, or Pima Cotton)

together comprise about 93% of all cotton fiber produced worldwide,

cotton has been independently domesticated four times from four

different wild species. The genus originated approximately 5-10

million years ago, with the basal-most radiation resulting in the

separation of the two lineages that would later comprise the

allotetraploid (i.e., the A and D genomes). Approximately 1-2

million years ago (mya), now extinct members of the A and D

lineages were reunited in a common nucleus to form the

allotetraploid (AD) lineage, which subsequently diverged into the

seven recognized polyploid species of Gossypium (AD1-AD7)

(Wendel et al., 2010; Grover et al., 2015; Wendel and Grover, 2015;

Gallagher et al., 2017; Hu et al., 2021). Along with the two

aforementioned domesticated allotetraploids resulting from this

single polyploidization event (i.e., G. hirsutum, AD1 and G.

barbadense, AD2), the two extant diploid species from the A-

genome (G. herbaceum, A1 and G. arboreum, A2) were also

independently domesticated by humans approximately 5-8

thousand years ago, all of which are still grown on various scales

(Wendel et al., 2010). Notably, while the domesticated allotetraploids

partly derive from a member of the (later) domesticated A-genome,
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factors from the short-fibered D-genome also contribute, more or less

equally, to the agriculturally important fiber phenotype (Bao et al.,

2019; Guo et al., 2021; Hu et al., 2021; Zhu et al., 2021; Lu et al., 2022).

This observation demonstrates that an ancient allopolyploidy event

that occurred prior to human evolution enabled humans to develop

and select cotton fiber with vastly improved properties to those found

in nature. It is this combination of a naturally replicated

domestication experiment across four species and two ploidy states

that makes Gossypium a powerful system to study both of these

phenomena, as well as the underlying genetics, genomics, and

genotype-to-phenotype transitions.

Although cotton has multiple economic uses in addition to textiles,

the primary reason behind its domestication and continued economic

importance is its ability to produce fiber, the long, strong, single-celled

trichomes or hairs that arise from the seed epidermal layer (Lee et al.,

2007; Hu et al., 2016a). Although all wild species of cotton produce

fiber, domestication has in all cases generally led to longer, stronger,

and whiter hairs with varying degrees offineness (here, defined as unit

weight per unit length, as per Ramey (1982) and Kelly et al. (2015). It

has also led to increased susceptibility to various biotic and abiotic

stresses. G. barbadense fiber is used to produce a well-known luxury

textile (e.g., Pima, Sea Island, and Egyptian cotton) for the fineness,

length, and strength of the product it produces; however, yield is lower

and the plants are not as well-adapted to diverse environments

compared to the coarser and weaker fiber produced by the

dominant crop species, G. hirsutum (Constable et al., 2015).
FIGURE 1

Evolutionary model for allopolyploid Gossypium. Approximately 5-10 mya, the cotton underwent diversification resulting in separate evolutionary
trajectories for the now-extinct A-(maternal) and D-(paternal) progenitors of the allopolyploid clade. Subsequently, (~ 1 mya) these lineages
hybridized and underwent genome doubling, resulting in the allotetraploid AD clade. This clade diversified into seven polyploid species, two of
which underwent domestication and improvement, i.e., G. hirsutum and G. barbadense.
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In addition, G. hirsutum is more easily grown and generally is more

resistant to pests and disease, requiring fewer resources (i.e., pesticides

and fertilizers) to grow than G. barbadense (Constable et al., 2015).

Similarly, whereas the two domesticated diploids produce fiber that is

inferior to that of either allotetraploid, these species are still locally

grown in regions of South Asia and the Middle East, due to their

adaptation to local and regional growing conditions and pests

(Constable et al., 2015).

Because it is not only the presence of fiber, but also the

properties of fiber that influence its economic value, the

mechanisms underlying physical transformation from fiber initial

to mature fiber are of considerable interest. The development of the

cotton fiber can be divided into overlapping but biologically

determined stages (Figure 2), beginning with initialization on the

ovule surface prior to anthesis (Applequist et al., 2001; Butterworth

et al., 2009; Kim, 2015; Kim, 2018). After fertilization, the fiber

initial undergoes tip refinement and transitions to the elongation

phase, which can continue until as late as 25 days post anthesis

(DPA) in domesticated accessions (Applequist et al., 2001; Haigler

et al, 2012; Kim, 2018; Graham and Haigler, 2021). During

elongation, the fiber remains expandable, growing to a length of

up to 6cm (Kim and Triplett, 2001; Butterworth et al., 2009). At

approximately 15DPA, the fiber enters the transition stage as

elongation slows and stops while the secondary cell wall

deposition stage begins (Haigler et al., 2012; Kim, 2015; Kim,

2018). The transition phase lasts from approximately 15-20 DPA,

after which the fiber is fully committed to secondary wall synthesis,

which thickens the secondary cell wall until roughly 40 DPA, or

maturity (Haigler et al., 2009; Haigler et al., 2012; Stiff and Haigler,

2012; Kim, 2018). During this final active stage of development,
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Figure 1 A model of Gossypium evolution. Approximately 1

mya, divergent A and D lineages hybridized and underwent genome

doubling, resulting in the allotetraploid AD clade. This clade

diversified into seven polyploid species, two of which underwent

domestication and improvement.

Cellulose fibers are laid down in a helical pattern around the

fiber cell, forming a thick, strong cell wall that is critical to the

quality of the fiber (Haigler et al., 2009; Tuttle et al., 2015). Once

mature, the fiber undergoes cell death and the cytoplasm is

degraded, leaving behind a hollow cellulose tube that takes on a

distinctive kidney bean shape in fiber cross-sections. The mature

fibers dry out and naturally twist, which makes them easily spun

into threads and fabric, and the fiber holds dye well (Constable

et al., 2015; Tuttle et al., 2015).

Underlying this developmental process are coordinated changes

in gene expression and all of the “omics” that propagate through

complex networks of hormone signaling, physiology, and

biosynthesis. These patterns ultimately determine the final

properties of the mature fiber, including the agronomically

important traits of strength, length, and fineness. Here we present

an overview and update what is known about cotton fiber

development at each of these stages (i.e., initiation, elongation,

transition, cell wall thickening, and fiber maturation) and how

differences in these stages result in fiber with different properties at

maturity. We consider potential avenues of future research in

cotton, and discuss how a deeper understanding of fiber

development may lead to improvement in cotton as a textile. We

also apply an evolutionary lens, highlighting what might be learned

from carefully studying the natural and genomic context of the wild

species in the genus.
FIGURE 2

A depiction of fiber development showing both macro- (A) and microscopic (B) views of G. hirsutum fiber at several important timepoints, described
in C. At 0 DPA, fiber initials are present on the surface of the ovule. From 1-2 DPA, fiber tips are refined and elongation begins. By 7 DPA, all fibers
are undergoing elongation. Elongation continues and subsequently begins to taper in the transition stage (~14 DPA, depending on species and/or
accession) as secondary wall synthesis begins. By 30 DPA, elongation has ceased and the fiber is actively engaged in secondary cell wall deposition.
The fruit finally matures at around 50 DPA, at which point the mature fibers have died and the boll dehisced. Scale bars for the scanning electron
images is 5mm; all other scale bars are 1cm. The original picture is from Lee et al. (2007), reprinted with permission.
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Figure 2 A depiction of fiber development showing both macro-

and microscopic views of G. hirsutum fiber at several important

timepoints. At 0DPA, fiber initials are present on the surface of the

ovule. From 1-2 DPA, tip refinement takes place and fiber

elongation begins. At 7 DPA, fibers are elongating. Around 14D

DPA, the fiber enters the transition stage. By 30 DPA, elongation

has ceased and the secondary cell wall has been laid down. By 50

DPA, the mature fibers have died, and the boll dehisced. Scale bars

for scanning electron images is 5mm. All other scale bars are 1cm.

Original picture Lee et al., 2007 with permission.
2 Phase 1, 0-4 DPA: Initiation and
tip refinement

Cotton fiber is initialized on the surface of the ovule before

anthesis. Initials begin as spherical protrusions of epidermal cells on

the chalazal end of the cotton ovule, with fibers initializing towards

the micropylar end over the first day post anthesis (Butterworth

et al., 2009). Once fiber initials are established, they undergo tip

refinement (see below) and elongation, with these processes co-

occurring for all initials in domesticated G. hirsutum (Lee et al.,

2007; Butterworth et al., 2009; Kim, 2015). Conversely, these

processes differ somewhat in wild cotton, which have lower

percentages of fiber initials on the surface of the ovule; tapering

occurs later in G. herbaceum, and has a wider variety offiber lengths

and widths during this time (Butterworth et al., 2009). During

initiation in domesticated species, the fiber also produces the cotton

fiber middle lamella (CFML), an adhesive layer that joins together

elongating fibers into bundles that remain in this state until the

transition stage, where the CFML is broken down and fibers are

released to develop individually again (Singh et al., 2009; Haigler

et al., 2012). The CFML has not been well-studied in wild

Gossypium. It is thought that the CFML aids in fiber organization

during elongation, keeping the fibers in distinct bundles and

preventing the fibers from elongating in random directions (Singh

et al., 2009). This allows the fibers to grow longer in the confined

space of the locule.

The process of tip refinement is particularly important for fiber

quality, as tip refinement is strongly correlated with fiber diameter,

which is in turn strongly correlated with the properties of mature

fiber. The ratio of the fiber diameter to the fiber lumen is directly

related to fiber strength, dyeability, and spinnability (Kelly et al.,

2015). Tip refinement is accomplished by the concerted synthesis of

the cell wall and cytoskeleton, with fiber tips being tapered during

the first day post anthesis (Graham and Haigler, 2021). Graham and

Haigler (2021) demonstrated that microtubule arrays present near

the apex of the fiber were necessary for proper fiber development,

and when affected by microtubule antagonists during tip

refinement, fiber tips and shape were partially disrupted, resulting

in fibers with a larger diameter and irregular shapes (Graham and

Haigler, 2021).

There are three potential fiber types based on tip morphology

(narrow, tapered, hemisphere/blunt) that confer slightly different

characteristics, most notably fiber diameter, which tends to be
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narrower in tapered versus blunt tips (Graham and Haigler,

2021). G. hirsutum possess two of the fiber types, which have

either blunt/hemisphere tips or tapered tips (Stiff and Haigler,

2016), whereas G. barbadense has the third type (narrow). While

also tapered, experiments suggest that the narrow tips in G.

barbadense are a distinct cell type from those in G. hirsutum,

conferring a smaller fiber diameter (Stiff and Haigler, 2016;

Graham and Haigler, 2021). Notably, the two distinct tip

morphologies in G. hirsutum produce heterogeneous fibers on

single seeds and hence bolls that have slightly different

characteristics; specifically, the hemisphere tipped fibers have a

twofold larger apical diameter than the tapered tips, which may

ultimately influence fiber length and strength (Stiff and Haigler,

2016; Graham and Haigler, 2021). Additionally, the presence of two

populations of fiber tip types may contribute to lower fineness in G.

hirsutum, as many of the fibers have a higher diameter. The single

narrow tip morphology in G. barbadense leads to homogeneous

fiber with a more uniform and smaller diameter that may contribute

to its higher quality (Stiff and Haigler, 2016). While tip refinement

in the diploid domesticated species is less well-studied, a few

accessions analyzed thus far have hemisphere-tipped fiber initials,

leading to higher-diameter fiber (Butterworth et al., 2009).

Despite the distinct diameter sizes observed for these three fiber

types at 4DPA, they achieve similar rates of elongation during the

first four days post-anthesis (Graham and Haigler, 2021). During

this time period, however, tip shape is being refined differently.

While the budding fibers in domesticated G. hirsutum have similar

tip shapes at 1 DPA, they subsequently establish two fiber tip

subpopulations over the next day. In G. barbadense, tips also begin

tapering at 1 DPA and continue to do so uniformly through 2 DPA.

Interestingly, while tip tapering occurs at different times of the day

in G. hirsutum and G. barbadense (morning and evening,

respectively), final taper morphology is established in both by the

second morning post-anthesis (Graham and Haigler, 2021).

Taken together, these observations regarding fiber initiation

and tip refinement raise questions about cotton fiber tip evolution,

across both ploidy and domestication states: why does G. hirsutum

have two tip morphologies? What is the basal state? More research

into the effects of domestication, and into tip morphology of the

diploid fiber-producing cottons, may provide insight into how this

interesting difference evolved.

The initiation phase is regulated by several phytohormones,

including brassinosteroids, abscisic acid, and jasmonic acid, and by

auxin, which is transported into the fiber cells from the ovule

(Ahmed et al., 2018; Xiao et al., 2019). Auxin plays a key role in fiber

initiation, with excess auxin application (exogenous or endogenous)

increasing the number of fiber initials on the surface of the ovule,

and reduction of auxin transport into the fibers inhibiting fiber

initiation (Xiao et al., 2019). Brassinosteroids have been shown to

regulate fiber initiation as well; that is, when BR biosynthetic or

signaling pathways are disrupted, few fibers initialize on the ovule

surface (Ahmed et al., 2018; Xiao et al., 2019). Abscisic acid has been

shown to inhibit fiber initiation, with increased ABA concentration

directly correlating with fewer fiber initials (Xiao et al., 2019).

Jasmonic acid has been reported to control fiber initiation as well,

by degrading highly-expressed jasmonic acid negative regulators
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and switching on pathways related to trichome development (Wang

et al., 2015; Xiao et al., 2019). GWAS studies reveal loci that impact

initiation as well, and genes such as GhCIP1 (an F-box interacting

gene shown to play a role in flowering time (Ma et al., 2018)), and

GhUCE (a ubiquitin-conjugating enzyme (Ma et al., 2018)) that

potentially regulate initiation and yield (Yang et al., 2020).

Studies have been conducted exploring genes important during

the initiation stage. WRKY16, for example, is a transcription factor

(TF) shown to promote fiber initiation by promoting expression of

other TFs, including those with broad regulatory functions such as

MYB109 and MYB25 (Wang et al., 2021). When these transcription

factors were silenced, cotton ovules initiated fewer fibers, and fibers

were significantly shorter (Wang et al., 2021). Extensive research

has been done to determine other TFs and genes important for fiber

initiation, including functional studies (Wang et al., 2020). These

functional studies are varied; some examples include those that

impact transcription factors, such as silencing (via RNAi) and

overexpression of MYB25, showing reduced fiber initiation and

elongation and increases in initiation, respectively (Machado et al.,

2009) and expression of a Gossypium bHLH TF in Arabidopsis

leading to increased trichome initiation on leaves and stems

(Shangguan et al., 2016). Altering hormone regulatory genes also

impacts this stage of development; overexpressing auxin

biosynthesis via iaaM increased levels of initiation and of lint

fiber specifically (Zhang et al., 2011), and silencing PIN1a to

suppress auxin transport resulting in lower fiber elongation

(Zhang et al., 2011). These are not the only two areas that impact

initiation and tip refinement; RNAi of GhHDA5, a histone

deacetylase, resulted in reduced initiation, alterations in reactive

oxygen species (ROS) management, and increased autophagy in

fiber (Kumar et al., 2018); and suppression of sucrose synthase

leading to lower initiation and elongation in the fiber (Ruan et al.,

2003). In short, fiber initiation is a complex process involving many

aspects of cell development, including hormonal regulation, ROS

s igna l ing , and gene su i t e s r egu l a t ed by h igh- l eve l

transcription factors.

The initiation stage of cotton development is undergoing a

recent surge in study, and contains important implications for fiber

improvement. Uncovering the mechanisms by which fiber diameter

is determined during this early stage, or perhaps discovering

methods by which hemisphere tipped fibers in G. hirsutum could

be converted to tapered tipped fibers could result in longer, stronger

fibers with increased fineness in elite lines. Likewise, changing the

amount of fiber that is initialized on the surface of the ovules

through hormone manipulation, particularly in low-producing

cultivars, may lead to higher yields, although this would need to

be balanced with physical constraints within the locule.

Comparison between wild and domesticated accessions, and

among species, may provide the insight into the fiber initiation

program necessary to make these improvements, particularly in the

understudied diploid species. However, careful study will be

necessary to maximize improvements gained from these

possibilities while also elucidating potential trade-offs in fiber

quality or broader impacts on the plant at large, such as resource

needs (carbohydrates in particular). Care must also be taken to

ensure that higher yield does not come at the cost of lower quality;
Frontiers in Plant Science 05
increasing the number of initials on an ovule may result in a larger

harvest, but that is no guarantee that the fibers produced will be of

high quality (Bradow et al., 1997; Davidonis et al., 2004).
3 Phase 2, 3-25 DPA: Elongation

As the fiber is finalizing tip refinement, it continues to undergo

anisotropic growth and elongate (i.e., the elongation phase),

eventually achieving its mature length by roughly 14 DPA in wild

species and 18-25 DPA in domesticated species (Applequist et al.,

2001). Of note, this extended elongation in domesticated species

appears to be the result of human selection (Applequist et al., 2001).

During this time, the fiber undergoes primary cell wall synthesis and

linear growth until it reaches its full length, which can be as long as

6 cm in elite domesticated lines (Kim and Triplett, 2001;

Butterworth et al., 2009). The primary cell wall of G. hirsutum

and G. barbadense fiber is fairly typical, consisting mainly of

cellulose, pectins, and xyloglucan (Haigler et al., 2012; Avci et al.,

2013). Domesticated diploid species are less well-studied, but

research indicates that they have similar primary cell walls as well

(Huwyler et al., 1979; Tokumoto et al., 2002). The final composition

of the primary cell wall is approximately 22% cellulose, surrounded

by xyloglucan and pectin – a drastic difference from the secondary

cell wall, discussed below (Haigler et al., 2012).

Cotton fibers are believed to expand using a linear growth

mode, which combines both diffuse and tip growth to produce the

typical anisotropic growth observed in fiber (Kim, 2018). During

this period, the fiber exhibits high turgor pressure and has high

expression levels of expansins, i.e., proteins responsible for cell wall

loosening (Haigler et al., 2012; Kim, 2018; Yaqoob et al., 2020). The

direction of expansion is guided by regulating the flexibility of the

primary cell wall, which is done through cellulose deposition that

follows microtubule arrangements in the fibers (Haigler et al., 2012;

Kim, 2015; Graham and Haigler, 2021). The actin cytoskeleton,

along with a host of actin-interacting genes such as profilin, villin,

actin depolymerizing factor, the actin-related protein 2/3 complex

(an actin nucleator), and others, also play an active role in fiber

elongation by directing cell wall component deposition (Staiger

et al., 1997; McCurdy et al., 2001; Sheahan et al., 2004; Wang et al.,

2005; Augustine et al., 2008; Suarez et al., 2015). Interestingly,

plasmodesmata are known to also play a role in elongation by

closing and opening during development to assist in solute

transport or to maintain turgor pressure in the developing fiber

(Ruan et al., 2001; Ruan et al., 2004). Finally, reactive oxygen species

(ROS) management also plays an important role in fiber elongation

(Li et al., 2007; Hovav et al., 2008; Chaudhary et al., 2009; Tang

et al., 2014; Tuttle et al., 2015; Xu et al., 2019). It has been shown

that calcium-based ROS management has a direct impact on

elongation; in one example, overexpressing certain calcium

sensors promotes fiber elongation, as does the application of

exogenous hydrogen peroxide, a common ROS and one known to

play a role in cell elongation (Hovav et al., 2008; Chaudhary et al.,

2009; Tang et al., 2014). More recently, an in-depth analysis of ROS

networks in G. hirsutum, G. arboreum, and G. raimondii showed

that several ROS management gene families participate in the
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elongation, transition, and cell wall thickening stages, ensuring that

ROS levels are maintained at levels appropriate for each stage

(Hovav et al., 2008; Chaudhary et al., 2009; Xu et al., 2019).

While elongation continues past the initiation of secondary cell

wall deposition, it slows considerably during the transition stage

(16-20 DPA). Notably, elongation can continue in G. barbadense

until as late as 25 DPA, which is three to five days longer than in G.

hirsutum, where elongation typically ends around 20-22 DPA

(Applequist et al., 2001; Chen et al., 2012). In wild species, the

elongation period is shorter, ending at roughly 14 DPA (Applequist

et al., 2001). This extra time spent in elongation is thought to be part

of the reason that G. barbadense fibers are higher quality; they are

longer than their counterparts in G. hirsutum (Chen et al., 2012).

The combination of a narrower diameter due to tip refinement and

a longer fiber due to extended elongation leads to finer fiber.

The cell wall is deposited in a typical fashion, with the actin

cytoskeleton playing an important role in delivering materials to the

site of elongation and providing structure to the elongating fibers

(Seagull, 1990; Li et al., 2005; Lv et al., 2017; Fang et al., 2018;

Pandey and Chaudhary, 2019). The microtubule cytoskeleton serves

to guide the deposition of cellulose in the primary cell wall as well as

guiding fiber diameter as discussed above (Paredez et al., 2006; Li

et al., 2012; Graham and Haigler, 2021). Between the tight

regulation of cell wall development during the elongation phase

and the high turgor pressure of the cells, cotton achieves the strong

anisotropic growth pattern that results in a long, single-celled fiber.

Many of the major plant hormones play a role in elongation,

whether by promoting or inhibiting the growth of the fibers. As with

initiation, auxin plays a pivotal role during fiber elongation, in part

contributing to the loosening of the cell wall during elongation

(Chen et al., 2012; Ahmed et al., 2018). Application of exogenous

auxin can increase fiber length, whereas interfering with auxin

signaling leads to shorter fibers (Xiao et al., 2019). Another

phytohormone, gibberellic acid, has been repeatedly shown to

improve not only fiber length (by regulating cell wall

development during the elongation stage), but also fiber strength

and fineness (Aleman et al., 2008; Bai et al., 2014; Zhang et al.,

2017b; Ahmed et al., 2018; Xiao et al., 2019). Brassinosteroids are

also known to be required for fiber elongation; when BR signaling

or biosynthesis is disrupted, fiber length is reduced and can be

rescued via BR application (Ahmed et al., 2018; Xiao et al., 2019).

Conversely, high concentrations of abscisic acid have been shown to

inhibit fiber elongation (Ahmed et al., 2018), although the

mechanism by which this occurs is unclear.

Ethylene, however, arguably is the most important hormone for

fiber elongation. Many ethylene biosynthetic genes are upregulated

during elongation, as are ethylene signaling pathways (Ahmed et al.,

2018; Xiao et al., 2019). Application of ethylene results in longer fibers,

and increases the expression of genes known to be involved in fiber

development and growth, such as sucrose synthase, cellulose synthase,

and expansins. (Ahmed et al., 2018; Xiao et al., 2019). Ethylene also

interacts with the BR pathway and plays a crucial role in ROS and Ca2+

management, both of which are key processes during elongation

(Ahmed et al., 2018; Xiao et al., 2019). ROS regulation in particular

is known to impact cell wall extensibility, which is carefully regulated to

ensure the fibers elongate anisotropically (Tang et al., 2014).
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The elongation stage is a popular target for functional studies

and molecular work in Gossypium, as fiber length is the most visible

trait for fiber. Examples of notable genes and studies examining this

stage include: suppression of GhMYB109, a MYB TF, revealed that

it is required for fiber elongation (Pu et al., 2008); MYB25, discussed

above, also results in shorter fiber when suppressed (Machado et al.,

2009); overexpression of GhHOX3, a homeodomain-leucine zipper

TF, increased fiber length, and RNAi resulted in shorter fibers (Shan

et al., 2014); suppressing a number of hormone signaling or

biosynthesis-related genes (including jasmonic acid, gibberellin,

brassinosteroid, and auxin) produced shorter fibers (Luo et al.,

2007; Yang et al., 2014; Hu et al., 2016b; Zhang et al., 2017a); and

several studies have been done over the years describing the

importance of various cytoskeletal and cell wall genes for fiber

elongation, as reviewed in (Huang et al., 2021). Additionally, a

notable mutation in an actin gene is responsible for the well-known

Ligon-lintless 1 mutant, which has a short-fiber phenotype,

demonstrating the importance of actin organization in elongation

(Li et al., 2005; Kim, 2015; Takatsuka et al., 2018). Several QTL in G.

hirsutum that impact fiber elongation, as discussed in (Dong et al.,

2018; Liu et al., 2018; Liu et al., 2019; Naoumkina et al., 2019; Xu

et al., 2020), and others.

Elongation is a clear focal point for fiber improvement, as elite

cotton lines must have long fiber near the top of the known range.

As with fiber initiation and tip refinement, alterations here could

produce unwanted side effects in fiber strength (a long fiber without

the proper reinforcement of the secondary cell wall is weak), but

extending the elongation stage of elite lines may be a potential

avenue for improvement. Finding ways to alter the primary cell wall

composition for more desirable extensibility could lead to higher

fiber quality as well (Kelly et al., 2019; Mathangadeera et al., 2020).

Fine-tuning the developmental balance of key regulatory proteins

and those governing the levels of growth hormones is another

potential method of improvement. Further study into the

mechanisms of how hormones impact elongation and how they

interact with one another during this stage may provide insight into

how to manipulate fiber length.
4 Phase 3, 16-20 DPA: Transition

The transition phase refers to the period during which the fiber

switches from elongation to secondary wall synthesis. It is a time

where the fiber is coordinating significant alterations to its

transcriptome and cellular processes to begin the delicate

interplay between cell elongation and cell wall thickening. As the

fiber reaches ~16DPA, elongation and primary cell wall deposition

begin to slow and stop, ceasing in all species by 25 DPA (Chen et al.,

2012; Tuttle et al., 2015). While elongation slows, microtubules

within the fiber shift to a helical angle and the fiber lays down a

transitional winding cell wall layer (Meinert and Delmer, 1977;

Seagull, 1993; Hsieh et al., 1995). This layer is thin and flexible and

has a composition similar to that of the primary cell wall, with a

small increase in cellulose content (Tuttle et al., 2015). Notably, the

angle of cellulose deposition changes in this layer from a transverse

orientation to a shallow helix (Graham and Haigler, 2021); this
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change in angle is important, as it likely leads to increased fiber

strength (Haigler et al., 2009; Tuttle et al., 2015; Nixon et al., 2016;

Zhang et al., 2021).

Secondary cell wall deposition begins during the transition stage,

thickening the fiber through the next 20-30 days and resulting in a

cell wall consisting of ~98% pure cellulose, a composition that is

remarkable among plant cell walls (Kim, 2018). The transition phase

is characterized by extensive changes in gene expression and

phytohormone regulation, most notably auxin and gibberellic acid,

which play an important role in the transition, along with changes in

the regulation of various reactive oxygen species in the fiber

(potentially altering fiber extensibility, as discussed above) (Tuttle

et al., 2015; Xiao et al., 2019; Zhang et al., 2020).

The transition phase is characterized by massive regulatory

changes that herald the shift from fiber elongation to the tightly

regulated program required for cell wall thickening. Naturally, these

sweeping transcriptional changes often are related to expression

changes in various stage-specific transcription factors. Broad-scale

surveys have identified several NAC-domain factors as important,

such as SND1 and TALE family genes, which activate secondary cell

wall deposition when upregulated (Zhong et al., 2006; Ma et al.,

2019). Altered expression of various MYB-domain transcription

factors is also implicated during the transition stage, leading to

expression changes across all downstream genes (Zhong et al., 2006;

Li et al., 2009). GhMYBL1, for example, is known to be expressed

during this stage, and when overexpressed in Arabidopsis, causes

enhanced secondary cell wall synthesis in xylary elements (Sun

et al., 2015). While much of this understanding comes from broad-

scale surveys, some research has been done on specific transcription

factors as well. For example, GhTCP4 overexpression promotes

secondary cell wall thickening, resulting in shorter, thicker fibers

(Cao et al., 2020). Hot216, a transcription factor that encodes a KIP-

related protein, plays a role in the transition stage as well, regulating

a network of nearly 1000 genes related to cell wall synthesis (Li

et al., 2020).

As a result of these massive transcriptional changes, the

transition phase is also marked by dramatic proteomic and

metabolomic shifts. Both G. hirsutum and G. barbadense exhibit

increases in cytoskeletal, carbohydrate metabolism, and redox

proteins during this stage (Zhou et al., 2019). Both species also

exhibit simultaneous decreases in proteins responsible for the

biosynthesis of many common cell wall polysaccharides, to better

direct metabolite flux into the cellulose synthesis pathway (Zhou

et al., 2019). For example, during the transition stage, the fiber

transcriptionally modifies a pathway similar to that of sclerenchyma

differentiation in Arabidopsis, to repress lignin biosynthesis while

upregulating cellulose biosynthesis in the fiber (Tuttle et al., 2015).

This is what causes the nearly-pure cellulose phenotype seen in

mature fiber secondary cell wall (SCW). The lignin pathway is not

entirely repressed, however; small amounts of lignin precursor

compounds are synthesized in the fiber, which likely account for

the presence of lignin-like phenolics in the mature fiber (Tuttle

et al., 2015). It is also during this stage that the CFML breaks down,

allowing the fiber bundles to separate into individual fibers.

Because of the significant and important changes that occur

during the transition stage, it requires careful study before it can be
Frontiers in Plant Science 07
targeted for improvement. The confluence of the elongation stage

and the secondary wall synthesis stage provide an opportunity to

fine-tune the relationship between the two, which may in turn

impact fiber strength and fineness. Understanding the transition

stage is critical for fiber improvement, as it is where these two fiber

qualities begin to compete. The end of elongation and the beginning

of secondary wall synthesis also present opportunities to deepen

understanding of these two processes, which could in turn lead to

further improvements. Extending elongation, for example, is one

way in which the domesticated cotton phenotype was impacted by

human selection (Applequist et al., 2001). The deposition of the

winding cell wall layer may provide an avenue for improvement, as

it is a contributor to the final strength of the fiber and an important

component of the fiber cell wall.
5 Phase 4, 20-50 DPA: Secondary
cell wall thickening, maturation,
and cell death

The final stage in fiber development, generally referred to as

secondary wall synthesis, is the stage that determines the width of

the fiber cell wall along with further impact on fiber strength.

Cellulose synthesis begins to increase around 14DPA, and by

~25DPA, the fiber across all species has entered secondary cell

wall thickening. Here, the fiber lays down cellulose in a steep helical

pattern, guided by microtubules (Seagull, 1990; Seagull, 1993). In

contrast with wild cotton fiber, which contains lignin and other cell

wall polysaccharides, domesticated cotton fiber is nearly pure

(~98%) cellulose (Haigler et al., 2009; Haigler et al., 2012; Tuttle

et al., 2015). This tube of nearly pure cellulose, deposited in a helical

pattern, is all that remains after the fiber undergoes cell death,

providing strength and spinnability through the fine control of wall

thickness (Tuttle et al., 2015).

At the molecular level, cellulose synthases (CESAs) are

upregulated during the stage; specifically, a subgroup of the 32

Gossypium CESA genes are expressed during SCW synthesis (Kim,

2018). As in most plant cellulose synthase complexes (CSCs), these

CESA subunits are arranged into a rosette consisting of six linked

trimers, or 18 CESA subunits (Nixon et al., 2016; Kim, 2018). These

CSCs lay down cellulose fibrils in a helical arrangement around the

cell following the pattern established by the microtubules, but with

periodic reversals of the helical orientation (Kim and Triplett, 2001;

Betancur et al., 2010; Li et al., 2012; Kim, 2018).

Of the phytohormones, auxin (IAA) and gibberellic acid (GA)

have the greatest impact during secondary cell wall deposition. IAA

concentration during this stage of fiber development is found to

increase, and application of exogenous IAA is found to increase cell

wall thickness (Zhang et al., 2011; Xiao et al., 2019). GA also plays a

role in secondary cell wall synthesis, as it is a regulator of sucrose

synthase genes, which are crucial for cellulose production (Brill

et al., 2011; Bai et al., 2014; Xiao et al., 2019).

The onset of secondary cell wall synthesis is accompanied by a

transcriptional and proteomic switch, as the fiber ceases elongation

and slows or stops the deposition of non-cellulose wall components.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1146802
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jareczek et al. 10.3389/fpls.2023.1146802
Accordingly, the fiber undergoes significant regulatory and gene

expression changes. Functional studies have been performed at this

level as well, with a focus on cell wall thickening specifically. Some

studies report the following: expression of GhMYB2, a MYB TF, in

Arabidopsis, resulting in thicker leaf trichomes (Huang et al., 2013);

increasing gibberellin biosynthesis in the fibers through GA20-

oxidase and GA2-oxidase 2 resulted in thinner fibers, indicating

alterations to fiber thickness (Bai et al., 2014); overexpressing

GhSusA1, sucrose synthase, resulted in thicker fibers, and

suppression of the gene produced thinner fibers (Jiang et al.,

2012); in one study, cellulose synthase genes (acsA and acsB)

from Acetobacter xylinum were transformed into Gossypium,

resulting in fiber with thicker, stronger fiber (Li et al., 2004); and

FSN1, a NAC TF, was shown to positively regulate secondary cell

wall synthesis in G. hirsutum (Zhang et al., 2018). QTL studies have

also identified QTL that impact fiber thickness and cell wall

development, as seen in (Ma et al., 2019; Li et al., 2020; Hafeez

et al., 2021) and others.

The process of cell wall thickening continues for several weeks,

with cotton fiber typically reaching maturity from 40-50 DPA (Kim,

2018). When the fibers are mature, the fiber cells die, dry out, and

the bolls dehisce. As they dry, the fiber is reduced to a hollow tube of

cellulose through processes that are not understood (Kim, 2018).

The fiber itself collapses into a bean shape in cross section, which

contributes to the twisting of the mature fibers. Detailed research on

these later DPA during the cell wall thickening or maturation stage

is scarce due to the challenges imposed by the thick cell wall.

Mechanically breaking the fibers open is difficult, and the strength

of chemical degradation required for cell wall lysis also frequently

damages the contents of the fiber cell. Consequently, little is known

about the processes that follow SCW thickening and/or the

mechanisms by which the fiber is converted from a living cell

into the characteristic hollow tube of cellulose.

With respect to fiber improvement, optimization of secondary

cell wall deposition could contribute to higher quality fiber through

modifications of the fiber wall thickness to cell diameter ratio. This

does come with the risk of over-thickening the cell wall, leading to

coarse, bristle-like fibers that do not spin or dye well, as seen in

some wild species. While there may also be potential improvements

in the fiber maturation and desiccation aspects, assessment of these

is prohibited until further progress is made on understanding fiber

maturation, apoptosis, and desiccation. Some data of these

processes is available; for example, it is known that desiccation of

the boll begins before the boll opens (Lee et al., 2015), but much

work remains to be done.
6 Insights from evolutionary biology

Cotton fiber derives from a plant with a unique and fascinating

evolutionary history spanning millions of years and including

several remarkable biogeographic and genomic events. The

natural hybridization of an Old World A genome species with a

New World D genome species and the subsequent rise of a new

clade of allotetraploid AD species provided Gossypium with

duplicated copies of its genes, which enabled greatly expanded
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opportunities for mutation and recombination over evolutionary

time and novel combinatorial possibilities (Wendel et al., 2010;

Wendel and Grover, 2015). This polyploidization was then followed

by the independent domestication of four species, two diploid and

two polyploid (Wendel et al., 2010; Wendel and Grover, 2015). The

strong directional selection of domestication combined with

variation in ploidy level provides a powerful lens to examine how

these traits have impacted the fiber, along with gleaning insight into

how fiber might be further improved.

Polyploidy also plays an important role in fiber development;

one of the key features of polyploid organisms is that their genome

contains multiple copies of each gene. Some of these copies are lost

over time, but some obtain new functions, or split their function

between the copies (Soltis and Soltis, 1999; Adams and Wendel,

2005; Otto, 2007; De Smet and Van de Peer, 2012; Wendel, 2015;

Fang et al., 2017). Additionally, having more copies of genes means

that selection against mutation is relaxed, as deleterious mutations

in one copy will have less of an impact as long as the second copy is

intact (Adams and Wendel, 2005; De Smet and Van de Peer, 2012).

Polyploidy also gives rise to cytonuclear effects – in cotton, the

presence of both A- and D-genome genes in an A-genome

cytoplasm leads to a variety of cis-trans interactions not seen in

diploids (Bao et al., 2019). These provide opportunities to study the

impact of cis- and trans-regulation on the fiber phenotype, and to

consider how it may be leveraged to improve cotton fiber.

In addition to these broad evolutionary concepts, morphological

and genetic/transcriptomic studies provide a window into some of

the evolutionary processes responsible for cotton fiber as a whole,

differences between the fibers of domesticated species, and how

domestication produced a very similar phenotype in four

independent species. Transcriptomic studies reveal that cotton

fibers do not utilize all pathways typically associated with

trichomes, but instead include some that are more similar to xylem

elements or other sclerenchyma cells in in Arabidopsis (Haigler et al.,

2009; Betancur et al., 2010; Sun et al., 2015; Tuttle et al., 2015). The

appearance of three distinct tip morphologies among G. hirsutum

and G. barbadense fibers point toward unique genomic bases and

developmental programmes of domestication between the two

species, despite having generally similar fiber phenotypes (Stiff and

Haigler, 2016; Graham and Haigler, 2021). Extended elongation in

domesticates compared to wild species suggests that elongation was a

critical target for early selection of these plants, leading to longer

fibers (Applequist et al., 2001; Kim, 2015). Many of these processes

are regulated transcriptionally; domestication caused sweeping

changes in the cotton transcriptome (Rapp et al., 2010; Gallagher

et al., 2020). Domesticated species suppress lignin synthesis in the

fiber, which is crucial to the development of the nearly-pure cellulose

mature fiber (Tuttle et al., 2015). ROS regulation, signaling, and

scavenging are all altered in the domesticates, indicating that these

critical cell processes are relevant to the domesticated phenotype and

potential targets for further improvement (Hovav et al., 2008;

Chaudhary et al., 2009; Tang et al., 2014; Xu et al., 2019).

Domestication also causes changes at the network level, with entire

coexpression or regulatory networks changing under the selective

pressure exerted during the domestication process, with networks

becoming more tightly linked after domestication (in cotton seeds
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and fiber; Hu et al., 2016a; Gallagher et al., 2020; Hu et al., 2021). We

are only at the beginning of understanding these phenomena and

how they overlap and are distinct in each of the domesticated species.

Continued study, therefore, promises new insights into the complex

genotype to phenotype equation and the consequences of natural,

and by extension, human-mediated selection. The diploid

domesticates are understudied, and continuing to improve our

knowledge of them also will provide opportunities for

understanding the evolution and domestication of the cotton fiber,

and the presumably critical role of polyploidy in facilitating the

selection of vastly improved fiber. Taken together, this new

knowledge will provide avenues of improvement that could lead to

higher quality and yield of commercially grown cotton, either

through deeper understanding of the domestication process, or

through more traditional crop improvement techniques.
7 Conclusions

While Gossypium has been extensively studied for decades, our

knowledge of how cotton fiber grows and develops remains in its

infancy. A deeper understanding of the complex genetic, metabolic,

and physiological underpinnings and networks that underlie fiber

development would greatly benefit all those interested in cotton as a

species. Increasing understanding of how plants can develop such a

unique and specialized cell will also provide potential avenues for

improving the most important textile crop in the world. The end of

fiber development is of particular interest, due to the scarcity of

research; understanding the mechanisms by which the fiber

matures, ceases secondary wall synthesis, and ultimately dies

could lead to finer control of these processes.

Understanding cotton fiber development is of agronomic interest

as well, as it can lead to improvement of the world’s most prominent

plant textile. A deeper understanding of the mechanisms behind fiber

initiation and tip refinement could lead to enhancement of other

textiles, or increase the yield or fineness of cotton fiber. A deeper

knowledge of how cotton elongates fiber cells could provide insight

into creating even longer fibers. The transition stage also has potential

for improvement; adjustments to winding layer deposition could lead

to stronger fibers. Fine tuning the shift from elongation and primary

cell wall synthesis to fiber thickening and secondary cell wall

deposition could result in higher quality fibers as well. Secondary

wall synthesis itself is also a critical step in fiber development, and one

that is heavily tied to overall fiber quality. Altering the thickness of the

secondary cell wall at this stage could improve fiber quality.

Additionally, there is practical interest in understanding cotton

fiber development in the context of a changing environment. As

with most crops, cotton yield (i.e., boll production and retention)

can be negatively influenced by climatic factors, including changes

in heat accumulation and fluctuations in other abiotic stressors

(Sawan, 2017a, Ullah et al., 2017; Sawan, 2017b; Kukal and Irmak,

2018; Saud and Wang, 2022; Sihi et al., 2022). Importantly, recent

research suggests that environment plays a stronger role than

genotype in determining agronomically fiber properties (e.g.,

yield, length, and uniformity) among elite lines of G. hirsutum

(Raper et al., 2019). While some progress has been made in
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understanding the mechanisms of fiber production under stress

and changing climatic conditions (Mishra et al, 2017; Ullah et al.,

2017; Esmaeili et al., 2021), the mechanisms underlying the

response of fiber development to environment is yet unknown.

Therefore, understanding the nuances of cotton fiber development

and how it is influenced by the environment is paramount in

forward-thinking sustainability efforts.

Beyond the more practical applications of fiber improvement,

studying the cotton fiber is itself valuable. It provides a ready-made

system in which to study the development of a cell, situated in a

polyploidy and domestication experiment that has been beautifully

replicated over the history of the genus. The fibers of these four

domesticated cotton species hold secrets of domestication, and how

artificial selection impacts plants at the genomic, transcriptional, and

developmental levels. They provide a unique opportunity to see how

domestication can arrive at a similar phenotype across four

independent domestication events. Cotton is ultimately an invaluable

resource both as a textile crop and a system of study, and its fiber has

the potential to unlock many mysteries across a range of disciplines.
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