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1The First Ecological and Environment Monitoring Station of Xinjiang Production and Construction
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Net ecosystem productivity (NEP), which plays a key role in the carbon cycle, is an

important indicator of the ecosystem's carbon budget. In this paper, the spatial and

temporal variations of NEP over Xinjiang Autonomous Region, China from 2001 to

2020 were studied based on remote sensing and climate re-analysis data. The

modified Carnegie Ames Stanford Approach (CASA) model was employed to

estimate net primary productivity (NPP), and the soil heterotrophic respiration

model was used to calculate soil heterotrophic respiration. Then NEPwas obtained

by calculating the difference between NPP and heterotrophic respiration. The

annual mean NEP of the study area was high in the east and low in the west, high in

the north and low in the south. The 20-year mean vegetation NEP of the study area

is 128.54 gC·m-2, indicating that the study area is a carbon sink on the whole. From

2001 to 2020, the annual mean vegetation NEP ranged between 93.12 and 158.05

gC·m-2, and exhibited an increasing trend in general. 71.46% of the vegetation area

showed increasing trends of NEP. NEP exhibited a positive relationship with

precipitation and a negative relationship with air temperature, and the

correlation with air temperature was more significant. The work reveals the

spatio-temporal dynamics of NEP in Xinjiang Autonomous Region and can

provide a valuable reference for assessing regional carbon sequestration capacity.

KEYWORDS
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1 Introduction

Since the industrial revolution, the concentration of carbon dioxide in the atmosphere

has dramatically increased with the development of technology and the widespread use of

fossil fuels. In 1705, the global atmospheric CO2 concentration is 278 ppm, but in 2022, it has

reached 417 ppm, an increase of about 50% (Met Office, 2022; NOAA, 2022). The increase in

atmospheric CO2 concentration has caused a series of climate and environmental problems,
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including global warming, extreme weather events, sea level rising,

and glacier retreat, which have important impacts on human survival

and development (Zhao and Luo, 1998; Hoegh and Bruno, 2010;

IPCC, 2014; Baker et al., 2018; Luo and Keenan, 2022; Xue and Qin,

2022). Carbon cycle research has attached strong interest from

governments and scientists. Terrestrial ecosystem is an important

part of the global carbon cycle and a key indicator of regional

environment and human activities (Schimel et al., 2015; Friend et

al., 2014). Net ecosystem productivity (NEP), which is the difference

between net primary productivity (NPP) and soil heterotrophic

respiration (Rh), can effectively indicate carbon absorption and

emission capacity, and is generally used as an indicator of carbon

source or carbon sink (Keenan et al., 2016; Li et al., 2020). A positive

NEP means that the carbon absorbed by the ecosystem is more than

the carbon emitted, which is a carbon sink. A negative NEP indicates

that the carbon absorbed by the ecosystem is less than the carbon

emitted, which is a carbon source. Accurate knowledge of NEP is

critically important for assessing regional carbon sequestration

capacity and developing strategies to stabilize the CO2 emissions.

Traditional investigation methods of NPP include the biomass

survey method, the direct harvest method, Eddy Covariance method,

chlorophyll estimation method, and the raw material consumption

measurement method. Most of these methods are time-consuming

and can only provide NPP estimations at small scales. Recently,

satellite remote sensing data are employed to map NPP at large scales,

and several methods were developed for estimating NPP from remote

sensing data, including light energy utilization models, physiological

and ecological process models, and climate productivity models

(Goetz et al., 1999; Parton et al., 1993; Veroustraete et al., 1994).

Among these methods, the Carnegie-Ames-Stanford Approach

(CASA) model, which is a simple light energy utilization model

that uses remotely sensed normalized difference vegetation index

(NDVI) and meteorological data as input variables, has been widely

used. Many studies have been carried out on the spatial and temporal

variations of NPP based on remote sensing datasets (Bradford et al.,

2005; Chirici et al., 2007; Pachavo and Murwira, 2014; Ji et al., 2021;

Xue et al., 2021; Mngadi et al., 2022). NPP can well quantify the

carbon absorption by plants; while NEP can depict both the carbon

absorption by plants and carbon release by soils. Compared with

NPP, NEP can better depict regional carbon sequestration capacity.

However, there are quite fewer studies investigating NEP from remote

sensing at large scales. Yamaji et al. (2008) combined Moderate

Resolution Imaging Spectroradiometer (MODIS) data and flux-

based observations to obtain NEP maps of deciduous forests in

Japan for the years 2002-2003 using a scaling-up technology. Nayak

et al. (2015) analyzed the spatial and temporal variations of NEP over

India during 1981–2006 using the CASA model and regional database

and also investigated its relationship with climatic parameters. He

et al. (2018) used the CASA model and a soil microbial respiration

model to estimate NEP in the Yellow River Basin during 1982-2015

and analyzed its spatial response under diurnal asymmetric warming.

Zhao et al. (2019) used an improved individual-based forest

ecosystem carbon budget model and Advanced Very High

Resolution Radiometer (AVHRR) remote sensing data to estimate

the NEP of global forest ecosystems from 1982 to 2011, and then

investigated the impacts of climate change on the NEP of different

forest types. Guo et al. (2021) applied the CASA model and a
Frontiers in Plant Science 02
heterotrophic respiration model to map NEP in the Hindu Kush

Himalayan region and studied the temporal and spatial changes of

NEP magnitude from 2001 to 2018. Zhang J. et al. (2021) combined

the CASA and empirical models to map the NEP in Central Asia

during 2001-2019 and evaluated the impact of drought on the carbon

source and sink.

Xinjiang Autonomous Region is located in an arid and semi-arid

climate zone in northwestern China. It is one of themost sensitive regions

to climate change, which is characterized by relatively low ecosystem

productivity and weak system regulation capacity. Quantitative

investigating the ecosystem NEP in this region and the response to

climate is of great significance. This paper aims to integrate satellite

remote sensing data and meteorological reanalysis data to study the

spatial and temporal variations of net ecosystem productivity in the

region in the past 20 years, which is of great significance for the

understanding of changes in carbon balances and expenditures in

Xinjiang, and can provide a reference for the regulation of carbon cycle

and ecological protection strategy in the region.
2 Study area and data

2.1 Study area

Xinjiang Uygur Autonomous Region is located in the northwest

of China (Figure 1). It ranges from 73°20' to 96°25' E and 34°15' to 49°

10' N, with a total area of about 1.66 million km2. The region has a

complex and diverse topography, with the Altai, Tianshan, and

Kunlun Mountains distributed from north to south. The Junggar

and Tarim basins are located on the north and south sides of

Tianshan Mountain, respectively. Xinjiang belongs to a temperate

continental arid and semi-arid climate, characterized by long hours of

sunshine, strong evaporation, hot summers, and cold winters. In

general, precipitation is higher in the north than in the south, and

temperature is higher in the south than in the north. The vegetation

cover is low, and the vast majority of the area is covered by desert,

followed by grassland, which accounts for 70.90% and 22.95% of the

total area, respectively.
FIGURE 1

Study area.
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2.2 Data

The remote sensing data used in this study includeMODIS vegetation

indexproduct (MOD13Q1) andMODIS land cover product (MCD12Q1)

from 2001 to 2020. MOD13Q1 is a 250m resolution 16-day composite

MODIS vegetation index product that provides two primary vegetation

indices: NDVI and enhanced vegetation index (EVI). Themulti-temporal

composite algorithm selects the best available pixel values during the 16-

day period to produce the composite vegetation index values, with the

criteria of low cloud, low view angle, and the highest NDVI/EVI value. In

this study, the NDVI was extracted and then monthly composited.

MCD12Q1 is a 500m resolution annual MODIS land cover product that

provides land cover data under five different classification schemes. It is

derived using supervised classificationmethods based on Terra and Aqua

MODIS reflectance data and ancillary information. In this study, the land

cover using the International Geosphere–Biosphere Programme (IGBP)

scheme was used. In addition, the Shuttle Radar Topography Mission

(SRTM)DigitalElevationModel (DEM)wasalsoemployed in this study to

provide 90m resolution elevation.

The meteorological reanalysis data is the ERA5-Land

meteorological data, which combines model data with observation

data into a globally complete and consistent dataset using the laws of

physics. It provides a series of meteorological elements with a spatial

resolution of 0.1 degree. In this study, monthly mean temperature and

monthly total precipitation from 2001 to 2020 were extracted.

The observed monthly sunlight hours and precipitation data were

collected from 53 meteorological stations in Xinjiang. The sunlight

hours were interpolated to gridded data with a spatial resolution of

1km based on the ordinary kriging method. Compared with the

reanalysis precipitation and meteorological observed precipitation,

the reanalysis precipitation is generally higher than observed

precipitation. To reduce the error of reanalysis precipitation,

observed precipitation from 53 meteorological stations in Xinjiang

were employed to develop linear regressions between the reanalysis

precipitation and meteorological observed precipitation month by

month. Then the reanalysis precipitation were adjusted based on

these equations.

All data were processed inGoogle Earth Engineering (GEE) platform,

including mosaic, spatial clip, projection conversion, mask, monthly

composite processing, spatial resampling, etc. Finally, all data were

converted into Albers projection with a spatial resolution of 500m.
3 Methods

3.1 NPP estimation

The CASA (Carnegie–Ames–Stanford approach) model was

employed for NPP estimation. It has the advantages of high

accuracy and fewer input parameters and, and has been widely used

for NPP estimation. Its main formula is:

NPP(x,t) = APAR(x,t) · ϵ(x,t) (1)

where APAR(x,t) is the absorbed photosynthetic active radiation of

pixel x in month t (MJ·m-2); ϵ(x,t) is light utilization efficiency of pixel

x in month t (gC·MJ-1).
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APAR is calculated by the following equation:

APAR(x,t) = SOL(x,t) · FPAR(x,t) · 0:5 (2)

WhereSOL(x,t) is the total solar radiationofpixel x inmonth t (MJ·m2),

FPAR is the fraction of absorbed photosynthetically active radiation.

The total solar radiation was calculated based on the empirical

equation proposed by He and Xie (2010), which was developed for

Western China:

Q = Q0(a + b · TS=TA) (3)

Where Q0 is the astronomical radiation, which is calculated based on

geographical latitude, solar declination and other parameters; TS is the

observed sunlight hours; TA is the theoretical sunlight hours which is

calculated from latitude and solar declination; a and b are empirical

coefficients (a=0.185; b=0.595).

FPAR is calculated by Equation 4~7:

FPAR(x,t) = aFPARNDVI + (1 − a)FPARSR  (4)

FPARNDVI =
NDVI(x,t) −NDVI(i,min)

NDVI(i,max) − NDVI(i,min)
� (FPRAmax

− FPRAmin ) + FPRAmin  (5)

FPARSR =
SR(x,t) − SR(i,min)

SR(i,max) − SR(i,min)
� (FPRAmax − FPRAmin )

+ FPRAmin  (6)

SR(x,t) =
1 + NDVI(x,t)
1 −NDVI(x,t)

(7)

Where NDVI(i,min) and NDVI(i,max) are the minimum and

maximum values of NDVI for vegetation type i, respectively; the

values of FPARmin and FPARmax were 0.001 and 0.95, respectively; SR

(i,min) and SR(i,min) are the 5% and 95% percentile of NDVI values for

vegetation type i, respectively.

The light utilization energy ϵ is calculated by the following

equation:

ϵ(x,t) = Tϵ1(x,t) · Tϵ2(x,t) · Wϵ(x,t) · ϵmax (8)

Where Tϵ1 and Tϵ2 represent the stressing effects of low and high

temperatures on light energy utilization, respectively; Wϵ(x,t) is the

water stress effect coefficient; ϵmax is the maximum light utilization

efficiency under ideal conditions(gC·MJ-1).

Table 1 gives the values of NDVI(i,min), NDVI(i,max), NDVI(i,min) and

NDVI(i,max) and ϵmax of different vegetation types (Zhu et al., 2007).
3.2 NEP calculation

Net Ecosystem Productivity (NEP) is defined as the difference

between NPP and soil heterotrophic respiration:

NEP = NPP − RH (9)

where NEP is net ecosystem productivity of vegetation (gC·m-2);

NPP is net primary productivity of vegetation (gC·m-2); RH is soil

heterotrophic respiration (gC·m-2).
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Soil heterotrophic respiration is calculated by the empirical

equation developed by Pei et al. (2003).

RH = 3:069 · (e0:0912·T + ln (0:3145 · R + 1)) (10)

Where RH is soil heterotrophic respiration (gC·m-2); T is air

temperature (°C); R is precipitation (mm).
3.3 Spatio-temporal variations

The Theil-Sen Median (Sen) method was employed to determine

the trend of NEP over the study area. This method is a robust

nonparametric trend method, which does not require the data to

follow a certain distribution (Fensholt et al., 2012; Zhang Z. et al.,

2021). It has been widely used in the trend analysis of long-time

data series.

The Sen’s slope value (b) indicates the magnitude of the NEP

trend. A positive b value suggests an upward trend and a negative b
value suggests a downward trend. The calculation formula for b is as

follows:

b = Median( NEPj − NEPi
j − i

)      2001 ≤ i < j ≤ 2020 (11)

where b is Sen’s slope value; NEPi and NEPj are NEP in year i and

j respectively.

The Mann–Kendall test is used to assess the significance of NEP

trends. The test statistics S value is calculated as:

S =on−1
i−1on

j=1+1(sgnNEPj _NEPi) (12)

sgn(NEPj−NEPi) =

1    NEPj−NEPi > 0

0    NEPj−NEPi = 0

−1    NEPj−NEPi < 0

8>><
>>:
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The test statistic Z value was obtained by standardizing S:

Z =

S−1ffiffiffiffiffiffiffiffiffi
var(S)

p S > 0

0 S = 0

S+1ffiffiffiffiffiffiffiffiffi
var(S)

p S < 0

8>>><
>>>:

(13)

Where the function var is calculated as:

var(S) =
(n(n − 1)(2n + 5) −om

i=1ti(ti − 1)(2ti + 5))

18
(14)

where n is the number of sequence samples; m is the number of

affiliated groups in the data sequence; ti is the number of input values

inside the affiliated group i.

To validate the significance of the trend, the absolute z-score value

|Z| is compared with the critical value Z1-a/2 at a given significance

level a. if |Z| is higher than Z1-a/2, the trend is considered significant.

The Z1-a/2 values were obtained from the standard normal

distribution table. For the significance level a of 0.05 and 0.01, the

critical Z1-a/2 values are 1.96 and 2.58, respectively

Partial correlation is used to analyze the relationship between

NEP and meteorological factors. Its formula is:

rij·k =
rij − rikrjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 − r2ik)(1 − r2jk)
q (15)

where Rij,k is the partial correlation coefficient between variable i

and j after variable k is fixed. rij, rih, rjh are correlation coefficients for

the variables i and j, j and k, and k and i, respectively.
4 Results and discussions

4.1 Spatial distributions of NEP

Figure 2 shows the spatial distributions of the 20-year mean NEP

of Xinjiang Autonomous Region. NEP in Xinjiang shows a spatial

distribution pattern of high in the east and low in the west, high in the

north and low in the south. During 2001-2020, the overall average

vegetation NEP of the study area was 128.54 gC·m-2, suggesting an

overall performance of carbon sink. However, the spatial differences

were obvious. 61.56% of the vegetation area in the region had positive

NEP, showing carbon sink effects. 38.44% of the vegetation area had

negative NEP, showing a carbon source effect. The carbon source is

mainly distributed in the central Junggar Basin, Altay Mountain, and

southern Tacheng Basin.
4.2 Temporal variations of NEP

Figure 3 shows the temporal variations of annual mean vegetation

NEP over Xinjiang from 2001 to 2020. Generally, the annual mean

vegetation NEP ranged from 93.12 to 158.05 gC·m-2, exhibiting an

increasing trend with a Sen’s slope of 1.59 gC·m-2·a-1. During these 20

years, the annual mean vegetation NEP was the lowest in 2008 (93.12

gC·m-2) and the highest in 2013 (158.05 gC·m-2).
TABLE 1 The values of NDVI(i,min), NDVI(i,max), NDVI(i,min) and NDVI(i,max) and
ϵmax of different vegetation types.

Vegetation Type NDVImax NDVImin SRmax SRmin ϵmax

Evergreen
needleleaved forest

0.647 0.023 4.67 1.05 0.389

Deciduous coniferous
forest

0.738 0.023 6.63 1.05 0.485

Deciduous broadleaf
forest

0.747 0.023 6.91 1.05 0.692

Mixed forest 0.702 0.023 5.84 1.05 0.475

Shrubland 0.636 0.023 4.49 1.05 0.429

Grassland 0.634 0.023 4.46 1.05 0.542

Cropland 0.634 0.023 4.46 1.05 0.542

Water 0.634 0.023 4.46 1.05 0.542

Impervious surface 0.634 0.023 4.46 1.05 0.542

Barren 0.634 0.023 4.46 1.05 0.542
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The monthly mean vegetation NPP in Xinjiang ranged from -4.62

to 39.81 gC·m-2, showing obvious single-peaked characteristics

(Figure 4). Among the 12 months, NEP showed positive values

from April to October and achieved the highest value in July (39.81

gC·m-2), indicating that during these months Xinjiang vegetation

ecosystem acted as a carbon sink. From November to March, Xinjiang

vegetation ecosystem showed a carbon source effect, and the lowest

monthly NEP value was -4.62 gC·m-2 in February.

To better understand the spatial and temporal variations of NEP

over the study area, the Sen’s trend analysis and Mann–Kendall test

were performed pixel by pixel. Figure 5 gives the spatial distributions

of the trend of vegetation NEP and the significance of the trend over

Xinjiang from 2001 to 2020. During this period, most of the

vegetation area in the region showed increasing trends. The area

with increasing NEP trend was ~327, 400 km2, accounting for 71.46%

of the total vegetation area. Among these areas, about 51.63% had the

NEP trend lower than 0.15 gC·m-2·a-1, 21.65% had the NEP trend

between 0.15 and 0.25 m-2·a-1, and 20.09% had the NEP trend

between 0.25 and 0.5 gC·m-2·a-1. 6.64% had NEP growth rates

greater than 0.5 gC·m-2·a-1, mainly in the oasis belt of the northern

slopes of the Tianshan Mountain, the oasis belt around the Tarim

Basin, the Altai Mountain, and the northern part of the Tacheng
Frontiers in Plant Science 05
Basin. The area where NEP showed decreasing trends was ~130, 800

km2, accounting for 28.54% of the total vegetation area. Most of these

areas had NEP decline rates below 0.15 gC·m-2·a-1, accounting for

about 79.61% of the vegetation area with decreasing NEP trends.

These areas were mainly located in the Ili Basin, the northern part of

the Junggar Basin, the Altai Mountain and the south part of the

Tacheng Basin. 11.34% had NEP decline rates between 0.15 and 0.25

gC·m-2·a-1, 7.92% had NEP decline rates between 0.25 and 0.5 gC·m-

2·a-1. Only 1.13% had NEP decline rates over 0.5 gC·m-2·a-1, which

were sporadically distributed throughout the region. In terms of the

distribution of significant levels of trends (Figure 5B), 22.33% of the

vegetation area in Xinjiang showed highly significant increasing

trends, mainly in the oasis belt in the middle of the northern slope

of the Tianshan Mountain and the oasis belt around the Tarim Basin.

There were also 11.01% of vegetation area showed significant

increasing trends. Most of the vegetation area in the study area

showed insignificant changes, accounting for 63.23% of the total

vegetation area. Among them, 38.12% had insignificantly increasing

trends and 25.11% had insignificantly decreasing trends. Only 2.16%

and 1.27% of the vegetation area showed significant decreasing and

highly significant decreasing trends, respectively. In general, the area

with increasing NEP was obviously larger than that with decreasing

NEP, and the NEP decreasing trends were mostly insignificant,

suggesting good vegetation recovery in Xinjiang.
4.3 Response of NEP to meteorological
factors

Figure 6 shows the 20-year average annual precipitation and

temperature over Xinjiang. This regions exhibited strong spatial

difference in precipitation. The Yili Basin region and the northern

slopes of the Tianshan Mountain had the highest precipitation. This

can be attributed to the fact that the Tianshan Mountain block the

warm and humid Atlantic air currents, creating more precipitation on

the windward slopes. And the open valley floor in the western part of

the Yili Basin allows the entry of the humid Atlantic air currents. The

Tarim Basin, Turpan Basin and Junggar Basin are surrounded by high

mountains, making it difficult for water vapor to get in, resulting in
FIGURE 2

Spatial distribution of 20-year mean NEP in Xinjiang.
FIGURE 3

Temporal variations of annual mean vegetation NEP over Xinjiang from
2001 to 2020.
FIGURE 4

Temporal variations of monthly mean NEP over Xinjiang.
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low precipitation and the arid climate. The air temperature also varies

widely among different regions, which is mainly influenced by the

topography. The Altai Mountain, Tianshan Mountain, Kunlun

Mountain and Ali Mountain have high altitude and low

temperature, while the Junggar Basin, Ili Basin, Tarim Basin,

Tacheng Basin and Turpan Basin have low altitude and high

temperature. Compared with the spatial distribution of NEP,

precipitation and temperature, the areas with high NEP overlapped

with areas with high precipitation and low temperature to a

high degree.

Figure 7 shows the temporal variations of annual precipitation

and air temperature over Xinjiang from 2001 to 2020. The annual

precipitation of vegetation region ranged between 225.99 mm in 2020

and 303.53 mm in 2016, and the 20-year average annual precipitation

was 261.32 mm. During this period, the annual precipitation showed

an overall fluctuating decreasing trend. The annual temperature of

vegetation region ranged from 3.11°C (2003) to 5.10°C (2007), and

the 20-year average annual temperature was 4.26°C. Different from

precipitation, the annual temperature exhibited an overall fluctuating

increasing trend.

The overall partial correlation coefficient between vegetation NEP

and precipitation in Xinjiang was 0.145, which showed a positive

correlation in general, indicating that precipitation mainly

contributed to vegetation NEP in the study area. The partial

correlation analysis between NEP and climate factors (precipitation

and air temperature) were also carried out pixel by pixel. Figure 8
Frontiers in Plant Science 06
gives the spatial distribution of the significance of the partial

correlation between annual NEP and the two climate factors.

52.57% of the vegetation NEP showed significant positive

correlations with precipitation, and 15.66% of the vegetation NEP

showed insignificant positive correlations with precipitation. The

areas with negative correlation between vegetation NEP and

precipitation are relatively small, of which 29.74% show significant

negative correlations and 2.04% show insignificant negative

correlations, mainly in the oasis zones around the Tarim Basin, the

Tianshan Mountains in the north and south of the Ili Valley, the Altay

Mountains and the southern side of the Junggar Basin. Precipitation

in these regions showed decreasing trends over the past 20 years,

while NEP showed increasing trends. This can be attributed to the

implementation of ecological water replenishment, afforestation and

other ecological protection projects in Xinjiang Autonomous Region,

which resulted in abundant water resources and less influence by

natural precipitation. Moreover, the decrease in precipitation reduced

soil microbial respiration, therefore increased organic carbon

consumption and therefore increased vegetation NEP. The partial

correlation coefficient between vegetation NEP and annual air

temperature in Xinjiang was -0.0368, suggesting that high

temperature leads to low NEP. Most of the vegetation NEP showed

significant negative correlation with temperature, accounting for

52.77% of the total vegetation area in the study area. The increase

in temperature increased the transpiration of vegetation, intensified

the evaporation rate of soil water, and reduced the NPP accumulated
A B

FIGURE 5

Trend of NEP (A) and the significance of the trend (B) over Xinjiang from 2001 to 2020.
A B

FIGURE 6

Spatial distributions of 20-year mean annual precipitation (A) and air temperature (B) over Xinjiang from 2001 to 2020.
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by vegetation, while the increase in temperature also increased the

respiration of soil microorganisms, therefore the vegetation NEP

value decreased. 40.84% of the vegetation NEP was significantly

and positively correlated with temperature, mainly in the Tianshan

Mountains and Altai Mountains. This can be attribute to the fact that

higher temperature produces more alpine snow and ice melt water,

which increases the amount of water in the region, promotes the

growth and development of vegetation and enhances the vegetation’s

carbon sequestration capacity. Only 2.57% of the vegetation NEP

showed insignificant positive correlation and 3.82% showed

significant negative correlation with temperature. Generally, both

precipitation and temperature had an influence on NEP in

Xinjiang, and temperature had less influence than precipitation.
5 Discussions

Though a lot of studies have been carried out on mapping NPP

and studying the spatial and temporal variations, the studies on the

spatiotemporal variations of NEP are much fewer. Compared with

NPP, NEP can better indicate the carbon absorption and emission

capacity, which are more meaningful for carbon cycle research. This

study is the first research that estimates NEP in Xinjiang, a typical
Frontiers in Plant Science 07
ecologically fragile area in China, providing valuable knowledge for

understanding the regional carbon sequestration capacity and for

developing strategies to stabilize CO2 emissions.

Previous studies generally use station-based observations to

produce spatial continuous meteorological factors to estimate NEP.

However, in Xinjiang there are quite a few meteorological stations and

the land and atmospheric characteristics have obvious spatial

differences. Spatial interpretation cannot well depict the spatial

variations of meteorological factors. Based on this consideration,

ERA5-land reanalysis data were employed in this study to derive

gridded precipitation and air temperature, which can provide much

more spatial details than interpolated meteorological observations in

the study area. This study also has a limitation that there is no in-situ

NPP observation data for validation. We compared our results with

that of the studies of adjacent regions, such as Qinghai Province and

Inner Mongolia Autonomous Region. The NEP values for typical

vegetation types are similar. Moreover, the CASA model has been

widely used in many regions and has proven its applicability.

Therefore, the estimated NEP results are credible for the spatial and

temporal variations.

Despite the relatively small vegetation coverage in Xinjiang, the

terrestrial ecosystem still exhibits an overall carbon sink effect from

2001 to 2020. Moreover, the terrestrial carbon sink showed an
FIGURE 7

Temporal variations of annual precipitation (A) and air temperature (B) over Xinjiang from 2001 to 2020.
A B

FIGURE 8

Spatial distributions of the significance of the partial correlation between annual NEP and precipitation (A) and air temperature (B) over Xinjiang from
2001 to 2020.
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obvious increasing trend in the past 20 years. The partial correlation

analysis between annual NEP, precipitation, and air temperature

indicated that NEP was positively correlated with precipitation and

negatively correlated with temperature. Precipitation exerted a

stronger influence than temperature, indicating that precipitation is

the dominant driving factor that influences the temporal trend of

carbon sequestration capacity in this arid ecosystem.
6 Conclusions

By integrating satellite remote sensing data and reanalysis

meteorological data, the spatio-temporal variations of NEP in

Xinjiang Autonomous Region, China from 2001 to 2020 were

studied based on the CASA model and the soil heterotrophic

respiration model. The NEP in Xinjiang showed a spatial pattern

that was high in the east and low in the west, high in the north and

low in the south. The overall annual mean vegetation NEP of 128.54

gC·m-2. During the past 20 years, the annual mean NEP over Xinjiang

increased with the Sen’s slope of 1.59 gC·m-2·a-1, indicating that the

carbon sink effect of the vegetation ecosystem in Xinjiang was

enhanced. The trend of NEP also exhibited a large spatial

heterogeneity. The area with increasing NEP trend accounted for

71.46% of the total vegetation area. Annual NEP was positively

correlated with precipitation but negatively correlated with

temperature. Compared with temperature, NEP was more sensitive

to precipitation in this region. This study provides a reference for the

sustainable development of the terrestrial ecosystem and the impact

of climate change on the carbon cycle in Xinjiang, and also provides a

template for NEP investigation in other regions.
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