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Editorial on the Research Topic

Multiple abiotic stresses: Molecular, physiological, and genetic
responses and adaptations in cereals
Cereal crops provide approximately 40% of the energy and protein components of the

human diet and are vital to the food security of the world (Dunwell, 2014). With the

increasing incidence of global warming (expected 1.2–1.9°C higher than ambient during

2021–2040) and extreme weather events, the intensity of various climatic constraints is

expected to accelerate, ultimately affecting global cereal crop production (IPCC, 2021).

Most of the climatic constraints are abiotic stresses (drought, heat, cold, waterlogging,

salinity, mineral deficiency, heavy metal stress, and ultraviolet-B (UV-B), etc.) causing

extensive yield losses (Paul et al., 2019; Chaudhry and Sidhu, 2021; Rivero et al., 2022).

Estimates have shown that each degree Celsius rise in the global mean temperature may

lead to yield losses of 6.0, 3.2, and 7.4% in major cereals, i.e., wheat, rice, and maize,

respectively, without effective adaptation and genetic improvement (Zhao et al., 2017).

The occurrence of abiotic stresses singly has less effect than when occurring in combination

at different growth stages (Mittler, 2006; Suzuki et al., 2014; Shaar-Moshe et al., 2017). Under

field conditions, frequently occurring combined stresses are drought and heat (Mittler, 2006;

Lamaoui et al., 2018; Lawas et al., 2018; Nasser et al., 2020), drought and salinity (Paul et al.,

2019; Abobatta, 2020), and salinity and waterlogging (Lamaoui et al., 2018; Lawas et al., 2018).

The effect of these stresses in combination on crop plants depends on the nature of the

interactions between them (Ramu et al., 2016). These multiple stresses induce unique

mechanisms (morphophysiological, biochemical, molecular, and genetic) in crop plants for

adaptations and cannot be predicted by simply studying each of the different stresses (Suzuki

et al., 2014; Zandalinas et al., 2021). Understanding the mechanisms of plant response to

multiple stresses is crucial to unravel the complexities of plant responses to stress combinations
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for the development of climate-resilient crops for future food security

(Rivero et al., 2022). Therefore, keeping the above under consideration,

the present Research Topic has been designed to demonstrate the

current level of research and progress in the study of molecular,

physiological, and genetic responses and adaptation strategies toward

multiple abiotic stresses in cereals. The insights of this Research Topic

are divided into the following headings:
1 Genetic studies and genome-wide
association mapping

Characterization and identification of the differential responses of

crop plants are one of the major essential steps for the development of

climate-resilient crop plants. Amro et al. studied the growth

responses and genetic variation among wheat genotypes for salinity

tolerance (seawater) and identified a high genetic diversity among the

studied genotypes, which could be utilized for breeding programs.

Likewise, Radha et al. reviewed the individual and interactive effects

of various abiotic stresses (drought, salinity, high temperature, eCO2,

submergence, nutrient deficiency) and their combined effect on rice

physiology with the possible adaptation strategies for improving grain

quality parameters and yield traits. With the advancement of various

tools in system biology (high-throughput phenotyping and genome

sequencing), different approaches have been developed, such as

quantitative trait locus (QTL) mapping, candidate gene association

studies, and genome-wide association studies (GWAS), in order to

link phenotypes and genotypes in crop plants for the identification of

genetic factors associated with the various traits under consideration

(Mir et al., 2019). Among them, GWAS is one of the most powerful

tools for investigating complex traits associated with single or

multiple abiotic stresses. It detects marker–trait association (MTA)

using conserved linkage disequilibrium (LD) present in the selected

panel of accessions (Myles et al., 2009; Saini et al., 2022). GWAS has a

high capacity to identify small-effect genes/MTAs on a genome-wide

scale by efficiently using the multiple historical crossover events that

occur in the diverse association panel used (Saini et al., 2022; Xiao

et al., 2022). In the present Research Topic, Devate et al. used a 35k

SNP wheat breeder’s genotyping array to identify 57 unique markers

associated with various traits across the locations for drought and

heat tolerance in wheat. Out of these associations, 23 MTAs were

deemed to be stable. Similarly, in another study, Devate et al.

identified six unique marker–trait associations for grain iron

(GFeC), zinc (GZnC) contents, and thousand-grain weight (TGW)

under drought and heat stress conditions in wheat. These identified

MTAs could be utilized in the breeding program after validation

through marker-assisted selection (MAS).
2 Marker-assisted selection and
abiotic stresses

The trait-specific markers (linked markers) allow the efficient

introgression of targeted genomic loci from the donor genotype into

an elite breeding line, facilitate indirect selection for difficult traits (i.e.,

root traits under drought stress conditions), and cut the number of
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genes/QTL into a single genotype using the marker-assisted selection

approach (Pandurangan et al., 2022; Rai and Pandey-Rai, 2021). This

method is very rapid and cost-effective for genetic improvement after

the identification of tightly linked markers associated with the trait

under consideration. It is effectively implemented for the improvement

of multiple abiotic stress tolerance in various crops, i.e., rice (heat

tolerance (Lang et al., 2015); submergence and drought tolerance

(Kumar et al., 2020); drought, salinity, and submergence (Muthu

et al., 2020); drought and heat stress (Withanawasam et al., 2022),

wheat (drought tolerance (Ciucă et al., 2009; Merchuk-Ovnat et al.,

2016; Rai et al., 2018; Gautam et al., 2021), and maize (drought (Ribaut

and Ragot, 2007)). Similarly, in the present Research Topic,

Sunilkumar et al. introgressed the rust resistance gene Lr24 and

QTLs linked to moisture deficit stress tolerance in the background of

HD3086 (a high-yielding, stress-susceptible genotype of wheat) from

the HI1500 donor genotype.
3 Omics-based approaches and
transgenics for multiple
abiotic stresses

Understanding differential levels of plant mechanisms under

multiple stress conditions is essential for combating their effect.

Adopting different omics approaches (genomics, transcriptomics,

proteomics, and metabolomics) and understanding their overall

phenotypic effects on crop plants under abiotic stress conditions are

crucial to developing strategies for designing crops with superior

tolerance mechanisms (Bhardwaj et al., 2021; Jeyasri et al., 2021).

Among the different omics approaches, transcription factors (TFs) are

crucial for recognizing the appropriate molecular processes and

pathways under stress conditions (Muthuramalingam et al., 2018;

Muthuramalingam et al., 2020). In the present Research Topic,

Annum et al. studied a phospholipase C (PLC) signaling pathway in

spring wheat and evaluated its four AtPLC5 overexpressed (OE)/

transgenic lines under heat and osmotic stresses through 32Pi

radioactive labeling. The results indicate that heat stress and osmotic

stress activate several lipid responses in wild-type and transgenic wheat

conforming to osmotic stress tolerance. Kumar et al. studied the

differential transcript expression of K+ transport genes in different

tissues (root, stem, and leaf) under different abiotic stresses, such as salt,

drought, heat, and cold, to elucidate their role in ion homeostasis and

stress tolerance mechanisms in sorghum. Maheshwari et al. reviewed

paclobutrazol (PBZ) as a plant growth regulator and multistress

protectant; they discussed current findings and the prospective

application of PBZ in regulating crop growth and ameliorating

abiotic stresses. In another study, Kumar et al. used the 20S

proteasome gene family in rapeseed and identified 20S proteasome

genes for a- (PA) and b-subunits (PB) through systematically

performed gene structure analysis. Out of 82 BnPA/PB genes, three

exhibited high expression under abiotic stresses. Likewise, Ahmed et al.

proposed a novel activation function, the Gaussian Error Linear Unit

with Sigmoid (SIELU), for the deep learning (DL) model along with

other hyperparameters for the classification of unknown abiotic stress

protein sequences from cereal crops.
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The papers presented in the current Research Topic are

associated with the multiple abiotic stresses on various crops and

show wider scope to understand the molecular, physiological, and

genetic responses of multiple abiotic stresses. At the same time, the

findings of the papers presented show a wide range of advanced

scientific approaches and research ideas to understand and identify

the effects of multiple abiotic stress and the implementation of their

adaptation strategies for the development of climate-resilient

crop plants.
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