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Introduction: Wheat rust diseases are widespread and affect all wheat growing

areas around the globe. Breeding strategies focus on incorporating genetic

disease resistance. However, pathogens can quickly evolve and overcome the

resistance genes deployed in commercial cultivars, creating a constant need for

identifying new sources of resistance.

Methods:We have assembled a diverse tetraploid wheat panel comprised of 447

accessions of three Triticum turgidum subspecies and performed a genome-

wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts.

The panel was genotyped with the 90K Wheat iSelect single nucleotide

polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410

non-redundant SNP markers with known physical positions.

Results: Population structure and phylogenetic analyses revealed that the

diversity panel could be divided into three subpopulations based on

phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were

detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of

them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and

Yr67, while the other two may harbor undescribed resistance genes.

Discussion: The tetraploid wheat diversity panel, developed and characterized

herein, captures wide geographic origins, genetic diversity, and evolutionary

history since domestication making it a useful community resource for mapping

of other agronomically important traits and for conducting evolutionary studies.
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Introduction

Three wheat rust diseases are caused by Basidiomycete fungi

from the genus Puccinia but represent different species: stem (black)

rust – P. graminis f. sp. tritici (Pgt), stripe (yellow) rust – P.

striiformis f. sp. tritici (Pst) and leaf (brown) rust – P. triticina

(Pt). These species are present in all wheat growing environments

and can cause substantial yield losses if conditions for infection and

spread are favorable and susceptible varieties are grown (Savary

et al., 2019). Approaches to prevent yield losses include timely

application of fungicides and elimination of rust alternative hosts

(e.g., barbery species); however, the most economical, efficient, and

environmentally friendly strategy to mitigate losses from these

diseases is the use of resistant cultivars. Currently, 83 stem rust

(Sr), 130 stripe rust (Yr) and 117 leaf rust (Lr) resistance genes have

been identified, which are a good source for the development of

resistant cultivars (McIntosh et al., 2020); however, many of them

have been defeated by adapted pathogen races.

Rust races can rapidly evolve, leading to a breakdown of

deployed resistance in commercial cultivars. For example, the

emergence of races such as Ug99 race group or the race TKTTF

has overcome many of the currently deployed Sr genes, which led to

a broad scale infection of popular cultivars in Kenya and Ethiopia

(Bhavani et al., 2022). These emergent races spread rapidly to other

wheat producing regions following predicted migration paths

(Singh et al., 2006). A similar situation occurred for stripe rust

where novel races, adapted to diverse environments, evolved as a

result of fungal sexual reproduction on an alternative host in the

Himalayan region (Hovmøller et al., 2016), and are spreading

rapidly across continents, leading to epidemics, e.g., outbreak in

Argentina (Ali et al., 2017). In the case of leaf rust, mutations within

the pathogen and subsequent selection in specific environments are

the most common way for the formation of novel races (Bhavani

et al., 2022). There is also evidence of intracontinental migration of

leaf rust spores, similarly to that of stem and stripe rusts (Ordoñez

and Kolmer, 2007). Thus, there is a need to continually search for

effective rust resistance genes and to deploy them in breeding,

particularly through gene pyramiding using marker-assisted

selection (MAS).

Wheat relatives and landraces are known to harbor resistance

genes that can be used to diversify the rust-resistance gene pool

currently available for breeding. While direct use of these sources in

crossing is possible, the best practice is to introduce these novel

genes into adapted germplasm using marker-assisted backcrossing.

However, this requires identification of tightly linked markers to

select for the causal gene(s) and associated markers to minimize

linkage drag and introgression of deleterious mutations. Genome-

wide association studies (GWAS) are a common strategy to localize

gene/quantitative trait loci (QTL) (Brachi et al., 2011). GWAS uses

genotypic and phenotypic information collected on a sufficiently

diverse panel to identify marker-trait associations (MTAs) and has

some advantages over bi-parental QTL mapping. The most notable

advantage is the use of a genetically diverse population which

samples historical recombination events that have occurred over

several generations, making it possible to identify QTLs with higher

precision. The selection of genotypes for GWAS diversity panel
Frontiers in Plant Science 02
should be carefully considered because mapping resolution and

power are impacted by genetic diversity, relatedness within the

panel, and the extent of linkage disequilibrium (LD) (Zhu et al.,

2008). Most GWAS panels use diverse germplasm collections,

which results in higher allelic diversity to facilitate gene discovery.

Panels combining several wheat (Triticum) species were previously

shown to be valuable for the identification of loci underlying

important traits (Mazzucotelli et al., 2020; Sansaloni et al., 2020).

On the downside, low frequency alleles are routinely excluded from

GWAS because they do not grant sufficient statistical power to test

the significance of MTAs; thus, the genes that are present at low

frequencies (<5%) cannot be detected.

Several genotyping technologies are available for wheat,

including simple-sequence repeat (SSR), diversity arrays

technology (DArT), and single nucleotide polymorphism (SNP)

markers, where the latter could be derived from exome capture

(Henry et al., 2014; Govta et al., 2022), whole-genome shotgun

resequencing (Chapman et al., 2015) and genotyping by sequencing

(GBS) (Poland et al., 2012). SNP markers are a popular choice due

to their biallelic nature, dense genome coverage, ubiquitous nature,

and availability of many high-throughput detection systems,

including several that have been validated for wheat, such as the

wheat 9K (Cavanagh et al., 2013), 90K (Wang et al., 2014), and

820K (Winfield et al., 2016) SNP arrays.

Resistance to wheat rusts can be broadly classified into race-

specific and race-non-specific resistance. Race-specific resistance is

most often expressed as early as at the seedling stage (all-stage

resistance (ASR)) in contrast to race-non-specific resistance, which

is typically expressed late in the phenological development of the

wheat plant (referred to as adult plant resistance (APR)). Generally,

APR resistance is considered to be more durable because it does not

create extensive selection pressure on pathogen populations.

However, most breeding strategies focus on pyramiding multiple

race-specific and/or race-non-specific resistance genes to increase

the durability of the resistance (Stam and McDonald, 2018). At the

same time, most designated rust genes are ASR with a few APRs

discovered to date. Phenotyping for rust resistance can be

performed in field trials or controlled environmental conditions.

Field phenotyping is frequently used to assess APR, but such

method requires multi-year and multi-environment trials because

rust races in the field usually represent a mix of locally prevalent

races. In contrast, phenotyping in controlled environments is

usually performed in greenhouses or growth chambers and is

typically done on seedling plants with well-characterized races.

The advantages of using controlled environments for seedling

phenotyping include the possibility of testing all year round, well-

controlled environmental conditions to promote infection and the

ability to infect plants with a single pathogen race/isolate. However,

seedling phenotyping is not suited for the detection of APR

resistance genes.

In the current study, we have assembled a diversity panel of 447

accessions representing three tetraploid wheat subspecies (Triticum

turgidum 2n=4x=28): ssp. dicoccoides, ssp. dicoccum and ssp.

durum. The panel was genotyped with the 90K Wheat iSelect

SNP array (Wang et al., 2014) and was assessed for race-specific

resistance following inoculation with single and highly aggressive
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races of stem, leaf, and stripe rust under controlled environmental

conditions. These datasets were combined and used for GWAS

where we detected several statistically significant MTAs – some of

which overlapped with previously mapped/cloned genes, while

others were detected at loci not previously reported to contain

officially designated resistance genes. The SNP markers reported

here will allow an exploitation of these genes to broaden the genetic

base of available resistance that can be deployed in breeding to

prevent losses from rust infections.
Materials and methods

Plant material

A diverse panel of 447 accessions representing three tetraploid

wheat subspecies, including 177 accessions of wild emmer wheat

(WEW; T. turgidum ssp. dicoccoides), 131 genotypes of

domesticated emmer wheat (DEW; T. turgidum ssp. dicoccum),

and 139 durum wheat landraces (DW_LR; T. turgidum ssp. durum)

(Supplementary Data S1; Supplementary Figures S1–S3) was

assembled for GWAS. Seeds were obtained from the National

Small Grains Collection (USDA-ARS) through the GRIN_Global

platform (https://npgsweb.ars-grin.gov/gringlobal/), International

Centre for Agricultural Research in Dry Areas (ICARDA)

through the Genesis platform (https://www.genesys-pgr.org/), the

Lady Barbara Davis Wild Cereal Gene Bank (ICGB) at the

University of Haifa, Institute of Evolution, and Agricultural

Research Organization (ARO) – The Volcani Center. The

geographic distribution of the genotypes was determined based

on the Global Positioning System (GPS) coordinates of the

collection sites, which are provided in Supplementary Data S1 for

WEW lines, or through single coordinates representing each of the

countries/regions of origin for DEW and DW_LR. Visualization of

the geographic distribution of genotypes from the panel was done

using the GPS Visualizer browser tool. The genotypes were

multiplied through single seed descent and progeny of plants that

were used for genotyping and phenotyping are maintained at the

Crop Development Centre, University of Saskatchewan. A set of

Canadian local breeding lines and some additional genotypes were

used as controls for rust inoculations (Supplementary Table S1).
Rust phenotyping

Races
The association mapping panel was evaluated for resistance to

three wheat rust pathogens. The following fungal races were

selected (one per pathogen) based on their aggressiveness and

virulence profile: Pst race W001, Pt race 1 (pathotype BBBD), and

Pgt race DCB (pathotype TRRTF). Pst race W001 was provided by

Dr. Randy Kutcher (University of Saskatchewan). Pt race 1 and Pgt

race DCB were kindly provided by Dr. Brent McCallum and Dr.

Tom Fetch, respectively (both from Agriculture and Agri-food

Canada, Morden Research and Development Centre). To identify

the virulence profile, the stem rust race was tested against the
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Thatcher Sr differential set kindly provided by Dr. Tom Fetch, that

included wheat genotypes used for Pgt race nomenclature in North

America (Roelfs and Martens, 1988). The information regarding

virulence profiles of stripe and leaf rust races was retrieved from

published materials (Cuomo et al., 2017; Brar et al., 2018).

Virulence profiles of all three rust races are presented in

Supplementary Table S2. The pathotypes for leaf and stem rust

races were identified based on a previously described nomenclature

systems (Roelfs and Martens, 1988; Long, 1989; Jin et al., 2008).

Experimental design and growth conditions
The entire diversity panel could not be phenotyped

simultaneously because of differences in the growth rate between

the wild (WEW) and domesticated (DEW/DW_LR) collections.

Thus, for stem rust phenotyping the diversity panel was divided into

two sets: WEW and DEW+DW_LR; while for stripe rust and leaf

rust phenotyping, it was divided into three sets: WEW, DEW and

DW_LR using augmented experimental designs. Five to six seeds of

each genotype were sown in single 5×5×5 cm cells of 50-cell trays

well-spaced out from each other. Multiple checks (Supplementary

Table S1) were also replicated and randomly placed among the trays

within each set. Trays were watered and placed at 10°C for five days

to promote even germination before being returned to the growth

chamber maintained at 18h/6h light/dark photoperiod and 23°C/

18°C temperature. Plants were inoculated at the two-leaf stage

following the procedures described below for the three rusts.
Leaf rust
Urediniospores were suspended in mineral oil (VWR, Canada,

catalog number 470301) and applied on seedlings at the two-leaf

stage using an air brush compressor and air brush kit (Mastercraft,

Canada, Toronto). Plants were allowed to dry at room temperature

for 1.5-2 h, before being transferred to a misting chamber providing

99% humidity at 16°C in the dark for 24 h. Then the program was

changed to 70% humidity at 20°C with a light intensity of 150–170

µmol m-2 s-1 for 16 h, followed by 8 h of darkness at 16°C until the

end of experiment. Plants were rated at 11 days post inoculation

(dpi) using a 0 to 4 infection types (IT) scale (Stakman et al., 1962),

where; 0 and 1 IT scores represent resistance, 2 IT score –moderate

resistance, 3 IT score – moderate susceptibility, 4 IT score

– susceptibility.

Stem rust
The inoculation procedure was similar to that of leaf rust except

that the misting chamber was programmed to achieve 99%

humidity at 20°C for 17 h in the dark followed by 4 h of light.

Then, the program was changed to 70% humidity at 20°C with a

light intensity of 150–170 µmol m-2 s-1 for 16 h, followed by 8 h of

darkness until rating, which was performed at 11 dpi using the same

IT rating scale described above for leaf rust.

Stripe rust
The inoculation procedure for stripe rust was as previously

described (Klymiuk et al., 2022). In brief, urediniospores were

suspended in mineral oil and applied to seedlings at the two-leaf
frontiersin.org
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stage using an air brush compressor and air brush kit. Inoculated

plants were first placed in a misting chamber with 100% humidity at

10°C at 16h/8h dark/light conditions for the first 24 h after

inoculation. Plants were then transferred to a growth chamber

with 70% humidity at 15°C with a light intensity of 150-170

µmol m-2 s-1 for 16 h, followed by 8 h at 10°C in darkness until

plants were rated at 14 dpi. Stripe rust severity was evaluated using a

0 to 9 IT scale (McNeal et al., 1971), where 0-3 IT scores represent

resistance, 4-6 IT scores – moderate resistance, 7-9 IT scores

– susceptibility.
Phenotypic data analysis

Before analysis, the leaf and stem rust phenotypic data were

converted from the qualitative Stakman scale (Stakman et al., 1962)

into a linear quantitative scale ranging from 0 to 9 according to

Zhang et al. (2011). Stripe rust IT scores were not subjected to

conversion. The resulting phenotypic data was used to estimate the

best linear unbiased prediction (BLUP) values for each genotype

using a mixed linear model (MLM) in the R-package lmer4 (Bates

et al., 2015). Checks were considered as a fixed effect, while sets,

genotypes and their interactions were considered random. The “set”

factor had two levels (WEW and DEW+DW_LR) for stem rust and

three levels (WEW, DEW, and DW_LR) for stripe and leaf rusts.
Genotyping and SNP filtering

Young leaf tissue was sampled at the 1-2 leaf stage. DNA was

extracted and purified using the CTAB method (modified from

Procunier et al., 1990). An approximate DNA concentration was

estimated by agarose gel electrophoresis and DNA was normalized

into a working stock of ~50ng/µl using the estimates from the gel.

Genotyping was performed using the Infinium iSelect HD 90K

wheat array (WG-401-1004. Illumina, San Diego, CA, United

States) on the iScan instrument (Wang et al., 2014). Genotype

calling was performed for the entire collection using the default

genotyping module in GenomeStudio software v2.0.4 (Illumina).

SNP markers with >5% missing data, <5% minor allele frequency

(MAF) and monomorphic scores were removed. Additionally, SNP

markers showing residual heterogeneity within an accession were

converted to missing data. SNPs were positioned onto the Svevo v1

assembly (Maccaferri et al., 2019) as previously described (Fatima

et al., 2020) and the resulting SNPs with known physical positions

were extracted for further analysis (Supplementary Dataset)

(Klymiuk et al., 2023). In addition, the entire diversity panel was

genotyped for the presence of Yr15 gene usingWTK1_Kin1marker

(Klymiuk et al., 2019) and Sr13 gene using CNL13 F/R marker

(Zhang et al., 2017).
Linkage disequilibrium

LD analysis was performed for each chromosome by computing

r2 values for all pairwise marker comparisons using a sliding
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(Bradbury et al., 2007). The physical positions of markers were

then used to estimate LD decay along each chromosome and across

the entire genome by plotting the r2 values of loci against their

physical distance (bp). LD decay was determined by fitting a

smooth non-linear regression line (Marroni et al., 2011), with a

critical r2 threshold set at the half decay distance (Hill and Weir,

1988). The intersection of the regression line with the baseline at the

critical value of r2 was considered as the estimate of the extent of LD

in the population.
Population structure analysis

Population structure was evaluated using a model-based

Bayesian clustering, a distance-based hierarchical clustering, and a

principal component analysis (PCA). A model-based Bayesian

clustering was conducted using the program STRUCTURE v2.3.4

(Pritchard et al., 2000), based on a subset of 2,205 weakly correlated

SNPs, i.e., with squared pairwise correlations smaller than 0.2.

Markov chain Monte Carlo cycles were repeated 50,000 times

after 10,000 cycles of a burn-in period. The default setting of the

admixture model and correlated allele frequencies was tested with

the number of subpopulations (K) from two to ten. Each test

included ten independent runs. Optimal K was estimated based

on the DK – that is the rate of change in the log-likelihood of data

between consecutive K values. DK was estimated using

STRUCTURE HARVESTER, v0.6.94 (Earl and vonHoldt, 2012).

Data from the ten independent runs were integrated using the

FullSearch algorithm in CLUMPP v1.1.2 (Jakobsson and

Rosenberg, 2007) and plotted using STRUCTURE PLOT v2.0

(Ramasamy et al., 2014). For hierarchical clustering, a

dissimilarity matrix was calculated from the marker data based

on Euclidean distance using the function ‘dist’ in R. Hierarchical

clustering was applied to the Euclidean distance matrix based on

Ward’s criterion (ward.D2) using the function ‘hclust’ in R. PCA

was performed on the marker data using the function ‘svd’ in R.
Genome-wide association analysis

Preliminary association mapping was performed based on the

6,410 physically mapped SNP markers and was conducted using a

mixed linear model (MLM) (Yu et al., 2006) and a multiple locus

mixed linear model (MLMM) (Segura et al., 2012). The MLM and

MLMM models both accounted for population structure and

pairwise relatedness or kinship as covariates. Population structure

was accounted by the population membership coefficients (Q-

matrix) obtained from STRUCTURE. A kinship-matrix was

computed from the marker data using the software TASSEL v3.0

(Bradbury et al., 2007). MLM and MLMM analyses were performed

using the software GAPIT v3 (Wang and Zhang, 2021). Preliminary

analysis showed significant associations with the previously

reported Yr15 and Sr13 physical regions. Thus, genotypic data

from their gene-specific markers (WTK1_Kin1 and CNL13,

respectively) were added to the final analysis, which included
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6,412 SNPmarkers (6,410 mapped SNPmarkers plus Yr15 and Sr13

markers). Analysis was conducted using the MLMMmodel because

it is more statistically powerful than MLM and uses forward-

backward stepwise linear mixed-model regression to include

associated markers as covariates (Segura et al., 2012). Associations

were declared significant based on the Bonferroni-corrected

threshold of a = 0.05/n, where n is the number of markers.
Alignment of quantitative trait nucleotides
(QTNs) with previously reported rust
resistance genes

Previously reported resistance genes were positioned onto the

Svevo v1 genome assembly (Maccaferri et al., 2019) by performing

basic local alignment search tool (BLAST) searches using the cloned

gene coding sequences or the flanking genetic marker sequences as

queries. The position of several previously reported QTLs for leaf

rust resistance were included in the analysis following the same

strategy (Aoun et al., 2016; Gao et al., 2016; Sapkota et al., 2019;

Fatima et al., 2020). The confidence intervals for the identified QTLs

were established using the genome-wide LD decay (r2) of 0.23

(=945,678 bp), as described in the Results section, on either side of

the peak of the QTN. As such, a QTN was considered to be

associated with a potentially new resistance gene when no known

resistance gene(s) were positioned within the identified QTN

window. Candidate genes from the confidence intervals were

extracted from the annotations of the Svevo v1 (Maccaferri et al.,

2019) or Zavitan v2 (Zhu et al., 2019) assemblies. Conserved

domain searches were performed using the National Center for

Biotechnology Information (NCBI) on-line tool “Structure”

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).
Results

Selection of genotypes for the
diversity panel

We assembled a large tetraploid wheat diversity panel that

comprised accessions from three wheat T. turgidum subspecies

(WEW, DEW and DW_LR). The genotypes were selected to

represent broad geographic origin and availability in public seed

banks and other collections (Supplementary Figures S1–S3). WEW

is a collection of tetraploid accessions representing a wild

progenitor gene pool of wheat, which grows naturally in a

discontinuous arc of the Fertile Crescent region (Özkan et al.,

2011). In our diversity panel, WEW is represented by 177

accessions collected from geographically diverse regions of seven

countries (Turkey, Israel, Syria, Lebanon, Jordan, Iran, and Iraq)

spanning the entire Fertile Crescent (Supplementary Figure S1).

DEW is a collection that includes ancient non-shattering wheat

genotypes that have since spread around the globe (Luo et al., 2007).

The DW_LR collection harbors locally adapted cultivated

genotypes that have a distinct identity, historical origin, and were

not subjected to formal crop improvement (Villa et al., 2005). We
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accessions from 37 countries to represent these T. turgidum

subspecies (Supplementary Figures S2, S3).
Analysis of the SNP marker dataset and
linkage disequilibrium decay

The diversity panel was genotyped using the wheat 90 K iSelect

Wheat SNP array (Wang et al., 2014). Filtering removed

monomorphic markers, markers with missing data and 3,757

markers with MAF <5%, producing a set of 6,473 SNPs, of which

6,410 could confidently be assigned a physical position in the Svevo

v1 wheat genome assembly (Maccaferri et al., 2019). The number of

markers per chromosome ranged from 205 (chromosome 4B) to

745 (chromosome 2A). The greatest proportion (~64%) of

polymorphic, anchored markers resided in the A sub-genome.

Markers were evenly distributed along all chromosomes, with a

few regions of low density in the pericentric regions of

chromosomes 3B, 4A, 4B and 6B (Supplementary Figure S4).

The LD statistic (r2) was used to estimate the average LD decay

distance in the association panel. On a genome-wide level, 10.4% of

all pairs of marker loci were in significant LD (r2>0.2), and the

average r2 was 0.08. The LD decay trend, determined by plotting the

pairwise r2 values against their physical distances (Figure 1),

revealed that the genome-wide LD decay, based on the nominal

critical levels of r2, was 0.23 and extended to 945,678 bp (Figure 1A).

LD decayed faster in the A genome (863,757 bp) compared to the

B genome (1,297,929 bp) (Figures 1B, C). The genome-wide

estimate of 945,678 bp distance on either side of the QTNs was

used to establish confidence intervals for the QTL-harboring

regions (Figure 1).
Genetic diversity and population structure

Analysis of population structure showed a DK peak at K=3,

supporting three as the most probable number of subpopulations

for this diversity panel (Figure 2A). Bayesian clustering, distance-

based Ward hierarchical clustering and principal component

analys is were al l in agreement with this number of

subpopulations which were assigned as follows: 1) DW_LR, 2)

WEW + 41 DEW accessions, and 3) Ethiopian DEW (Figure 2;

Supplementary Data S2). All 139 DW_LR from the diversity panel

clustered in a single clade (Group 1), but the Ethiopian DW_LRs

were most distinct and formed a separate subclade (Figure 2;

Supplementary Data S2). A similar observation was made for 90

DEW accessions that comprised mainly Ethiopian accessions that

were sufficiently divergent from the remaining DEW such that they

clustered into a third clade (Group 3) (Figure 2; Supplementary

Data S2). Group 2 consisted of 218 lines and included all 177 WEW

lines and 41 DEW lines from broad geographic origins (Figure 2;

Supplementary Data S2). A portion of 16 DEW from Group 2

clustered with the Northern WEW populations from Turkey, Iraq,

and Iran.
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Phenotypic variation for rust resistance

Responses to inoculation varied within the whole collection for

the three wheat rusts. A total of 68.6% of the 447 genotypes of the

collection had IT≥7 and were susceptible to stem rust race DCB

(Supplementary Figure S5). The opposite was true for leaf rust

where 31.8% were susceptible (IT≥7) to race 1 (Supplementary

Figure S5). For stripe rust, 50.1% of the genotypes were susceptible
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(IT≥7), 30.1% were resistant (IT ≤ 3) and 19.8% showed moderate

resistance (IT>3 and <7) to W001 race (Supplementary Figure S5).

T. turgidum subspecies WEW, DEW, and DW_LR responded

differently to the rust species and races. For stripe rust, all groups

had a similar proportion of resistant genotypes (ranging from 25 to

36%) (Supplementary Table S3). Interestingly, the majority of

res i s tant DEW genotypes were of Eth iop ian or ig in

(Supplementary Table S4). In response to leaf rust, the DEW

collection had the highest proportion of resistant genotypes

(76%), while the WEW collection contained approximately three-

fold fewer resistant accessions (24%) (Supplementary Table S3).

The Ethiopian DEW collection included higher number of

accessions with resistance to race 1 (87% of resistant genotypes)

compared to the rest of the DEW collection (57%) (Supplementary

Table S4). Resistance to stem rust ranged from 2% in the WEW

to 44% in the DEW collections (Supplementary Table S3).

Accessions of the two DEW subgroups did not differ in response

to stem rust, with 38% of resistant genotypes for the Ethiopian

subgroup and 53% of resistant genotypes for the rest of the DEW,

which contrasted phenotypic reactions to stripe and leaf rusts

(Supplementary Table S4).
Marker-trait associations

GWAS was performed using BLUP values for each genotype

estimated based on phenotypic data obtained after inoculation with

Pgt, Pst and Pt isolates. We first performed a GWAS using MLM

and MLMM models and found that MLM (Supplementary Data

S3–5) and MLMM (Supplementary Data S6–8) provided similar

results; however, MLMM detected additional significant

associations for leaf and stem rust diseases. Both models detected

SNPs associated with stripe and stem rust resistance in physical

regions of the cloned genes Yr15 and Sr13. Thus, gene-specific

markers WTK1_Kin1 (Yr15) and CNL13 (Sr13) were added to the

set of genetic markers used for the final GWAS analysis

using MLMM.

The final GWAS revealed five significant QTNs associated with

resistance to one of the three rusts (Figure 3; Table 1 and

Supplementary Data S9–11). Of them, CNL13_Sr13 and GENE-

1196_146 markers associated with resistance to stem rust localized

on chromosomes 6A and 2A, respectively (Supplementary Data S9);

Excalibur_s115495_117 marker associated with leaf rust resistance

was mapped to chromosome 1A (Supplementary Data S11); and

WTK1_Kin1_Yr15 and Tdurum_contig49575_1237 markers

associated with stripe rust resistance were detected on

chromosome 1B and on chromosome “unknown” of the Svevo v1

genome assembly (Maccaferri et al., 2019), the latter is the result of

the collation of unassembled contigs (Supplementary Data S10). To

d e c i p h e r t h e p r o b a b l e c h r omo s oma l p o s i t i o n o f

Tdurum_contig49575_1237, we performed a BLAST search using

marker probes as queries. The best BLAST hit for this marker was

on chromosome 7B for both, Zavitan v2 (Chr7B:735903254…

735903205) (Zhu et al. , 2019) and Chinese Spring v1

(chr7B:718358622…718358671) (IWGSC, 2018) wheat genome

assemblies. We also determined that this marker localizes
A

B

C

FIGURE 1

Decay of linkage disequilibrium (r2) as a function of physical distance
(bp) between pairs of loci on (A) all chromosomes, (B) A sub-
genome, and (C) B sub-genome. The green horizontal lines define
the nominal critical levels of r2 = 0.23 while the fitted curve (red
line) indicates the LD decay. The blue vertical line represents the
extent of LD decay at the intersection of the critical r2 with the fitted
curve.
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genetically to chromosome 7B on a tetraploid wheat consensus map

(Maccaferri et al., 2015). Taken together, these independent data

indicate the likelihood of localization of this marker on

chromosome 7B.
Candidate gene analysis

Stem rust
Two QTNs were detected for stem rust infection type against

race DCB. The Sr13 gene-specific marker CNL13 (Zhang et al.,

2017) located on chromosome arm 6AL, was identified as associated

with resistance to stem rust (Figure 3; Table 1), and resistance

phenotype correlated with the presence of a functional allele

(Supplementary Figure S6). The resistant allele was detected in

DEW and DW_LR of the diversity panel, but was absent in WEW

(Table 1; Supplementary Figure S6 and Supplementary Data S13).

The second stem rust QTN is located on chromosome arm 2AS,

and the only gene previously mapped to this chromosome arm is
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Sr38. However, it originates from Aegilops ventricosa, thus, its

presence in our diversity panel at a frequency >5% is unlikely.

Box plots show a phenotypic separation of genotypes carrying

resistance-related allele compared with those carrying

susceptibility-related allele (Supplementary Figure S6). The Svevo

v1 annotation (Maccaferri et al., 2019) contains six high confidence

genes within the GENE-1196_146 QTN confidence interval (marker

position ± LD decay) (Supplementary Data S12), none of which

belong to the well-known disease resistance gene analogues such as

nucleotide-binding and leucine-rich repeat (NLR), protein kinase,

tandem kinase protein (TKP) for examples (Kourelis and van der

Hoorn, 2018; Klymiuk et al., 2021). The resistance-related allele was

detected in DEW and DW_LR genotypes of the diversity panel, but

not in WEW (Supplementary Figure S6; Supplementary Data S13).

Stripe rust
Two MTAs were detected for stripe rust resistance. The

WTK1_Kin1 is a marker derived from the cloned Yr15 gene,

which differentiates the functional and non-functional alleles of
A

B

D

C

FIGURE 2

Analysis of population structure using 2,205 SNP markers. (A) Line graph of DK over K for K=2 to 10. The highest peak was observed at K = 3, which
suggests three optimal subgroups. Following this, the population is divided into three color-coded subgroups: green – group 1 (DW_LR), yellow –

group 2 (WEW and 41 DEW) and red – group 3 (Ethiopian DEW) represented in (B) Bayesian clustering, (C) distance-based Ward hierarchical
clustering and (D) principal component analysis.
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A

B

C

FIGURE 3

Manhattan plots of the SNPs. Plots displayed across the 14 wheat chromosomes of Svevo v1 (Maccaferri et al., 2019) and the unknown pseudo-
chromosome that collates the unassembled contigs that indicate the SNPs associated with resistance to stem rust DCB race (A), stripe rust W001
race (B) and leaf rust race 1 (C). Quantile-quantile plots are displayed on the right of each Manhattan plot. Red horizontal line represents the
Bonferroni threshold of a = 0.05/n where n=6,412.
TABLE 1 Marker-trait associations for resistance to rust diseases in the diversity panel obtained using the MLMM model.

Stem rust Stripe rust Leaf rust

QTN CNL13_Sr13 GENE-
1196_146 WTK1_Kin1_Yr15 Tdurum_contig

49575_1237 Excalibur_s115495_117

Chr* 6A 2A 1B Un(7B#) 1A

Position* 611710998 91356805 57212786 164318835 (235903205#) 497569466

MAF 0.1 0.14 0.09 0.11 0.21

P-value 5.82E-32 1.34E-08 2.21E-26 9.2E-12 4.51E-06

Bonferroni-adjusted P-value 0 8.59E-05 1.42E-22 5.90E-08 2.89E-02

Kruskal-Wallis allelic test p-
value

<2.2E-16 <2.2E-16 <2.2E-16 1.02E-05 <2.2E-16

% genetic variance explained 49.83 22.16 47.22 15.36 45.54

Favorable allele A A A B A

WEW with favorable allele (%) 20.45 2.84 5.65

DEW with favorable allele (%) 13.74 19.08 62.60

DW_LR with favorable allele
(%)

20.14 26.62 1.44 32.37

Co-located gene(s) Sr13 Yr15 Yr67
F
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*Chromosome position provided according to Svevo v1 (Maccaferri et al., 2019) assembly.
#Chromosome position according to Zavitan v2 (Zhu et al., 2019) assembly.
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Wheat Tandem Kinase 1 (WTK1) (Klymiuk et al., 2019). An

analysis of correspondence between the resistance phenotype and

Wtk1 functional allele (Klymiuk et al., 2019) revealed good

alignment (Supplementary Data S13). Yr15 was detected in 8.37%

of the genotypes in the diversity panel, predominantly in the WEW

accessions; however, the DW_LR accessions Simhon and Uzan

from Israel also showed the presence of the Wtk1 functional allele

(Supplementary Figure S6; Supplementary Data S13).

The second MTA identified for stripe rust is the

Tdurum_contig49575_1237 QTN, which as we noted above likely

localizes to chromosome 7B (long arm). Of the officially designated

stripe rust resistance genes, six were previously mapped to

chromosome 7BL/7B. Of them, Yr59, Yr52, and Yr39 represent

APR genes that would not have been detected in our seedling tests.

The remaining three are the race-specific ASR resistance genes: Yr6,

Yr2, and Yr67 (McIntosh et al., 2020). The Pst race W001 used in

the current study is virulent on Yr2 and Yr6 (Supplementary Table

S2) and, as such, they could not account for the detected QTN.

Finally, the physical position of Yr67 on chromosome arm 7BL of

the Chinese Spring reference genome (chr7B:716,966,290…

721,082,714) (Bariana et al., 2022) overlaps with the position of

Tdurum_contig49575_1237 QTN in this assembly. Therefore, Yr67

could be present in our diversity panel and could be the casual gene

detected by this QTN on chromosome 7B. The Zavitan annotation

(Zhu et al., 2019) contains 16 genes within the confidence interval of

the Tdurum_contig49575_1237 QTN, including some that encode

proteins with domains commonly found in disease resistance

proteins, such as protein kinases and NLRs (Supplementary Data

S12), which are worthy of investigation as potential candidate genes.

The resistance allele was detected predominantly in the DW_LR

germplasm from all geographic regions and a few WEW genotypes,

while none the DEW genotypes possessed the favorable allele

(Supplementary Figure S7; Supplementary Data S13).

Leaf rust
The single QTN Excalibur_s115495_117 was detected for leaf

rust on chromosome 1A (Table 1). The wheat gene catalogue

(McIntosh et al., 2020) lists only Ae. peregrina gene Lr59 for

chromosome arm 1AL, which is not likely present in our diversity

panel. Other studies have reported QTLs for leaf rust resistance on

chromosome arm 1AL, but the reported positions do not overlap

with the QTL identified herein (Aoun et al., 2016; Gao et al., 2016;

Sapkota et al., 2019; Fatima et al., 2020). The Svevo v1 annotation

(Maccaferri et al., 2019) contains 16 high-confidence genes within

the Excal ibur_s115495_117 QTN confidence interval

(Supplementary Data S12); however, none share signatures of

domains related to plant immunity. Interestingly, the resistance-

associated allele was detected only in DEW and WEW accessions

(Supplementary Figure S6; Supplementary Data S13) with clear

phenotypic differences between genotypes that carry the favorable

allele compared with those carrying the alternate allele for DEW,

but not WEW (Supplementary Figure S6).
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Discussion

Diversity panels are a useful resource to detect alleles currently

untapped in breeding, and a number of studies have reported novel

disease resistance sources within wheat diversity panels (Bulli et al.,

2016; Prins et al., 2016; Chao et al., 2017; Tessmann et al., 2019;

Fatima et al., 2020; Miedaner et al., 2020). Panels consisting of

multi-subspecies may also capture evolutionary history of the crop

and are used to track evolutionary changes between species or

subspecies, for example, the domestication process (Tian et al.,

2009; Scott et al., 2019; Mazzucotelli et al., 2020; Parker et al., 2020).

In the current research, we used a tetraploid wheat diversity panel

that includes three wheat subspecies representing different stages of

domestication: exclusively wild non-domesticated (WEW), primary

level of domestication (DEW), and durum landraces (DW_LR).

This panel is comprised of genotypes that are genetically diverse, as

was demonstrated by our 90K data analysis, and that originated

from various geographic regions. Geographic origin influences crop

evolution in several ways through diverse climatic conditions,

cultural practices, and historical events in different parts of the

globe. LD decay in this panel extended to less than 1 Mb, similar to

another panel comprised of diverse tetraploid wheat accessions

(Mazzucotelli et al., 2020). This level of LD is sufficiently small to

provide efficient markers for marker-assisted selection/

introgression of the identified QTNs.

In terms of population structure, our analyses showed that our

panel consists of three subpopulations: 1) DW_LR, 2) WEW + part

of DEW (41 accessions), and 3) Ethiopian DEW (90 accessions).

The genetic separation of DEW of Ethiopian origin from all other

DEW genotypes is, as supported by previous studies shown, showed

that Ethiopian-origin wheat is genetically distinct from other wheat

genotypes (Kidane et al., 2019; Mazzucotelli et al., 2020). On the

other hand, the grouping of several accessions of DEW with the

northern WEW accessions from Turkey, Iran, and Iraq was

surprising considering that they are systematically distinct. These

results support the previously stated hypothesis that wheat was

domesticated in the northern part of WEW natural growing region

(Luo et al., 2007; Özkan et al., 2011), and thus, DEW genotypes still

share some genetic relatedness with those northern WEW

populations. This may be an interesting direction for future

evolution-related studies using this diversity panel.

In our diversity panel, we have detected MTAs for infection

type for each of the three wheat rust diseases. Preliminary analysis

showed MTAs for stripe and stem rusts on chromosomes 1B and

6A, respectively. We postulated that these may be associated with

the previously cloned genes Yr15 (1B) and Sr13 (6A). The

genotyping of the entire panel with Yr15 and Sr13 gene-specific

markers confirmed their association with the two QTNs (Table 1).

Moreover, based on the overlap of the QTN significance interval

with the Yr67mapping interval, it is also possible that the stripe rust

resistance localized to chromosome 7B may be associated with Yr67,

but the causal effect remains to be confirmed. At the same time, the
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Lr locus at chromosome arm 1AL and Sr locus at chromosome arm

2AS harbor previously undescribed race-specific resistance genes

because the QTN confidence intervals for these loci do not overlap

with any officially designated genes. The detected associations are

race-specific and represent genes/QTLs providing resistance to the

rust races used in the current study. Our diversity panel may harbor

other race-specific rust resistance genes against other races not

tested herein. Testing of this diversity panel with other rust races

may reveal other resistance genes/QTLs as reported for the

Ethiopian Durum Wheat panel tested with four Pst races that

possess diverse virulence profiles (Tene et al., 2022).

There was no overlap between any of the QTN loci, which was

expected because all multi-disease resistance genes known to date

are APR genes (Chen and Kang, 2017) and these could not be

detected in our seedling tests. Discovery of APR genes could be

achieved by evaluating severity in field experiments (Fatima et al.,

2020; Tene et al., 2022), which is a proposed future direction for

exploring the potential and exploiting the value of this diversity

panel. Expansion to include traits other than disease resistance,

such as morphological traits, is also anticipated to lead to interesting

and beneficial outcomes with possible application in wheat

breeding programs.

For all three diseases, proportionately more DW_LR accessions

were resistant compared with WEW accessions, indicating that,

even at the landrace level, resistance is available to support breeding.

At the same time, our analysis showed the importance of DEW as a

source of resistance to all three wheat rust diseases, and

introgression to modern cultivars is expected to enrich the

resistance gene pool of cultivated durum wheat. Among DEW

accessions, the lines of Ethiopian origin are particularly

interesting as was highlighted in previous studies (Kidane et al.,

2019; Mazzucotelli et al., 2020). In our experiments, the percentage

of Ethiopian DEW lines with resistance to stripe and leaf rust races

was much higher than that of DEW genotypes of other geographic

origin, but in contrast, they lacked stem rust resistance. Taking into

account that all three wheat rust pathogens are detected in all wheat

growing areas, and that they require similar conditions for pathogen

development, there seems to be no clear reason explaining this host-

pathogen co-evolution in Ethiopia (Klymiuk et al., 2019) for stripe

and leaf rusts compared to stem rust. Thus, the observed picture

may be the result of the use of the specific pathogen races in the

current study. Once more, testing with multiple races of the three

rust species could shed light on this observation.

While we were able to detect at least two potentially novel QTNs

associated with rust resistance in this study, we did note that several

accessions of all three subspecies were resistant to one or more of

the rust races evaluated but did not carry the favorable alleles. Other

resistance genes are likely present in our diversity panel but were

simply not detected because of their low frequency, their small effect

or underrepresentation of their genomic regions due to genotyping

resolution. Indeed, we noted that 3,757 (representing nearly 1/3 of

the polymorphic markers) were present at a frequency of <5% in the

population. Low-frequency variants often do not pass statistical

significance thresholds in GWAS studies; thus their effects are often

missed or biased. This is likely the case in our GWAS panel, and we

are examining accessions lacking the QTN-associated resistances
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reported here but expressing near immunity to all three rust

pathogens (e.g., DEW PI94635) or at least two rust pathogens

(e.g., WEW PI478694 and DEW PI352362) (Supplementary

Data S13).

To conclude, we have assembled a diverse panel of 447

genotypes from three wheat subspecies representing a range of

improvement statuses and diverse geographic origins. The GWAS

analyses detected the following statistically significant associations:

two for stem rust on chromosomes 6A and 2A; two for stripe rust

on chromosomes 1B and 7B; one for leaf rust on chromosome 1A.

Two of the detected associations represent the previously cloned

Sr13 and Yr15 genes and one overlap with the Yr67 locus, while the

other two were located at positions where no officially designated

resistance genes had been reported. The developed diversity panel

could serve as a good resource for future association-mapping

studies of other traits of interest and for evolutionary studies.
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