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This experiment investigated the changes of rhizosphere soil microenvironment

for hyperaccumulation-soil system under Cd stress in order to reveal the

mechanism of hyperaccumulation and tolerance. Thus, Cd fractions, chemical

compositions, and biochemical characteristics in rhizosphere soil of

Siegesbeckia orientalis L. under Cd stress conditions of 0, 5, 10, 25, 50, 100,

and 150 mg kg-1 were investigated through a root bag experiment, respectively.

As a result, Cd induced the acidification of S. orientalis rhizosphere soil, and

promoted the accumulation of dissolved organic carbon (DOC) and readily

oxidizable organic carbon (ROC), which increased by 28.39% and 6.98% at the

maximum compared with control. The percentage of labile Cd (acid-soluble and

reducible Cd) in soil solution increased significantly (P < 0.05) from 31.87% to

64.60% and from 26.00% to 34.49%, respectively. In addition, rhizosphere

microenvironment can alleviate the inhibition of Cd on soil microorganisms

and enzymes compare with bulk soils. Under medium and low concentrations of

Cd, the rhizosphere soil microbial biomass carbon (MBC), basal respiration,

ammonification and nitrification were significantly increased (P < 0.05), and the

activities of key enzymes were not significantly inhibited. This suggests that pH

reduction and organic carbon (DOC and ROC) accumulation increase the

bioavailability of Cd and may have contributed to Cd accumulation in S.

orientalis. Moreover, microorganisms and enzymes in rhizosphere soils can

enhance S. orientalis tolerance to Cd, alleviating the nutrient imbalance and

toxicity caused by Cd pollution. This study revealed the changes of

physicochemical and biochemical properties of rhizosphere soil under Cd

stress. Rhizosphere soil acidification and organic carbon accumulation are key

factors promoting Cd activation, and microorganisms and enzymes are the

responses of Cd tolerance.

KEYWORDS

Cd, rhizosphere, bioavailability, Siegesbeckia orientalis, phytoremediation, hyper
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1 Introduction

Cadmium (Cd) is one of the primary heavy metal (HM)

pollutants in soils due to its toxicity and non-biodegradability (Lu

et al., 2015; Niu et al., 2020). The concentration of Cd in arable soil

in China is seriously disturbed by human. Regionally, the maximum

Cd concentrations in arable soil around mining and smelting

activities, irrigation area by wastewater, urban and suburban area,

and remote areas was 152.95, 54.05, 3.15, 2.04 mg kg-1 respectively

(Zhang et al., 2015b). Cd in the soil can be easily absorbed by plant

roots and then enters the food chain, causing a threat to living

creatures and human beings via biomagnification and amplification

(Salt and Wagner, 1993; Xin et al., 2015). In the past decades,

significant progress has been made in the remediation techniques

on Cd-contaminated soils (Liu et al., 2021). Among them,

phytoextraction technology based on HMs accumulators or

hyperaccumulators has been widely used to remediate

contaminated soils due to its cost-effective and eco-friendly

characteristics (Huang et al., 2018; Moreira et al., 2019). These

accumulators can effectively mobilize metals mainly by changing

the bioavailability of HMs surrounding roots, enhancing the uptake,

and translocation of HMs in plants (Bolan et al., 2011; Zhan et al.,

2018). Therefore, the root-soil system is considered to be the key

process for phytoextraction, and is increasingly attracting the

attention of scholars (Antoniadis et al., 2017; Zhan et al., 2018; Li

Y. et al., 2021).

The rhizosphere effect and soil chemical processes that are

located within the root-soil interface directly affect the uptakes/

exclusions of HMs by plants (Antoniadis et al., 2017). Researches

have shown that the chemical conditions of rhizosphere soil were

different from those of bulk soil. These chemical conditions can lead

to variations of soil compositions, and bioavailability changes of

HMs in soil (Chaignon et al., 2002). Solubility and bioavailability of

trace metals in the root region and microbial exudates can be

adjusted by dissolved organic carbon (DOC) and pH by

Rhizosphere effect (Shen et al., 2017; De Conti et al., 2018).

Rehman et al. (2017) and Yang et al. (2017) have proved that the

decrease of soil pH through rhizosphere effect is the most important

single process affecting the availability of HMs. Cd ions absorbed by

soil colloids can be exchanged by H+ leading to the increase of

concentration of Cd2+ in root-soil system. In addition, some

researches have indicated that rhizosphere effect is induced by

metal complexations of DOC. However, rhizosphere effect is very

complicated because different results can be obtained even though

the conditions are the same. Therefore, it is necessary to further

elucidate the mechanisms for activating soil HMs in different plants.

The decrease of pH causes more H+ to exchange with Cd

adsorbed by soil colloid and increase the content of Cd2+ in root-

soil system, thus increasing Cd mobility (Li Y, et al., 2021). It has

been reported that the pH of hyperaccumulators grown in Cd

contaminated soil has a lower rhizosphere soil pH than that grown

in uncontaminated soil, which increases the uptake of Cd by plants

(Gonzaga et al., 2009; Li et al., 2011). Acidification may be ascribed

to the secretion of some organic matters including DOC induced by

hyperaccumulators (Rehman et al., 2017). DOC, which DOC is a
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part of soil activated carbon component, which includes low

molecular weight organic acids that activate HMs in soil by

forming soluble complexes with them (Luo et al., 2017). Soil

active organic carbon components are composed of oxidized

carbon (ROC) and water-soluble organic carbon (WSOC). ROC

is a very abundant active organic carbon component, including

easily decomposed humus and polysaccharides (Jia et al., 2015).

Humus contains a large number of carboxyl and phenolic hydroxyl

acid groups (Bai et al., 2018). These functional groups can change

the solution and sorption equilibrium of HMs in soil, and react with

metal ions in soil forming soluble complexes. This phenomenon

promotes the absorption of metal elements by plants (Ondrasek

et al., 2018). WSOC has positive effects on soil microorganisms

under HMs stress (Epelde et al., 2010), but there are few studies on

the relationship between WSOC and HMs activation. Although

rhizosphere acidification and increase of DOC content play an

important role in HM activation and accumulations in plants (Lux

et al., 2011; Li et al., 2014; Xin et al., 2017). However, how

rhizosphere processes help hyperaccumulators tolerance and

accumulation of HMs have not been fully explained, and whether

ROC and WSOC affect the activation of HMs in rhizosphere is

rarely reported.

Soil biochemical properties are ecologically relevant indicators

of soil quality, and are often used to evaluate the ecological status of

soil under HMs stress (Yang et al., 2017). The researches indicate

that microorganisms and enzymes in Pakchoj, black locust, and

other nonaccumulators are inhibited by Cd contaminations (Shentu

et al., 2014; Xian et al., 2015; Huang et al., 2016; Zhou et al., 2017).

However, a completely different phenomenon is now observed in

hyperaccumulators. Liu et al. (2020) found that the microorganisms

counts and microbial metabolic activity of the hyperaccumulator

Trifolium repens increased with the increase of Cd supply; a similar

phenomenon was also found in Yang’s work (Yang et al., 2017; Niu

et al., 2020). Liu et al. (2020) suggested that the relative abundance

of plant growth promoting bacteria (Kaistobacter and

Flavisolibacter) and the utilization of difficultly metabolized

compounds in rhizosphere would increase under HM stress,

which may help alleviate the damage of heavy metals on

hyperaccumulators. Yang et al. (2017) found that the remediation

process using S. alfredii favored Gram-negative bacteria growth

more than the Gram-positive bacteria. Niu et al. (2020) under HM

stress, rhizosphere soil CAT activity increased in Indian mustard

and tall fescue, which accelerated the release of hydrogen peroxide

and led to the increase of bacterial 16S rRNA abundance. Therefore,

it is necessary to further study which microbial composition and

enzyme activity indicators play a key role in the newly discovered

hyperaccumulators or different species.

Siegesbeckia orientalis L. is promised as an ideal material plant

for in situ restoring Cd contaminated soils due to its high biomass

and Cd concentrating ability in the aboveground (Zhang et al.,

2013). Although previous works have investigated roots actively

responded to Cd stress and the regulatory mechanisms of HM

detoxification(Xu et al., 2020), how to explain that Cd is activated by

S. orientalis from the root-soil interface and rhizosphere

microenvironment is tolerated by Cd stress is still a challenge.
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This study hypothesized that HMs were activated by

rhizosphere effect originated from change of soil physicochemical

properties, while the increase of rhizosphere soil microbial activity

and enzyme activity is to enhance S. orientalis tolerance to Cd.

Therefore, it was assumed that the physicochemical properties in

rhizosphere soil will change under the stress of Cd, thus affecting

the effectiveness of Cd and the absorption of Cd by S. orientalis.

Enzymatic activity and microbial activity are also enhanced to

maintain normal plant physiological functions. Therefore, the aim

of this study was to (1) assess the capacity of S. orientalis to uptake

Cd from soil; (2) investigate the effects of physicochemical

properties rhizosphere of soil on Cd activation; (3) determine the

effects of Cd stress on enzyme activities and microbial

characteristics of rhizosphere soil.
2 Material and methods

2.1 Experiment design

S. orientalis seeds were harvested from a Pb-Zn mine area in

South-West of Chengdu, Sichuan, China (102°46′E, 26°40′N). Seeds
were pre-germinated at a plate and kept moist for further treatment.

After germination, the seedlings were placed in sandy soil

uncontaminated with heavy metal and watered with 1/2

Hoagland solution. After 4 weeks of sand culture, seedling of

equal height, health, and leaf number (5 to 6 leaves and a height

of about 6 cm) were selected for further treatment study in Cd

stressed soil and control study (Xu et al., 2018).

The experiment was carried out in the greenhouse of Sichuan

Agricultural University, Chengdu (103°52′E, 30°43′N), with an

average air temperature of 27°C during the day and 18°C at

night, and humidity of 75-80%. The physicochemical properties

of soil were shown in Table 1. Stones and plant residues were

removed after air-dried grinding and passed through a nylon sieve

with a particle size of 4 mm. Each pot (25 cm×20 cm) was filled with

6.0 kg of soil and 4.2 g of compound fertilizer (N:P2O:

K2O=17:17:17) prepared before and was mixed with Cd in

solution (prepared by dissolving analytical grade CdCl2·2.5H2O)

at 0 (control), 5, 10, 25, 50, 100, and 150 mg kg-1, respectively
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(Figure 1). Cd was added to the soil in the form of CdCl2·2.5H2O

solution at one time, and the soil was stirred every day to ensure that

the concentration and fraction of Cd reached a balanced state. After

thoroughly mixing the soil with CdCl2·2.5H2O, the soil sample was

stabilized for 40 days and then used for all subsequent experiments.

300-mesh nylon bags about 15 cm in diameter were selected as root

bags and filled with prepared Cd-contaminated soil inside and

outside. Three plants were cultivated in each pot, and three pots

were set in each treatment. Soil moisture maintained at 80% by

timely replenishing water during the plant cultivation.

After 60 days, plants and soils were carefully harvested from

pots. The rhizosphere soil and the non-rhizosphere soil were

separated with nylon bags. A non-rhizosphere soil is composed of

five samples from 2 cm away from the root bag, the remained soil

adhered to the root hairs was collected as the rhizosphere soil

(Su et al., 2009).
2.2 Soil property analysis

To evaluate the status of the soil environment, several target

indices such as soil pH, soluble dissolved organic carbon (DOC),

water-soluble organic carbon (WSOC), and readily oxidizable

carbon (ROC), the collected soil was sieved through a 2 mm sieve

to ensure homogeneity. The pH of rhizosphere and bulk soils was

determined by a glass electrode with an l:2.5 soils: water ratio. DOC,

WSOC and ROC in soil were extracted with 50 mL1 mol L-1 KCl,

deionized water and 200 mmol L-1 KMnO4 solution in turn, and

measured with total organic carbon instrument (TOC-VCPH,

Shimadu, Japan) following the study of Li et al. (2016).
2.3 Fraction and determination of Cd

There are 4 different forms of Cd in soils that were analyzed in

this study. The method of improved European Community Bureau of

Reference (BCR) sequential extraction was used to determine the

metal partitioning)(Liu et al., 2020). The first is to extract the acid-

soluble Cd: 40 mL 0.11 M CH3COOH (16 h, room temperature). The

second step is to extract the reducible Cd: 40 mL 0.5 M NH2OH·HCl

(16 h, room temperature). The third step is to extract the oxidizable

Cd: 10 mL 8.8 M H2O2 + 10 mL 8.8 M H2O2 + 50 mL 1 M NH4OAc

(1 h, 85 C; 1 h, 85 C; 16 h, room temperature). After each extraction,

the supernatant was taken for determination, and the residue was

cleaned with deionized water before the next step. Residual: digested

by 10 mL HF + 10 mL HNO3 + 3 mL HClO4, and dissolve with 1 mL

solution (HNO3: H2O =1: 1. The Cd concentrations in all the extracts

were analyzed with AAS (MKII, M6, Thermo Electron

Corporation, USA).
2.4 Soil enzyme and bacterial analysis

Soil urease, phosphatase, and catalase activities were

determined by conventional methods (Ma et al., 2015). Referring

to (Vance et al., 1987), soil microbial biomass carbon (MBC) was
TABLE 1 The physicochemical properties of soil.

Physicochemical properties of soil Content

Clay 25.3%

Silt 40.1%

sand 34.6%

pH 6.35

available P 20.27 g/kg

total N 103 mg/kg

available P 15.36 mg/kg

available K 148.60 mg/kg

Cd 0.21 mg/kg
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analyzed by the method of chloroform fumigation- K2SO4

extraction. Basal respiration was determined by following (Wardle

et al., 1993). The metabolic quotient of soil microorganisms was

calculated by the ratio of soil basal respiration intensity to MBC.

Soil ammonification activities were expressed as mg NH+
4-N per kg

dry soil per day, and the content of NH+
4 -N was determined by

distillation and Kjeldahl method. Soil nitrification were expressed as

the percent reduction after inoculation. The specific test steps refer

to the method of Zhang et al. (2021).
2.5 Data and statistical analysis

The data were analyzed by one-way analysis of variation

(ANOVA). T test was used to compare the significant difference

between rhizosphere and non-rhizosphere in the same treatment,

and the multiple comparison between treatments was performed by

Duncan’s new multiple range methods (P < 0.05). Correlation
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regression analysis was used for some indexes. Redundancy

analysis was used to examine the relationships between soil

enzyme activity, soil microorganism quantity, and main soil

properties using Canoco 4.5. Some statistical graphs were drawn

by Origin 9.0.
3 Result

3.1 Concentration of Cd fractions in
rhizosphere soil

Increased concentrations of all four different Cd forms in

rhizosphere and bulk soil can be found when higher Cd

concentration were added (Figure 2). With the increase of Cd

application, the proportion of acid-soluble Cd in rhizosphere soil

obviously increased (P < 0.05) from 31.87% to 64.60%, while the

value in bulk soil changed from 23.53% to 66.30%. For reducible Cd

in rhizosphere soil, it accounted for 26.00 - 34.49 % in rhizosphere

soil and 29.55%-38.29% in bulk soil when the added Cd

concentration increased from 0 to 150 mg kg-1. There was no

significant difference in the proportion of oxidizable Cd among all

Cd treatments (P > 0.05) in rhizosphere and bulk soil. The

proportion of residual Cd in total Cd significantly decreased

(P < 0.05) from 40.36% to 2.25% for rhizosphere soil, and from

36.13% to 2.39% for bulk soil.
3.2 Variations of soil properties

The variation trend of pH in rhizosphere and bulk soil of S.

orientalis has an obvious difference (Figure 3A). The Cd stress did not

change the pH in the bulk soil of all treatments, while it led to lower

pH (0.2 units on average) in the rhizosphere soil of S. orientalis. The

pH value of rhizosphere soil within the range of 10 – 150 mg kg-1 Cd

use concentration was significantly decreased than those values at the
FIGURE 1

The growth of S. orientalis in potted plants under Cd stress.
A B

FIGURE 2

Proportion of Cd speciation in the rhizosphere (A) and bulk (B) soil of S. orientalis.
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Cd use concentration of 0 mg kg-1 and the bulk soils (P < 0.05). It can

be found that the pH value of rhizosphere soil gradually decreased

with the increase of added Cd concentration.

As shown in Figure 2B, a low concentration of external Cd (5

mg kg-1) had no significant effect on DOC content in rhizosphere

soil (P > 0.05), while the continuous increase of Cd supply (Cd ≥ 10

mg kg-1) significantly increased the DOC content of rhizosphere

soil (P < 0.05). The increase of external Cd concentration had no

significant influence on DOC content in bulk soil (P > 0.05). Under

100 mg kg-1 Cd treatment, DOC content in rhizosphere soil reached

the maximum value of 114.66 mg kg-1, which was 28.39% higher

than that of the control.

Similarly, the increase of external Cd concentration had no

significant impact on bulk soil ROC content (P > 0.05). A low

concentration of Cd (5-10 mg kg-1) had no significant effect on the

ROC of rhizosphere soil (P > 0.05). When Cd concentration is

larger than 25 mg kg-1, higher ROC content in rhizosphere soil can

be seen from Figure 3 (P < 0.05). At the Cd use concentration of 50

mg kg-1, ROC content in rhizosphere soil reached the maximum

value of 1.49 g kg-1, which was 6.98% higher than that of the control.
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Different from changes in soil DOC and ROC, Cd stress had

little effect on WSOC in both rhizosphere and bulk soil. Except for

the Cd use concentration of 25 mg kg-1 and 50 mg kg-1, there was no

significant difference in WSOC concentration between rhizosphere

and bulk soil in all treatments (Figure 2C). Meanwhile, the WSOC

content of rhizosphere soil maintained small difference in these Cd

use concentrations (P > 0.05).
3.3 Soil microorganism

As shown in Figure 4A, the concentration of MBC in both the

rhizosphere and bulk soil of S. orientalis increased at first and then

decreased with the Cd use concentration raised. The maximum

concentrations of MBC in rhizosphere soil (80.88 mg kg-1) and in

bulk soil (72.11 mg kg-1) both occurred at the Cd use concentration

of 10 mg kg-1, and increased by 50.56% and 51.11% compared with

the control. When the Cd use concentration reached 150 mg kg-1,

the concentration of MBC in rhizosphere and bulk soil both

dropped down to the lowest value. And the MBC concentration
A B

DC

FIGURE 3

Effects of Cd on pH (A), DOC (B), WSOC (C), ROC (D) in the rhizosphere and bulk of S. orientalis. Error bar represents standard deviation (n=3). *
indicate significant difference at P < 0.05 level in the same treatment between rhizosphere and bulk soil, different lower case letter (upper case
letter) at the column indicate significant difference at P < 0.05 level in the rhizosphere soil (in the bulk soil) according to ANOVA and Duncan tests,
the same as follows.
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in rhizosphere soil decreased by only 9.74% compared with the

control, while in bulk soil was significantly lower than the control

(P < 0.05), decreased by 28.67%.

The BR intensity of all rhizosphere soil was higher than that of

bulk soil (Figure 4B). In comparison to the control, Cd stress did not

significantly inhibit BR in the rhizosphere of S. orientalis (P < 0.05),

and each treatment results increased by 7.65%-39.35%. More

complex variation occurred in bulk soil. The maximum value of

bulk soil basal respiration intensity occurred at the Cd use

concentration of 25 mg kg-1, which increased by 25.0% compared

with the control treatment. And then the BR intensity in bulk soil

decreased gradually with the increase of Cd added content. The

minimum value was decreased by 45.79% compared with

the control.

As shown in Figure 5, the intensity of ammonification and

nitrification in both rhizosphere soil and bulk soil of S. orientalis

significantly increased within the range of 5 – 50 mg kg-1 Cd

concentration. The maximum intensity of both ammonification and

nitrification was achieved at Cd use concentration of 25 mg kg-1.

With the continued increase of Cd use concentration from 50 mg
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kg-1, both of them showed a decreasing trend in rhizosphere and

bulk soil. The intensity of nitrification and ammonification in

rhizosphere soil was significantly higher than that in bulk soil.
3.4 Soil enzyme activity

Urease activity in rhizosphere and bulk soil increased at first at

low concentrations of external Cd treatment (0-10 mg kg-1),

subsequently reduced at high concentrations of Cd treatment (50-

150 mg kg-1). At Cd use concentration of 5 mg kg-1, no significant

effect on urease activity can be found. However, with the increase of

external Cd concentration (10-100 mg kg-1), the activity of urease in

rhizosphere soils was significantly higher than that in bulk soils (P <

0.05). The maximum rhizosphere soil urease activity of 0.40 mg

ammonia g-1 d-1 was achieved at the Cd use concentration of 10 mg

kg-1, and the value were increased by 13.21% compared with

the control.

The changing trend of phosphatase was the same as that of

urease. Phosphatase activity in rhizosphere soil was significantly
A B

FIGURE 5

Error bar represents standard deviation (n=3). * indicate significant difference at P < 0.05 level in the same treatment between rhizosphere and bulk
soil, different lower case letter (upper case letter) at the column indicate significant difference at P < 0.05 level in the rhizosphere soil (in the bulk
soil) according to ANOVA and Duncan tests, the same as follows.
A B

FIGURE 4

Effects of Cd on MBC (A) and soil basal respiration (B) in the rhizosphere soil and bulk soil of S. orientalis. Error bar represents standard deviation
(n=3). * indicate significant difference at P < 0.05 level in the same treatment between rhizosphere and bulk soil, different lower case letter (upper
case letter) at the column indicate significant difference at P < 0.05 level in the rhizosphere soil (in the bulk soil) according to ANOVA and Duncan
tests, the same as follows.
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higher than that of bulk soil under the treatment of the two highest

concentrations of Cd (P < 0.05), while there was no significant

difference in phosphatase activity between rhizosphere and bulk

soils treated with low and medium concentrations of Cd (5-50 mg

kg-1) (Figure 6B, P > 0.05). The maximum phosphatase activity in

rhizosphere soil (1.27 mg phenol g-1 d-1) and in bulk soil (1.24 mg

phenol g-1 d-1) occurred at the Cd use concentration of 5 mg kg-1.

As the supply of Cd increased, the phosphatase activity decreased

significantly (P < 0.05) 9.56%-17.76% in rhizosphere soil and

14.25%-21.79% in bulk soil compared with the control.

The catalase activity increased in both rhizosphere and bulk soil

with increasingCduse concentration in all samplings (Figure 6C). The

activity of catalase in rhizosphere soil was significantly higher than that

in bulk soil except for one condition (100 mg Cd kg-1, P < 0.05).

Compared with the control, low Cd use concentrations (5-10mg kg-1)

did not significantly inhibit the catalase activity of rhizosphere soil (P>

0.05),whilehighandmediumCduse concentrations (≥25mgkg-1) can

decrease the catalase activity, which is decreased by 27.72%-35.93%.
4 Discussion

4.1 Rhizosphere acidification and organic
carbon accumulation drives Cd activation

Cd activation refers to the process by which Cd in soil changes

from stable fractions (acid-soluble and reducible Cd) to labile
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fractions (oxidizable and residual Cd), and the bioavailability of

Cd increases during this process. We followed the objective to

measure the related indexes and Cd morphological changes of soil.

Relevant hypothesis was confirmed by the change of soil physical

and chemical properties caused by rhizosphere effect. These

changes are important to activate HMs. BCR extraction

procedures were used to evaluate Cd availability. According to the

BCR sequential extraction method, HMs in soils can be classified

into acid-soluble, reducible, oxidizable, and residual fractions,

among which the acid-soluble fraction has the highest

bioavailable and the residual fraction has the lowest bioavailability

(Anju and Banerjee, 2010; Yang et al., 2017; Huang et al., 2020). In

general, the mobility of HMs in the soil is relatively weak, and the

fractions with high bioavailability, such as acid-soluble fraction, are

not high (Li et al., 2011). S. orientalis can absorb large amounts of

Cd from the soil, so there must be an activation process to change

the morphology and bioavailability of Cd. As can be seen from

Figure 2, with the increase of the concentration of Cd, the

proportion of weak-acid extracted Cd from the rhizosphere

increased gradually, the proportion of reducible and oxidizable

Cd changed little, while the proportion of residue Cd with the

lowest bioavailability decreased significantly. This is consistent with

the research results of R. globose under Cd treatment (Wei and

Twardowska, 2013). The concentration of acid-soluble fraction in

rhizosphere soil was lower than that in bulk soil under all

treatments (Figure 2) because Cd absorption rate was higher than

the activation rate. Some reports hold that the mobility and
A

B C

FIGURE 6

Effects of Cd on activity of urease (A), phosphatase (B) and catalase (C) in the rhizosphere soil and bulk soil of S. orientalis. Error bar represents
standard deviation (n=3). * indicate significant difference at P < 0.05 level in the same treatment between rhizosphere and bulk soil, different lower
case letter (upper case letter) at the column indicate significant difference at P < 0.05 level in the rhizosphere soil (in the bulk soil) according to
ANOVA and Duncan tests, the same as follows.
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bioavailability of HMs in soil are mainly influenced by

physicochemical properties such as soil pH and organic matter

content (Bravin et al., 2012; Seshadri et al., 2015; Huang et al., 2020).

Rhizosphere soil pH can significantly impact the bioavailability

and toxicity of HMs in soil, which could result in the desorption of

HMs from soil particles by reducing the pH (Niu et al., 2021; Ning

et al., 2022). These effects will further promote the uptake of HMs

by plants (Li et al., 2014; Mimmo et al., 2014). In this study, external

Cd induced a reduction of pH in the rhizosphere (Figure 3A), as

Zhan et al. (2018) observed in A. wardii. Redundancy analysis

(RDA) also showed that the pH of rhizosphere is closely related to

Cd fractions, and rhizosphere acidification could increase Cd

concentrations in four forms (Figure 7). Rhizosphere acidification

can be attributed to the secretion of organics including organic acid

and carbohydrates by hyperaccumulator (Kushwaha et al., 2015;

Niu et al., 2020). Rhizosphere acidification is a soil chemical process

occurring in the root-soil interface (Antoniadis et al., 2017).

Consequently, acidification of the rhizosphere leads to the

transformation of Cd from low bioavailable (reducible) to high

bioavailable (acid-soluble) (Figures 2A).

In addition to rhizosphere acidification, the concentration of

active organic carbon components can play important role in

activation of HMs in soil solution (Clemente and Bernal, 2006;

Kim et al., 2010). We divided the activated carbon components into

DOC, ROC, and WSOC. These organic compounds are derived

from the mineralization of soil organic matter and root exudation

(Pii et al., 2015). DOC can be used as a carrier for accelerating

hyperaccumulator uptake of HMs (Huang et al., 2020). Many

studies have confirmed the activation effect of DOC on HMs

(Wenzel et al., 2003; Li et al., 2011; Li Z, et al., 2021). In this

study, DOC induced an increase in high bioavailability Cd fractions

(acid-soluble and reducible Cd) (Figure 7). DOC can form soluble

organometallics complexes with HMs, or substitute HMs for

preferentially adsorbed on the soil surface, to reduce the

adsorption of HMs on the soil surface and improve its

bioavailability (Cornu et al., 2011; Bravin et al., 2012; Welikala

et al., 2018). Therefore, DOC was one of the important factors

promoting the activation and hyperaccumulation of Cd in S.

orientalis under Cd stress.
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Compared to DOC, ROC accounted for a higher proportion of

labile soil organic carbon components and had a faster turnover, so

it was more sensitive to soil environmental changes (Zhang et al.,

2020). ROC is organic carbon that is easily oxidized by potassium

permanganate, and its content is easily affected by anthropogenic

activities (Jiang M, et al., 2022). In our study, the supply of

exogenous Cd could increase the content of ROC in rhizosphere

soil, especially at medium and high concentrations (Cd ≥ 25 mg

kg-1) significantly increased (P < 0.05) (Figure 2D). Combined with

the results that ROC content in the bulk soil had no significant effect

(P > 0.05), we can conclude that the ROC variation is caused by the

root system. The elevated level of ROC may be due to Cd toxicity

caused by a declining trend of soil pH with the increasing of Cd

stress increases (Figure 2A), which may damage the roots and

increase root exudation (Li et al., 2015). This has been confirmed in

previous studies (Hurisso et al., 2014). At present, few studies have

focused on the relationship between the change of ROC content in

rhizosphere soil and the activation of HMs. However, our RDA

showed that the content of ROC is closely related to the Cd

availability (Figure 7). ROC is a large order of magnitude of

active organic carbon components, mainly originate from the

mineralization of microbial and plant root exudates (De Conti

et al., 2018; Li G, et al., 2021; Jiang O, et al., 2022). Concerning the

latter, root exudates included amino acids, low molecular weight

organic acids, and soluble sugars, and their release was beneficial to

the accumulation of ROC (Xiao et al., 2018; Liu et al., 2020; Li G, et

al., 2021). From the composition of ROC, these substances play an

important role in improving the mobility and the absorption of

HMs by plants (Kim et al., 2010; Madej, 2016; Jiang M, et al., 2022).

Consequently, the increase of rhizosphere secretions of S. orientalis

under Cd stress promotes the accumulation of ROC, thus increasing

the bio-availability of Cd and facilitating the hyperaccumulation of

Cd by S. orientalis. However, some limitations are worth noting.

Although our hypotheses were supported statistically, our samples

did not analyze the specific composition of root exudates. Future

work should include the effect of specific root exudate composition

on Cd morphology.

WSOC is the most mobile and susceptible fraction of soil

organic carbon (Li et al., 2015). Previous studies showed that

WSOC content was not significantly affected by plant planting

systems and soil depth, but was mainly controlled by precipitation

leaching (Sharma et al., 2014; Guo et al., 2018). In this study, the

content of WSOC was not significantly affected by Cd stress

(Figure 3C), and there was no significant correlation between

WSOC and the form of Cd in rhizosphere soil (Figure 7;

Table 2). It can be inferred that WSOC played a limited role in

Cd activation.
4.2 The increase of microorganism and
enzyme activity is the mechanism of S.
orientalis tolerance to Cd

In addition to accumulating high concentrations of HMs,

hyperaccumulators also have the mechanism of tolerating and

sustaining highly toxic HMs (Clemens, 2017; Pasricha et al.,
FIGURE 7

RDA ranking of Cd form and soil properties in rhizosphere soils.
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2021). Hypertolerance is the key property that allows plants to avoid

HM poisoning (Chaney et al., 1997). The properties can be divided

into in vivo and in vitro according to the site of action. In vivo,

chelation/sequestration deal with the toxicity of accumulated metal

ions, while the anti-oxidative defense system of plants is used to

cope with HM-induced oxidative damage (Manara, 2012; Macnair

et al., 2000; Yan et al., 2020; Feng et al., 2021). These indicators have

been thoroughly studied in previous researches (Lux et al., 2011;

Pasricha et al., 2021; Yaashikaa et al., 2022), but the role of

rhizosphere in plant tolerance is often ignored.

In vitro, soil enzyme activity is an important index reflecting soil

quality and vitality (Zhang et al., 2015a). Their activity is related to

the number of soil microorganisms, soil conditions, and plant

growth (Jaiswal and Pandey, 2018; Gao et al., 2020). Therefore,

soil enzyme activity can accurately reflect the response of soil

microorganisms to HMs exposure during phytoremediation (Cao

et al., 2020). In our study, with the increase of Cd supply, the

enzyme activities showed a decreasing trend (Figure 6). Cd can

reduce enzyme activity by denaturing the enzyme protein, binding

with the enzyme substrate complex, and inhibiting microbial

activity (Ma et al., 2015; Cao et al., 2020). However, medium and
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low concentrations of Cd (Cd ≤ 10 mg kg-1), S. orientalis

rhizosphere maintained the activity of rhizosphere soil enzymes

so that they are not significantly inhibited. The role of soil

microorganisms in detoxifying pollutants, facilitating nutrient

cycling, and producing essential compounds for both

microorganisms and plants has been demonstrated (Ma et al.,

2015). Urease catalyzed hydrolysis of urea is one of the important

sources of plant nitrogen, catalase can effectively remove the

hydrogen peroxide toxicity caused by stress environment, and

phosphatase can help maintain a good supply of phosphorus in

Cd-contaminated soil (Weng et al., 2014; Ma et al., 2015; Sturikova

et al., 2018; Wang et al., 2018). This suggests that rhizosphere plays

an important role in maintaining nutrient supply and detoxification

of plants in Cd-contaminated soils through soil enzymes. To sum

up, the rhizosphere environment had a complex effect on soil

enzyme activities, and the enhancement of plant rhizosphere soil

enzyme activities improved the conversion of nitrogen, phosphorus,

and organic matter in Cd contaminated soil, maintained soil

fertility, and was conducive to promoting the growth of S.

orientalis, and also promoted the absorption of Cd by plant roots

to a certain extent (Figure 8).
TABLE 2 Correlations between partial soil properties and Cd speciation in the rhizosphere and non-rhizosphere of S. orientalis across all samples.

Soil properties Acid soluble Reducible Oxidizable Residual

Rhizosphere soil

pH -0.695** -0.567** 0.502* 0.705**

DOC 0.741** 0.718** -0.644** -0.780**

WSOC 0.299 0.427 -0.393 -0.349

ROC 0.280 0.449* -0.353 -0.351

Bulk soil

pH -0.409 -0.102 0.184 0.411

DOC 0.261 0.316 -0.290 -0.314

WSOC 0.470* 0.402 -0.505* -0.483*

ROC 0.304 0.317 -0.270 -0.356
fro
Values are Pearson correlation coefficients, *indicated the correlations were significant at P < 0.05, **indicated the correlations were significant at P < 0.01.
FIGURE 8

Schematic of the mechanism of the activation and tolerance of S. orientalis Cd.
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Microorganisms in rhizosphere soils have been proven to detoxify

ofHMs, and promote nutrient cycling and transfer of soil energy (Guo

et al., 2019).Therefore, rhizospheremicroorganismsplayan important

role in improving the efficiency of phytoremediation (Cao et al., 2020).

MBC is an active carbon reservoir in the soil micro-ecosystem, which

canbe a sensitive indicatorof soilmicrobial biomass andsoil quality, its

enhancement of MBC may help increase crop productivity and

sustainability (Liu et al., 2011; Zhan et al., 2018). Soil basal

respiration was accepted as a sensitive indicator of environmental

stresses on soil microbial community microbial stress, and

microorganisms can decompose soil organic carbon and produce

energy through soil basal respiration (Bian et al., 2015; Zhou et al.,

2017). These indicators are often used to characterize environmental

and microbial changes. In general, high concentrations of HM

pollution can negatively affect the number and activity of

microorganisms in the soil (Pan and Yu, 2011). Our results showed

that both MBC content and soil basal respiration in rhizosphere soil

increased in all Cd treatments compared with the control these in the

control treatment (Figure 4). At the same time, the rhizosphere soils

were always higher than bulk soils. This may be ascribed to the

exudates of S. orientalis rhizosphere under Cd stress promoting the

improvement of soil enzyme activities and was beneficial to the

nutrient cycling in the soil and the survival of microorganisms (Li Z,

et al., 2021). However, as the concentration increased, the

bioavailability and mobility of Cd also increased (Zhan et al., 2018).

This phenomenon leads to a gradual increase in the inhibition of

microbial activity. Similar results have been found in other studies

(Bérard et al., 2016; Jaiswal and Pandey, 2018). These results confirm

that a series of rhizosphere activities maintain the microbial activity of

rhizosphere soil and promote Cd tolerance to S. orientalis.

Ammonification and nitrification are two basic processes of N

cycling in soil, which convert N into two main nitrogen forms,

ammonium (NH+
4 ) and nitrate (NO−

3 ), that are efficiently taken up

by plant roots (Salsac et al., 1987; Beeckman et al., 2018). Moreover,

root growth is stimulated by ammonium and nitrate that provide

sufficient nutrients (O’Brien et al., 2016; Xuan et al., 2017).

Ammonification and nitrification of soil microorganisms are also

important factors to maintain plant growth and alleviate heavy metal

toxicity in plants(Li et al., 2019;Wang et al., 2021). Our results showed

that ammonification and nitrification were inhibited when Cd

concentration is greater than 100 mg kg-1, whereas enhanced at Cd

concentration of 5-50 mg kg-1. And they were significantly higher in

rhizosphere soil than these in bulk soil (Figure 5). The intensities of

ammonification and nitrification were mainly influenced by the

microhabitats. In addition, high concentrations of Cd will lead to

microbial inactivation affecting the intensity (Wang et al., 2021). The

rhizosphere exudates improved the microbial activity and alleviated

the stress of Cd to S. orientalis when the Cd supply was low. These

results indicate that ammonification and nitrification of rhizosphere

soil play an important role in promoting tolerance of S. orientalis.
5 Conclusion

Cd activation refers to the process by which Cd in soil changes

from stable fractions (acid-soluble and reducible Cd) to labile fractions
Frontiers in Plant Science 10
(oxidizable and residual Cd), and the bioavailability of Cd increases

during this process. Meanwhile, compared with the treatment without

Cd, exogenous application of Cd resulted in rhizosphere acidification

and accumulation of organic carbon, which induces Cd activation. In

turn, accumulation of active organic carbon alleviated the inhibition

effects on microbial and enzymatic activities in rhizosphere soil. These

improvements presented great benefit for S. orientali tolerance in Cd-

contaminated soils. Our findings provide new insights into the

hyperaccumulation and detoxification of HMs by hyperaccumulator

root-soil systems and provide possibilities for improving the

phytoremediation efficiency of contaminated soils.
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