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Introduction

Plant organelles, including chloroplasts and mitochondria, derived from free-living

cyanobacteria and a-proteobacteria (Andersson et al., 2003; Timmis et al., 2004). During

the evolution, the massive organellar genes were transferred to the nuclear genome,

resulting in only 3-209 proteins are encoded from the current chloroplast or

mitochondrial genome (Kleine et al., 2009). The organelles-encoded proteins are crucial

for organellar gene expression (OGE), photosynthesis, organellar electron transport chain,

cellular metabolism, and ATP production (Maier et al., 2013). Notably, OGE is chiefly

regulated at post-transcriptional steps, including RNA cleavage, RNA stability, RNA

editing (C to U), and RNA splicing (Lee and Kang, 2016; Lee and Kang, 2020). The

fine-tuned regulation of organellar post-transcriptional RNA metabolism essentially

require hundreds of the nucleus-encoded chloroplast and mitochondrial RNA-binding

proteins (nCMRBPs), including pentatricopeptide repeat (PPR) proteins, chloroplast

ribosome maturation and splicing domain (CRM) proteins, DEAD-Box RNA helicases

(RHs), S1 domain-containing proteins (SDPs), and mitochondrial transcription

termination factors (mTERFs), during the entire period of plant growth and

development (Hammani and Giegé, 2014; Quesada, 2016; Leister et al., 2017; Lee and

Kang, 2020). Many recent studies have demonstrated that the lack of these proteins leads to

the defective RNA metabolsim in plants under various environmental stresses (Lee and

Kang, 2020; Qin et al., 2021).

PPR proteins are extensively distributed to plant lineages, containing more than 400

family members, and function as organellar-specific RNA-binding proteins (Schmitz-

Linneweber and Small, 2008; Barkan and Small, 2014; Brown et al., 2014). Interestingly, a

redesign of PPR tracts was shown to recognize programmed RNA targets and to control

organellar gene expression (Coquille et al., 2014; Yagi et al., 2014; Colas des Francs-Small

et al., 2018; McDowell et al., 2022). Here, we highlight a novel idea to redesign the PPR

tracts of PPR4 and PPR19 proteins, which could affect the affinity of cognate RNAs in

plant’s response to developmental and environmental cues.
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Mechanism of P-type PPR proteins for
target RNA recognition

The PPR constitutes a pair of antiparallel a helices of

degenerate 35-amino acid tandem repeated-motifs ranging from 2

to 30 tracts (Small and Peeters, 2000; Barkan and Small, 2014). The

binding specificity of PPR motifs relies on the basis of 1 repeat to 1

nucleotide binding module, leading to the association of single-

stranded RNA (Barkan and Small, 2014; Cheng et al., 2016). P-class

PPR proteins mainly consist of pure PPR motifs, which are

important for organellar transcript processing, RNA stabilization,

and group II intron splicing (Barkan and Small, 2014; Cheng et al.,

2016; Wang et al., 2021). The PPR-RNA binding codes show that

the amino acid residues at the fifth and thirty-fifth positions are

essential for sequence specificity in the association of PPR protein-

RNA substrate (Barkan and Small, 2014; Coquille et al., 2014; Shen

et al., 2015; Yan et al., 2019). Importantly, amino acid codes that

recognize the specific RNA bases harbor side chains playing an

important role for hydrogen bond interaction with the similar

manner of Watson and Crick base paring (Barkan and Small,

2014; Coquille et al., 2014; Shen et al., 2016), suggesting further

possibility to predict and/or customize target RNA sequences via

the combinational PPR-RNA binding code.
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Redesign of artificial PPR proteins
in organelles

To date, the usage of amino acid codes for nucleotide recognition

suggests that modifying amino acid of PPR motifs causes a weak or

strong ability in perceiving target RNA substrates (Barkan et al., 2012;

Yin et al., 2013; Shen et al., 2015; Yan et al., 2019). Indeed, artificial

PPRs exhibit the ability of recognizing programmed RNA targets and

can modulate chloroplast gene expression (Coquille et al., 2014; Yagi

et al., 2014). For instance, ZmPPR10 recognizing 5’UTR of chloroplast

ZmatpH was modified to successfully switch on the nuclear transgene

expression in tobacco plastids and potato amyloplasts (Rojas et al.,

2019; Yu et al., 2019). The native PPR proteins of dPPRrbcL and

dPPRpetL were tailored to be associated with the specific sites in the 5’

UTR of rbcL and petL mRNAs in Arabidopsis chloroplasts,

respectively (Manavski et al., 2021). The RPF2, an Arabidopsis

mitochondrial PPR protein, specifically binds to two cognate RNA

sites located within the 5’ UTRs of cox3 and nad9 genes (Colas des

Francs-Small et al., 2018). Interestingly, the reprogrammed PPR tracts

of RFP2 protein, which were designed to bind new target RNA

sequences within the open reading frame of nad6, recognized the

new RNA target site and subsequently led to a cleavage of the RNA

molecule in vivo (Colas des Francs-Small et al., 2018). These results
A

B

FIGURE 1

A redesign of Arabidopsis PPR4 and PPR19 proteins targeting to native RNA substrates. (A) The combination of the fifth and thirty-fifth amino acids
on the native PPR4 and PPR19 proteins specifically recognizes target RNA sequences indicated with green colors for perfect matches, light green
colors for less perfect matches, blue colors for mismatches, and red colors for no predictable matches. (B) The redesigned Arabidopsis PPR4 and
PPR19 proteins with reprogrammed PPR tracts, which is named rdPPR4 tracks and rdPPR19 tracks. The RRM and N-terminal PPR tracts of the PPR4
protein and the C-terminal PPR tracts of the PPR19 protein, which do not participate in target RNA recognition, are eliminated. The PPR-RNA
binding codes are modified for better matches with its cognate target RNA sequences as shown with orange colors. REMSA, RNA electrophoretic
mobility shift assay; RIP-seq, RNA immunoprecipitation-sequencing; cTP, chloroplast transit peptide; mTP, mitochondrial transit peptide.
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demonstrate the specificities and in vivo functionalities of the artificial

PPR proteins.
Engineering of PPR4 and PPR19
proteins for organellar
gene regulation

Previous studies showed that PPR19, which includes tandem-

repeated 19 PPR tracts, is crucial for the stabilization of nad1 intron

3a in Arabidopsis mitochondria and PPR4, which possesses one RNA-

recognition motif (RRM) and tandem-repeated 15 PPR tracts, plays an

essential role in the splicing of rps12 intron 1b in Arabidopsis

chloroplasts (Lee et al., 2017; Lee et al., 2019). Although the RRM

and PPR motifs of PPR4 are associated with the strong RNA-binding

activity of the PPR4 protein, the PPR motifs alone can strongly bind to

the specific sequences of rps12 intron 1b (Lee et al., 2019). Importantly,

the designed 11 and 14 PPR tracts showed a similar binding affinity to

intended target substrates (Miranda et al., 2018), whereas the longer

repeated-tracts tend to promote off-target action and reduce target-

binding specificity. Notably, previous researches focused on switching

on transgenes in chloroplasts or targeting to new RNA substrates in

chloroplasts and mitochondria by combinations of manipulated PPR

motifs (Colas des Francs-Small et al., 2018; Miranda et al., 2018; Rojas

et al., 2019; Yu et al., 2019; Manavski et al., 2021). However, we suggest

that rdPPR4 and rdPPR19 proteins are manipulated in its motifs for

promoting the affinity of the proteins to its cognate RNAs (Figure 1).

We anticipate that these optimizations will enhance the splicing of

chloroplast rps12 intron 1 and the stability of nad1 intron 3 in native

target location, which will increase the function of photosystems and

mitochondrial electron transfer chains in plants under optimal

conditions and environmental cues. The improvement of organellar

functions will confer the phenotypic tolerance in plant’s response to

abiotic stresses, including high salinity, drought, extreme temperatures,

and high light.
Conclusion and perspectives

Engineering PPR proteins can be harnessed for the

manipulation of intron splicing and/or stabilization of organellar

RNA molecules, and these redesigned PPR proteins will be a

potential means to improve plant’s fitness to developmental and
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environmental cues. Engineered PPR proteins can endow the PPR

proteins with a scaffolder for RNA targets, which can be potentially

applicable for synthetic and RNA biology. Engineering PPR

proteins combined with the artificial organelles-trafficking system

can be utilized in agricultural crops to produce or restore

cytoplasmic male sterility (CMS) which maternally fails to

produce fertile pollens due to abnormalities of mitochondrial

RNA metabolism.
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