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Integrative effects of
morphology, silicification,
and light on diatom
vertical movements

Alessandra Petrucciani , Paolo Moretti , Maria Grazia Ortore
and Alessandra Norici*

Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
Diatoms represent the most abundant and diversified class of primary producers

in present oceans; their distinctive trait is the ability to incorporate silicic acid in a

silica outer shell called frustule. Numerous adaptative functions are ascribed to

frustules, including the control of vertical movements through the water column;

this indirectly determines cell access to fundamental resources such as light and

nutrients, and favors diatom escape from predators. At the same time, light

guides phototrophmovements in the water column by affecting cell density (e.g.,

by modulating Si deposition in diatoms, vacuole volume, and/or solution). We

investigated how the tremendous diversity in morphology and silicification that

characterizes the frustule and the crucial role of light in diatom spatial

distribution govern diatom sinking capacity. To test their integrative effects, we

acclimated four diatoms distinguished by frustule traits (Chaetoceros muelleri,

Conticribra weissflogii, Phaeodactylum tricornutum, and Cylindrotheca

fusiformis) to different light conditions and evaluated their physiological

performance in terms of growth, elemental composition, morphological

changes, and their in vivo sinking capacity. What emerged from this study was

that silicification, more than other morphological characteristics, controls

species vertical movements, while a higher energy availability enhances cell

floating independently from the silica content.

KEYWORDS

frustule, sinking, dynamic light scattering, diatom, ecophysiology, stable isotope
fractionation
1 Introduction

Diatoms are a greatly diversified and successful group of eukaryotic phototrophs

(Bacillariophyceae) belonging to the supergroup Stramenopiles (Bowler et al., 2010). The

ability to incorporate Si in frustules is a dominant feature in diatoms. Although its original

role is still controversial, a frustule more than a cellulosic or carbonate cell wall can increase

cell density and, therefore, contribute to the faster sinking of diatoms as compared to that
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of other phytoplanktonic groups (Martin-Jézequel et al., 2000;

Raven and Waite, 2004; Marron et al., 2016). Consequently,

diatoms become significant players not only in the biological C

pump (Jin et al., 2006; Tréguer et al., 2018), but also in Si

precipitation to the bottom of the ocean (Moriceau et al., 2007;

Sutton et al., 2018).

In nature, frustules are diverse in terms of morphology and

silicification (Armbrust, 2009; Malviya et al., 2016; Hildebrand et

al., 2018). Several studies support the hypotheses that cell size,

shape, and complexity have a crucial role in maintaining a favorable

position in the water column (Allen, 1932; Reynolds, 2006; Durante

et al., 2019). It is evident that a bigger cell volume leads to an

increased sinking rate, and, at similar size, spherical organisms have

a higher settling velocity than elongated ones (Mcnown and

Malaika, 1950; Smayda, 1970; Smayda and Bienfang, 1983;

Durante et al., 2019); furthermore, several morphological adaptive

attributes (such as spines) have been developed in response to

environmental pressure (Padisak et al., 2003; Sommer et al., 2016).

From an ecological and temporal perspective, we can assume that

phytoplankton, thus diatoms, has evolved geometrical trade-offs

required to thrive in advantageous niches (Durante et al., 2019).

Moreover, frustule traits indirectly control sinking capacity by

changing cell density. In particular, Si deposition shows a

phenotypical response to different external environmental factors

(i.e., predators, nutrient availability, pH, temperature, salinity, and

light intensity) affecting cell density (Durbin, 1977; Brzezinski et al.,

1990; Flynn and Martin-Jezequel, 2000; Pondaven et al., 2007;

Vrieling et al., 2007; Hervé et al., 2012; Shrestha et al., 2012; Su

et al., 2018; Xu et al., 2021; Petrucciani et al., 2022a). Among them,

light is a crucial driver in the distribution of phytoplankton through

the water column, not only affecting their photosynthetic

performance, but also influencing cell density. Vacuole

dimensions and its solute composition along with the silicification

degree are among possible ways to modulate cell density (Lavoie

and Raven, 2020; Xu et al., 2021). Nevertheless, direct findings

assessing the light role on diatom Si deposition are still

controversial: according to some authors, light deficiency

enhances Si deposition in frustules (Xu et al., 2021), while other

authors suggest that the latter is directly related to the increase in

light intensity (Su et al., 2018).

New insights into the fascinating diversity of diatoms also

confirmed that very small and scarcely silicified diatoms

(Minidiscus sp., Leblanc et al., 2018) are able to rapidly sink out:

their impact on Si and C exports to the bottom of the oceans is

significant even though their small size and biomineralization do

not classify them as good sinkers. These new observations open a lot

of questions on the relation between the huge diatom diversity in

size and silicification, and their contribution to the C and Si cycles

(Tréguer et al., 2018).

By altering diatom spatial distribution, sinking/buoyancy affects

the cell access to light and nutrients (Smayda, 1970; Margaref, 1978;

Falciatore et al., 2000). Among the cellular mechanisms involved in

buoyancy control (Waite et al., 1992; Raven and Doblin, 2014;

Lavoie et al., 2016; Arrieta et al., 2020; Lavoie and Raven, 2020), new

insights reveal the existence of an unsteady sinking behavior in

which cells vary the sinking speed over more than an order of
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magnitude repeatedly within tens of seconds, in response to

physiological and environmental conditions (Gemmell et al.,

2016; Du Clos et al., 2019; Du Clos et al., 2021). These results

evidence the fact that diatoms can take advantage of patchy

distributions of nutrients and/or escape from predators by

controlling buoyancy over short time scales (Raven and Waite,

2004; Du Clos et al., 2021).

The aim of this work was to investigate how diatom sinking

capacity depends on morphological diversity, silicification, and light

as factors governing vertical movements: the integrative effects of

factors commonly treated in isolation have been addressed. To

achieve this purpose, four distinct diatoms in terms of size, shape,

and silicification (Chaetoceros muelleri, Conticribra weissflogii,

Phaeodactylum tricornutum, and Cylindrotheca fusiformis) were

acclimated to different light conditions (15, 60, and 180 μmol

photons·m−2 s−1). Diatom physiological performance in terms of

growth, change in morphology, photosynthetic efficiency, and

inorganic composition was investigated. In order to directly assess

the in vivo sinking capacity of diatoms, dynamic light scattering

(Berne and Pecora, 1976) was here exploited for the first time to our

knowledge. Cell size distribution in solution was also confirmed by

means of this physical technique (Andreozzi et al., 2019).
2 Materials and methods

2.1 Algal cultures

Cultures of morphologically distinct diatom species were

established in 250-ml flasks filled with 100 ml of AMCONA

medium (Fanesi et al., 2014), and maintained in a culture

chamber at 18°C, illuminated with cool white fluorescent lamps

(OSRAM Lumilux 36W/8401) at 12:12 h light–dark cycles. The

centric species selected for the experiments were C. muelleri (CCAP

1010/3, https://www.ccap.ac.uk/) and C. weissflogii (DCG 0320,

https://bccm.belspo.be/about-us/bccm-dcg), while C. fusiformis

(NEPCC417) and P. tricornutum (DCG 0981) were chosen

among the raphid pennate species. Diatoms were acclimated for

at least 10 generations to three different light intensities (15, 60, and

180 μmol photons·m−2 s−1). All measurements were performed

during the late exponential phase from batch cultures.
2.2 Specific growth rate, cell volume, and
dry weight

Cell number and cell volume were measured using a CASY TT

cell counter (Innovatis AG, Reutlingen, Germany) as described in

Petrucciani et al. (2022b). Specific growth rates, mmax, were derived

from a non-linear regression of the daily measured cell density,

carried out on a minimum of three distinct cultures for each
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treatment. The model used was b-function (Yin et al., 2003), where

N represents the algal density, Cm is the maximum cell density

growth rate in the linear phase, tm is the inflection point at which

the growth rate reaches its maximum, tb is the reference time for the

beginning of the growth process, and te is the time at which the

growth ends. The best-fitting method for each biological replica was

related to the highest coefficient of determination (r2).

dN
dt

=  Cm(
te − t
te − tm

)(
t − tb
tm − tb

)
tm−tb
te−tm   (1)

mmax =
Cm

N(tm)
(2)

Therefore, Cm value was used to obtain mmax following Eq. 2,

where N(tm) represents the density of cells achieved at time tm.

Diatoms collected during the exponential phase were put in pre-

weighted tubes and dried at 80°C till a stable cellular dry weight is

attained. All measurements were carried out on samples from three

distinct cultures.
2.3 Quantification of silicon

The cellular content of Si was measured in diatoms collected

during the exponential phase using a total reflection x-ray

fluorescence spectrometer (S2 Picofox, Bruker AXS Microanalysis

GmbH, Berlin, Germany), as reported in Petrucciani et al. (2022b).

Spectral deconvolution and quantification of elemental abundances

were performed by the SPECTRA 6.1 software (Bruker AXS

Microanalysis GmbH, Berlin, Germany).
2.4 Sinking capacity

Dynamic light scattering (DLS) measurements were carried out

using a Malvern Zetasizer PRO system in backscattering mode, with

temperature controlled at 25°C. All studies were performed at a 173°

scattering angle, and short time measurements were carried out, with

consecutive measurements for each sample. The diatom solution

system is illuminated by laser light, and the scattered radiation is

detected as a function of time. Because micro- and nanometer-sized

particles undergo continuous Brownian motion in solution, the

amplitude of the scattered field continuously evolves over time.

The detected intensity autocorrelation function can be related to the

translational diffusion coefficient D, which is related to the

hydrodynamic size of the system dispersed in solution. Hence, DLS

measures the time dependence of scattering intensity, which provides

the hydrodynamic size of the sphere with equivalent diffusion

coefficient. The sensitivity of DLS to the larger particles can allow

detection of aggregates, and this sensitivity can prevent detection of

smaller particles, too. However, if the sample is monodispersed enough

and no aggregation phenomenon appears, both the size and the

concentration of nanoparticles can be obtained. A similar approach

has been applied in the past (Vysotskii et al., 2009; Minelli et al., 2019;

Austin et al., 2020) to obtain absolute nanoparticle concentration. In

the solutions of diatoms investigated, a precipitate appeared after
Frontiers in Plant Science 03
several hours; it follows that the counts monitored by the DLS

system could reveal the rate of precipitation and, hence, a

sedimentation rate. To optimize the measurements, several trials

were performed with different diatom nominal concentrations, in

order to obtain the best reproducibility in the observation of changes

of counts during measurements. We optimized and then fixed the

attenuator in order to monitor the counts without any verifiable filter.

For all measured samples, and for each investigated time, data

represented the average of at least five different autocorrelation

functions. Cells were sampled during the exponential phase, diluted

to obtain approximately 5 × 105 cells in 1 ml of culturing medium, and

loaded into a 1 cm path quartz cuvette.

The autocorrelation functions, which provided particle size

distributions in good agreement with microscopy information, were

checked. During the investigated time, form changes of autocorrelation

functions were not evident. On the other side, data corresponding to

the photon counts on the detector decreased as a function of time, as

reported in Figure 1. Values of scattering intensity I(t), expressed as

revealed counts as a function of time t, were fitted by a simple

exponential function describing sedimentation I(t) = I0e
− t
t + b,

where I0 is the number of counts at starting time (t = 0), t is a

constant responsible for diatom sedimentation rate, and b is a

background. The obtained t values are related to diatom

sedimentation rates, obtained for three biological replicas.
2.5 Morphological characterization

Diatoms collected during the exponential phase were analyzed with

the imaging flow cytometer (IFC) FlowSight® (Amnis Corp., Seattle,

WA) using the INSPIRE software package (Amnis Corp.) to assess

morphological characteristics. A volume of 10 ml of culture was

analyzed within 24 h after sampling. IFC data of more than 50,000

objects present in the samples were saved. Details and settings for the

IFC data acquisition were as follows: 10 μm core size diameter,

132 mm/s speed, and 20× magnification; bright field data were
FIGURE 1

Photon counts as revealed by DLS as a function of time of living
cells of P. tricornutum—grown at 60 µmol photons·m−2 s−1 in their
growth medium.
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collected in channel 1 (LED intensity 35.46 mW), and chloroplast

autofluorescence data were collected in channel 5 (642 nm, laser 2

mW). Post-acquisition data analysis was performed using the IDEAS

software package following the procedure illustrated in Petrucciani

et al. (2022a). The morphological features considered for the analysis of

centric species were height, width, area, circularity, diameter, perimeter

(quantification of cell circumference), and compactness (degree of how

objects are packed together) (IDEAS User Manual, version 6.0, March

2013). For the pennate species, height, width, area, length,

elongatedness, perimeter, and compactness were considered. Output

numbers refer to the average value of the cited features and are

calculated on at least 50,000 cells for each biological replica; they are

then used for further statistical analysis.
2.6 Frustule characterization

Diatom frustules of C. muelleriwere obtained through oxidation of

the organic material using HCl-KMnO4 (modified from Friedrichs

et al., 2012). Salts of the culture medium were washed three times with

deionized water and then 1.5 ml of a supersaturated solution of

KMnO4 was added to 1.5 ml of cell suspension. The final solution

was incubated overnight at room temperature. A volume of 3 ml of

HCl was slowly added to the suspension and then samples were moved

to a warming bath at 100°C for 40 min. Finally, the material was

washed four times with deionized water to carefully remove the acidic

solution. Stubs for SEM observation and analysis were prepared as

described in Petrucciani et al. (2022b). Pictures were taken with

different orders of magnitude to also obtain morphometrical

measurements of frustule details (setae and punctae in C. muelleri,

Reinke, 1984).
2.7 Carbon and nitrogen analysis

Cellular C and N contents were determined in exponentially

growing cells using an elemental analyzer (ECS 4010, Costech Italy)

connected to the ID Micro EA isotope ratio mass spectrometer

(Compact Science Systems, LymedaleBusiness Centre, Newcastle-

Under-Lyme, United Kingdom) to obtain C and N stable isotope

(d13C and d15N) ratios as reported in Petrucciani et al. (2022b). Data

acquisition and analysis were performed with the software EA IsoDelta

(Compact Science Systems, LymedaleBusiness Centre, Newcastle-

Under-Lyme, United Kingdom). All the measurements were carried

out on three biological replicas.
2.8 Statistical analysis

One-way analysis of variance (ANOVA), followed by Tukey’s post-

hoc test, was used to test significant differences among the means of

growth rates in three different growing light (independent variable).

Two-tailed t-test was used to compare dependent variables between

two different growing lights (independent variable). Tests were

performed with GraphPad prism 8.0.2.263 (GraphPad Software, San

Diego, CA, USA) with a level of significance set at 0.05.
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Principal component analysis (PCA) was done using PAST

4.03 (Hammer et al., 2001; PAST: Paleontological statistics

software package for education and data analysis). Average

values of the different morphological features of single cells

obtained through IFC analysis were used as dependent variables

for PCA; the distinct species and the different light intensities

were used as independent variables. Data were normalized using

z-values ((n-mean)/SD). All the results of the statistical analysis

are presented in Supplementary Table 4.
3 Results

3.1 Growth analysis

Data presented in Figure 2 and Table 1 detail the growth of the

four diatoms acclimated to increasing light intensities (15, 60, and

180 mmol photons·m−2 s−1). Growth of C. muelleri, C. weissflogii,

and P. tricornutum was significantly limited by the lowest light

intensity (15 mmol photons·m−2 s−1, Table 1). On the other hand,

the growth rate of C. fusiformis was similar among the three

conditions, even though the number of cells reached by C.

fusiformis grown at 15 mmol photons·m−2 s−1 was half the ones

observed in the other two conditions (Figure 2). To address the aim

of this work and to avoid the effect of growth limitation on diatom

sinking behavior, further investigation focuses on cells acclimated

to 60 and 180 mmol photons·m−2 s−1.
3.2 Silicon quantification per biovolume

Si content per biovolume in the four morphologically distinct

diatoms, acclimated to different light intensities, is pictured in

Figure 3. The centric diatom C. muelleri was the only species

characterized by a notably higher Si content in response to a

higher light intensity, while intracellular Si abundance did not

significantly change in the other species.Carbon and nitrogen

The analysis of the elemental quotas per dry weight in the four

diatoms acclimated to different light intensities (Table 2) revealed

no significant change in terms of %C and %N, while C. weissflogii

showed a lower C/N ratio when grown at lower light intensity.

Despite no change in content of the two elements, significant

differences were observed in C and N stable isotopic fractionation

(Figure 4); centric diatoms showed a less negative d13C when

acclimated to higher light intensity, especially in C. muelleri.

Nevertheless, in pennate diatoms, no difference was observed. On

the other hand, all the species showed a significant increase in d15N
value when acclimated to higher light intensity.
3.3 Morphological characterization

Morphological features of centric diatoms (circularity, area, width,

height, perimeter, diameter, and compactness) are presented by PCA

(Figure 5). In C. muelleri, PC1 + PC2 explained 91.96% of the total

variation contained in the data matrix with PC1 accounting for 66.57%
frontiersin.org
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and PC2 accounting for 25.38%. Cells acclimated to different light

intensities were differentiated according to PC1, indicating a change in

width and perimeter. In C. weissflogii, PCA explained 88.99% of the

total variation (65.04% + 23.94%, PC1 + PC2) and highlighted a slight

change in height according to PC1 in cells acclimated to different

growth lights.

To complete morphological characterization of the setae

bearing diatom, frustules of C. muelleri were also characterized by

scanning electron microscopy. No significant change was observed

in response to light (Figure 6).

Morphological characterization of pennate diatoms through

PCA (elongatedness, area, width, height, perimeter, length, and

compactness) is pictured in Figure 7. In P. tricornutum, 95.43% of
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the total variance was explained by PC1 + PC2; the weight of PC1

was 64.72%, while that of PC2 was 30.71%. PCA did not show a net

division between cells acclimated to different lights for this species.

In C. fusiformis, PCA explained 92.17% of the total variance (PC1,

74.65% and PC2, 17.52%). Cells acclimated to different light

intensities were separated according to both PC1 and PC2,

indicating a change in width and area.
3.4 Sinking capacity

Sinking measurements highlighted a direct relation between the

light intensity used to grow diatoms and the buoyancy: in particular, in
TABLE 1 Average ± SD of specific growth rate (mmax) in the four diatoms acclimated to different growth lights (n ≥ 3).

Growth Light (mmol photons·m−2·s−1)

15 60 180

Growth rate
(mmax, day

−1)

C. muelleri 0.22 ± 0.01a 0.53 ± 0.03b 0.55 ± 0.06b

C. weissflogii 0.23 ± 0.03a 0.63 ± 0.04b 0.63 ± 0.03 b

P. tricornutum 0.240 ± 0.003a 0.306 ± 0.005b 0.310 ± 0.001b

C. fusiformis 0.26 ± 0.03 0.24 ± 0.02 0.23 ± 0.01
Letters indicate significant difference among conditions in the same species (p > 0.05).
FIGURE 2

Growth curves of the four diatoms acclimated to different light intensities. Data are means of three biological replicas. Error bars show SD (when
not evident, error bars are inside experimental points size). Dashed lines represent the results of the b-function model for each experimental
condition (Eq. 1).
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all the species, the fitted value of the parameter t was significantly

higher when growth light was higher, as compared to the parameter in

low light growing cells; the difference was more evident in the centric

species (Figure 8A). Because the t parameter is related to the necessary

time to sink, clearly related to chemical physical properties of each

particular diatom, it is inversely proportional to sedimentation rate.We

considered the recent results obtained by Hamano et al. (2021), where

four different diatom species’ experimental velocity rates had been

estimated by a sophisticated homemade optical microscope system. In

particular, they investigated the sinking rate of P. tricornutum

irradiated with a white fluorescent lamp of 85 μmol photons·m−2 s−1

for 12 h every day, which we assimilated to our P. tricornutum grown

with the irradiation of 60 μmol photons·m−2 s−1. Because the

sedimentation rate has to be inversely proportional to the t
Frontiers in Plant Science 06
parameter, a numerical coefficient was calculated correlating P.

tricornutum vertical velocity obtained by Hamano et al. (2021) to the

estimated t for the same species at the lower irradiation (details are

reported in the caption of Table S3). Consequently, sedimentation rates

are reported in Table S3. By plotting t values and the relative Si

contents per biovolume (Figure 8B), at low light, the higher was the

silicification, the lower was the t parameter, contrary to what observed

for other measured parameters (Figure S3). When the energy given to

cells was higher, the trend was partially lost.
4 Discussion

Buoyancy and buoyancy control are crucial to vertical movements:

they allow a rapid escape from predators and provide a way to retrieve

essential resources such as light and nutrients (Raven and Waite, 2004;

Gemmell et al., 2016; Lavoie and Raven 2020; Du Clos et al., 2021;

Petrucciani et al., 2022a). Shape, size, and silicification have been deeply

investigated as factors affecting diatom ability to move in the water

column. The closer the cell geometry is to the elongated shape, the

slower the sinking rate is observed (Durante et al., 2019). Shape being

equal, silicification and size drive cell density and hence the diatom

sinking rate (Raven and Waite, 2004). Furthermore, it has been

observed that diatoms’ sinking rate depends on light availability

(Bienfang, 1981; Bienfang et al., 1983), which can then be ascribed

among the factors regulating cell density (Gemmell et al., 2016).
4.1 Morphology and silicification
affecting buoyancy

According to results, silicification was the major driver affecting

buoyancy as compared to size, shape and weight: indeed, frustule

density expressed as Si content per volume was inversely related to
TABLE 2 Elemental C and N quotas and C-to-N ratio of the four diatoms acclimated to different growth lights.

Growth Light (mmol photons·m−2·s−1)

60 180

% Carbon

C. muelleri 37.6 ± 0.8 36 ± 2

C. weissflogii 46 ± 1 43 ± 4

P. tricornutum 54 ± 2 54.9 ± 0.6

C. fusiformis 52 ± 2 53 ± 2

% Nitrogen

C. muelleri 5.1 ± 0.6 5.8 ± 0.4

C. weissflogii 6.4 ± 0.5 6.8 ± 0.3

P. tricornutum 6.9 ± 0.2 6.85 ± 0.09

C. fusiformis 7.5 ± 0.2 7.2 ± 0.4

C/N

C. muelleri 6.4 ± 0.3 7.3 ± 0.6

C. weissflogii* 6.3 ± 0.3 7.3 ± 0.4

P. tricornutum 7.8 ± 0.2 8.0 ± 0.1

C. fusiformis 6.9 ± 0.2 7.3 ± 0.2
Data are means of three biological replicas ± SD. Asterisks represent significant differences between conditions in the same species (p < 0.05).
FIGURE 3

Si content per volume unit (fg·µm−3) in the four diatoms acclimated
to different growth lights. Data are means of at least three biological
replicas. Error bars show SD. Letters represent significant differences
between light conditions in the same species (p < 0.05).
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the sedimentation time (Figure 8B). The same relation was not

observed in the case of Si content per cell, dry weight, and cellular

volume (Figure S3). Indeed, C. fusiformis was the most silicified

species per unit volume (Figure 3) among the experimental ones,

and it was the fastest to sink down even though not the biggest or
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the heaviest. Moreover, this species is known to secrete extracellular

polymeric substances (EPS) to assist in surface attachment,

providing adhesion and aggregation among cells (Tong and

Derek, 2021) and contributing to rapid sinking rate (Ploug and

Grossart, 2000; Lavoie et al., 2016; Laurenceau-Cornec et al., 2020).

Our experimental data confirmed that elongated shape favors

cell floating as proposed by Durante et al. (2019): the sedimentation

time of the pennate P. tricornutum was significantly higher than the

time of the centric C. muelleri, despite a similar cell volume

(Figures 8A, S3 and Table S3). On the other hand, distantly sized

diatoms (C. muelleri and C. weissflogii) with the same geometry

showed a similar sedimentation time, confirming that there is no

obligate relation between cell morphology and sinking rate for

metabolically active cells (Figure S3) (Waite et al., 1997; Gemmell

et al., 2016). The response pattern observed changed according to

light intensity (Figure 8B), suggesting that the higher energy

availability to high-light-grown cells altered the major role of

silicification in controlling buoyancy.

Direct observation of sinking capacity in diatoms was carried out

for the first time through DLS analysis, allowing a continuous record of

cells’ sedimentation from the top section without perturbing the water

column.We underline that the results presented here are the average of

at least three replicas and further measurements were performed at

higher diatom concentrations, providing the same t parameters. Given

the importance to directly assess sinking capacity in phytoplankton,

numerous efforts were made to figure out a suitable method (Walsby

and Holland, 2006 and reference therein; Gemmell et al., 2016; Bannon

and Campbell, 2017; Hamano et al., 2021); the present study confirms

the feasibility of using DLS to achieve this purpose.
4.2 Light-dependent buoyancy control

In this study, the two light conditions applied in the sinking

experiments (60 and 180 mmol photons·m−2 s−1) were not limiting

growth (Figure 2 and Table 1): in fact, growth was limited at 15
FIGURE 5

PCA on morphological characteristics of centric diatoms (C. muelleri and C. weissflogii). Different symbols indicate different growth lights:
□ 60 µmol photons·m−2·s−1 ● 180 µmol photons·m−2·s−1. Images representing cells acclimated to different light intensities and located close to the
respective cluster were obtained by FlowSight® (Amnis Corp., Seattle, WA), merging the bright field, collected in channel 1, and red chloroplast
autofluorescence in channel 5 (details in the Morphological characterization section under Materials and Methods).
FIGURE 4

d13C and d15N values in the four diatoms acclimated to different
growth lights. Data are means of three biological replicas. Error bars
show SD. Asterisks represent significant differences between
conditions in the same species (*p < 0.05, ***p < 0.0001,
****p < 0.00001).
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mmol photons m−2 s−1. In addition, the highest experimental light

was not photo-damaging since the growth rate and photosynthetic

efficiency of cells acclimated to 180 mmol·photons m−2 s−1 were

similar to those of cells acclimated to 60 mmol·photons m−2 s−1,

respectively (Conn et al., 2004; Figures S1, S2). Therefore, the

greater time required to sink (i.e., enhanced floating capacity),

which was observed in high-light-acclimated cells, was not a way

to move towards optimal irradiance (and besides, not even a way to

escape from excess irradiance) (Figure 8A and Table S3). Moreover,

buoyancy was independent of the Si content, suggesting the

existence of a control at the cellular level, which was regulated by

light and not by silicification (Figures 3, 8).

A higher light availability means a higher energy availability to

cells, which can be converted into metabolic energy via
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photosynthesis and activates energy-dependent mechanisms, also

enhancing diatom floating (Waite et al., 1997; Lavoie and Raven,

2020; Du Clos et al., 2021) as we observed (Figure 8).

Cell growth, C and N quotas, and cellular volume of all the

species were not affected by the light variation (Table 2). Overall, we

did not record a drastic morphological change that could explain a

change in sedimentation rate (Figures 5, 7 and Table S1). Also,

frustules did not show significant changes in ultrastructure

(Figure 6). None of these parameters thus suggest/explain which

mechanisms could be involved in buoyancy control except for the

observed isotopic fractionation. In fact, d13C values were affected by

light in centric diatoms, which showed a higher difference in t
values in response to light intensity (Figure 4). A change in C

fractionation could be due to a shift in inorganic C source (Vuorio
FIGURE 7

PCA on morphological characteristics of pennate diatoms (P. tricornutum and C. fusiformis). Different symbols indicate different growth lights:
D 60 µmol photons·m−2·s−1 ▲ 180 µmol photons·m−2·s−1. Images representing cells acclimated to different light intensities and located close to the
respective cluster were obtained by FlowSight® (Amnis Corp., Seattle, WA), merging the bright field, collected in channel 1, and red chloroplast
autofluorescence in channel 5 (details in the Morphological characterization section under Materials and Methods).
D
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FIGURE 6

SEM images of centric diatoms (C. muelleri) frustules acclimated to 60 mmol photons·m−2·s−1 (A) and 180 µmol photons·m−2·s−1 (D) conditions.
Details of C. muelleri setae at 60 µmol photons·m−2·s−1 (B) and 180 µmol photons·m−2·s−1 (C) are shown and mean values ± SD (n >10) are
presented in (E).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1143998
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Petrucciani et al. 10.3389/fpls.2023.1143998
et al., 2006); in particular, higher light intensity led to decreased

fractionation and therefore an increased use of HCO3
− occurred

during photosynthesis. A CO2 concentrating mechanism was

therefore activated when more energy was available (Riebesell

et al., 2000; Giordano et al., 2005; Petrucciani et al., 2022b).

Moreover, all diatom species decreased N fractionation in

response to higher light intensity (Figure 4), suggesting that the

higher supply of energy provided more reducing power, which, in

turn, was exploited in the assimilation of more costly N species

(Needoba et al., 2003; Needoba and Harrison, 2004). Since the

presence of the cited processes is consistent with a change in

photosynthesis-to-photorespiration ratio (Giordano et al., 2005),

we cannot exclude the fact that gas release may play a role in

controlling sinking rate/floating capacity.

According to literature, other energy-dependent mechanisms

active in diatoms that control buoyancy are possibly the modulation

of vacuolar solution density and a variable fraction of the cell

volume occupied by the vacuole (Lavoie and Raven, 2020 and

references therein). The density of the frustule in diatoms is indeed

countered by the presence of vacuoles, whose density is supposed to

be rapidly modulated in three ways: (i) high-frequency modulation

of Na+ and K+ permeability by selective ion transport; (ii) metabolic

interconversion of low-density cations and high-density organic

cations; and (iii) fast cyclical changes in the cell expansion rate (i.e.,

active water transport and cytoskeletal motors) (Raven and Doblin,

2014; Lavoie and Raven, 2020). The last one is the most

energetically convenient according to Lavoie and Raven (2020).

Our data that showed a small morphological change in cell height

and area (Figures 5, 7) and did not record a change in K+ cell

content between cells acclimated to low and high light intensity

(Table S2) support the third strategy.

In conclusion, the direct observation of diatom sinking behavior

has elucidated how each of the addressed factors, commonly
Frontiers in Plant Science 09
investigated individualistically, is involved in buoyancy and in its

control relatively to the others. When considering diatom

biodiversity, silicification controls the sinking rate more than

morphology and a light-driven response. When energy is more

available though, buoyancy is tuned by cell metabolism as strongly

observed in C. muelleri showing a lower sinking rate despite

enhanced frustule deposition.
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