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In the process of climate warming, drought has increased the vulnerability of

ecosystems. Due to the extreme sensitivity of grasslands to drought, grassland

drought stress vulnerability assessment has become a current issue to be

addressed. First, correlation analysis was used to determine the characteristics

of the normalized precipitation evapotranspiration index (SPEI) response of the

grassland normalized difference vegetation index (NDVI) to multiscale drought

stress (SPEI-1 ~ SPEI-24) in the study area. Then, the response of grassland

vegetation to drought stress at different growth periods was modeled using

conjugate function analysis. Conditional probabilities were used to explore the

probability of NDVI decline to the lower percentile in grasslands under different

levels of drought stress (moderate, severe and extreme drought) and to further

analyze the differences in drought vulnerability across climate zones and

grassland types. Finally, the main influencing factors of drought stress in

grassland at different periods were identified. The results of the study showed

that the spatial pattern of drought response time of grassland in Xinjiang had

obvious seasonality, with an increasing trend from January to March and

November to December in the nongrowing season and a decreasing trend

from June to October in the growing season. August was the most vulnerable

period for grassland drought stress, with the highest probability of grassland loss.

When the grasslands experience a certain degree of loss, they develop strategies

to mitigate the effects of drought stress, thereby decreasing the probability of

falling into the lower percentile. Among them, the highest probability of drought

vulnerability was found in semiarid grasslands, as well as in plains grasslands and

alpine subalpine grasslands. In addition, the primary drivers of April and August

were temperature, whereas for September, the most significant influencing

factor was evapotranspiration. The results of the study will not only deepen

our understanding of the dynamics of drought stress in grasslands under climate

change but also provide a scientific basis for the management of grassland

ecosystems in response to drought and the allocation of water in the future.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1143863/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1143863/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1143863/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1143863&domain=pdf&date_stamp=2023-03-16
mailto:zheng_jianghua@126.com
https://doi.org/10.3389/fpls.2023.1143863
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1143863
https://www.frontiersin.org/journals/plant-science


Han et al. 10.3389/fpls.2023.1143863
1 Introduction

Climate change is exacerbating current drought conditions

(intensity, frequency and duration) around the world, and climate

models predict that droughts will not abate and are likely to increase

in the coming decades (Lu et al., 2019; Wu et al., 2022). Frequent

drought events are often accompanied by persistent or extreme

heat, leading to decreased soil moisture and increased

evapotranspiration. If vegetation is affected by prolonged drought,

several aspects of its growth and development (e.g., seed

germination, respiration, photosynthesis, nutrient cycling) are

restricted (Mohammat et al., 2013), and vegetation may brown

(Li et al., 2022), decrease in biomass (Chen et al., 2022), or even die

(Castellaneta et al., 2022). Vegetation response to drought is

characterized by reduced vigor and photosynthesis, resulting in a

decrease in the carbon sink capacity of vegetation. For more

sensitive grasslands, extreme or persistent drought makes it

difficult to recover from wilting or death, and dead vegetation is

converted to a carbon source (Piao et al., 2019), which could have a

negative impact on the global carbon cycle, as grasslands play an

important role in the global vegetation carbon pool. Conversely,

reductions in carbon sinks and increases in carbon sources have an

impact on climate and the carbon cycle, which in turn further

exacerbate drought (Reichstein et al., 2013). Vulnerability

assessments of grassland drought stress under climate change

have become a high-profile concern (Li et al., 2022; Zeng et al.,

2022). Quantifying the response of grassland vegetation to drought

stress and identifying the areas most vulnerable to drought, as well

as the types of grassland that respond most strongly to drought, are

therefore critical to improving our understanding of the

vulnerability of grasslands to climate change and taking

appropriate measures to mitigate the effects of drought.

Previous quantitative studies of drought have mostly used

drought indices, which quantify accumulated moisture

information and easily derive drought intensity, frequency and

duration to analyze the extent of its impacts (Fang et al., 2019c).

Scholars have developed different drought indices based on the

research subjects and their drought characteristics. Common

drought indices include the standardized precipitation index (SPI)

(McKee et al., 1993) and the standardized precipitation

evapotranspiration index (SPEI) (Vicente-Serrano et al., 2010),

which are mainly used to study meteorological drought; the

Palmer drought severity index (PDSI) (Palmer, 1965), the crop

moisture index (CMI) (Palmer, 1968), and the crop water stress

index (CWSI) (Jackson et al., 1988), which are mainly used to study

agricultural drought; and the streamflow drought index (SDI)

(Nalbantis and Tsakiris, 2009) and standardized runoff index

(SRI) (Shukla and Wood, 2008), which are mainly used to study

hydrological drought. Among them, the SPI is widely used because

of its simple calculation and low data requirements (only

precipitation data are needed) (Dutta et al., 2015; Wang et al.,

2021; Yerdelen et al., 2021; Won et al., 2022), but it lacks

consideration of atmospheric evaporation (evapotranspiration),

which is an important factor that must be considered in the

context of gradually increasing global temperatures (Fang et al.,
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2019c). Vegetation is sensitive to changes in water balance

(precipitation minus reference evapotranspiration), especially in

arid regions (Beer et al., 2007). Therefore, the inclusion of

evapotranspiration as an important factor in drought and

vegetation research could provide a more accurate picture of the

relationship between drought and vegetation conditions.

The normalized difference vegetation index (NDVI) is used to

describe and conduct terrestrial vegetation condition assessments

due to its ease of accessibility at different spatial and temporal

resolutions and its advantage of eliminating noise caused by solar

angle, topographic illumination, cloud cover and atmospheric

conditions, and the NDVI is widely used in studies related to

grasslands, forests and agricultural lands (Estel et al., 2015;

Kowalski et al., 2022; Wang et al., 2022; Xun et al., 2022).

Previously, the response of vegetation to drought was expressed

as a correlation between the NDVI and drought index,

demonstrating that there is a good correlation between the NDVI,

which represents vegetation, and a drought index, which represents

moisture conditions, and that there is a significant effect of drought

occurrence on vegetation. Among them, GIMMS NDVI has the

disadvantage of low resolution and easy saturation compared with

other satellite sensors (Sentinel, Landsat and SPOT, etc.) and

vegetation indices (EVI, DVI and SAVI, etc.). However, when

considering the effects of arid vegetation under climate change,

data with long time series are needed to support accuracy, and

GIMMS performs best in the AVHRR-derived NDVI dataset for

temporal changes. Therefore, the GIMMS NDVI is favored

by scholars.

Studies on vegetation response to drought have been conducted

globally (Ji and Peters, 2003; Xu et al., 2016). Vegetation in arid and

semiarid regions with longer sunshine duration is more susceptible to

drought (Gouveia et al., 2017) than that in humid regions with a

positive water balance (Zhang et al., 2017). The drivers of vegetation

drought are also of scientific interest to scholars, and the main

influences may vary with the growing season. In addition, the

topography (elevation, slope and slope direction) affects the aridity

pattern of the vegetation, as it directly influences the temperature and

solar radiation in the region. It is noteworthy that grasslands respond

more strongly to drought than do other vegetation types, and there

may be differences in responses between grassland types (Huang et al.,

2021; Bu et al., 2022). The response of grasslands to drought also

changes in response to changing climatic conditions (Wellstein et al.,

2017; Liu et al., 2019; Zhang et al., 2020). Regarding vegetation, there is

a need to pay more attention to the growing season (seasonal time) of

grassland vegetation (Zhang and Liu, 2014; Mina et al., 2016), as this is

the most severe phase of vegetation drought stress (Ji and Peters, 2003).

The grassland vegetation response to drought is not instantaneous but

is caused by a cumulative water deficit over time, as reflected in the

response time of vegetation to drought (lag effect) (Zhao et al., 2020;

Zhang et al., 2022). When faced with prolonged drought, grasses also

adopt different strategies to adapt to water scarcity, such as closing

stomata (Li and Liu, 2022), evolving stronger roots, and even having

drought memory (Yao et al., 2022). Among them, photosynthesis of

vegetation is the most important link, which regulates its own growth

and development to adapt to drought. In addition, vegetation can
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maintain its health and growth by regulating stomatal conductance

when it faces water deficits or water surpluses. Recently, the copula

approach was used to determine the dependence of vegetation on

water, providing scholars with an effective tool to address the

vulnerability of vegetation at the onset of drought (Bento et al., 2018;

Fang et al., 2019c). Xinjiang is a typical arid and semiarid region, and as

the core economic zone of the Silk Road in China, it has experienced 26

severe and above droughts between only 1961 and 2000, and the

increased warming and reduced precipitation have increased the local

evapotranspiration (ET0), intensifying local drought and vegetation.

The ecosystem is vulnerable to the effects of drought and heat (Yao

et al., 2018; Yao et al., 2019). Grasslands are widely distributed in

Xinjiang, accounting for 86% of the vegetation, and play an important

role in climate regulation, soil and water conservation, wind and sand

control, biodiversity conservation, and carbon cycling (Du et al., 2022).

Therefore, it is necessary to assess the drought vulnerability of

grasslands in Xinjiang and to elucidate the heterogeneity among

different climatic regions and grassland types. However, previous

studies on drought in Xinjiang have been limited to deterministic

assessments of drought impacts, focusing on vegetation growth and

drought conditions or drought response rates. There are still gaps in

assessing grassland losses under different levels of drought stress. In

addition, there are knowledge gaps in analyzing the probabilistic

response of grassland loss under drought stress from the perspective

of different climatic zones and grassland types.

To this end, the aim of this study was to further quantify the

dynamic response of grasslands to drought stress. The objectives

were to (1) determine the scale of grassland NDVI (grassland

growth state) response to changes in the SPEI (multiscale drought

stress) during different growth periods through correlation analysis;
Frontiers in Plant Science 03
(2) clarify the probabilistic differences in response to drought stress

among different climatic regions and grassland types after

estimating the probability of occurrence of grassland below

normal status under three drought scenarios (moderate, severe

and extreme) based on the established copula conditional

probability distributions; and (3) analyze the main influencing

factors of drought stress in grassland at different periods. The

results of the study can improve our understanding of grassland

vulnerability under climate change and help decision-makers

understand vulnerable grassland areas under different drought

scenarios from a probabilistic perspective, which is important for

reducing the pressure on grasslands in arid regions.
2 Material and methods

2.1 Study area

Xinjiang is located in northwestern China (73°40′-96°23′E, 34°25′-49°
10′N), deep in the Eurasian continent, accounting for one-sixth of the

national territory, and it is the largest provincial administrative division in

China (Figure 1). The geomorphology is characterized by a closed system

of “three mountains sandwiched by two basins adjacent to each other”

(Figure 1C). The two basins are the Junggar Basin in the north and the

TarimBasin in the south, and themountains are the AltaiMountain range

in the north, the Kunlun Mountains in the south, and the Tianshan

Mountains, which divide Xinjiang into the north and south (Guli et al.,

2015). Xinjiang is a typical arid region with 2550-3500 hours of annual

sunshine per year (He et al., 2021), an annual precipitation of 100-200mm

and a potential evaporation of 2000-3400 mm per year (Liu et al., 2018).
A B

DC

FIGURE 1

(A) Location map of Xinjiang, China, (B) grassland types, (C) topographic attributes, and (D) classification of climatic regions.
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Grassland is distributed mainly at the edge of mountains and basins, with

the Altai, Tianshan and Kunlun Mountains being the most

obvious (Figure 1B).
2.2 Normalized difference vegetation index
and grassland type

The NDVI data were from the NASA Ames Ecological

Forecasting Lab (https://ecocast.arc.nasa.gov/) GIMMS-NDVI for

the period 1982-2015 with a spatial and temporal resolution of 1/

12° (~8 km) and 15 d and the NASA Distributed Active Archive

Center for Terrestrial Processes (https://pdaac.usgs.gov/) for the

period 2000-2020 for MODIS-NDVI with a spatial and temporal

resolution of 0.05° and 1 month. The data were adopted due to the

good linear correlation between the two data sources (Li et al.,

2017). The GIMMS-NDVI was first synthesized into maximums

and then into a monthly scale NDVI, thus reducing the effects of

atmospheric and aerosol scattering (HOLBEN, 1986). Finally,

MODIS-NDVI was resampled to the same resolution as GIMMS-

NDVI, and a pixel one-dimensional linear regression model was

developed using overlapping data from 2000-2015 (Xu et al., 2016),

extending the GIMMS-NDVI monthly data from 1982-2015 to

1982-2020 (Guan et al., 2021). Grassland type data were from the

Global Land Cover Data Product 2000 (GLC2000) of the Institute

for Space Applications of the Joint Research Centre of the European

Union. There are 22 land use types (https://forobs.jrc.ec.europa.eu/

products/glc2000/legend.php) with a spatial resolution of 1 km. The

main types of grasslands in Xinjiang are alpine and subalpine

meadows, plain grasslands, desert grasslands, meadows, and

alpine and subalpine grasslands (Figure 1B), and they were

resampled to 1/12° to be in agreement with the NDVI.
2.3 Standardized precipitation
evapotranspiration index

From 1961 to 2020, the National Meteorological Information

Center of the China Meteorological Administration (http://

www.nmic.gov.cn/) provided raw records of daily precipitation

and temperature from 105 weather stations in Xinjiang. Only 92

of these meteorological stations had continuous daily records for

the same period (Figure 1B), and the SPEI was calculated in the R

language and interpolated to 1/12° by the inverse distance

weighting method.

Precipitation minus potential evapotranspiration is defined as

the water balance (D):
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D = P − ET0 (1)

where P and ET0 represent the monthly precipitation and potential

evaporation, respectively. ET0 was calculated using the

Thornthwaite equation (Thornthwaite, 1948) because it is easy to

calculate using less data (only the monthly mean temperature and

latitude are required) and works well (Fang et al., 2018). The SPEI

timescales can reflect different droughts (meteorology, agriculture,

climate change, etc.). Dry and wet states were classified according to

the SPEI classification criteria (Table 1). In this study, the SPEI was

calculated for multiple time scales (1-24 months) (Vicente-Serrano

et al., 2013). The grass reaction time was depicted as the time scale

of the highest SPEI-NDVI correlation in Figures 2, 3 (Zhang

et al., 2022).
2.4 Methods

The response to drought stress in the Xinjiang grassland was

quantified using a copula probabilistic model (Figure 2).

The copula method was used to describe different drought

conditions (different SPEI thresholds) and grassland status

(NDVI values) as a joint distribution to describe the

dependencies between drought and grassland. Subsequently, the

probability of the grassland NDVI declining to the lower percentile

under moderate, severe and extreme drought conditions was

calculated based on the joint distribution.

2.4.1 Joint probability distribution
The dependence of grassland NDVI on different drought levels

was established by the copula function. Assuming that the SPEI and

NDVI are represented by S and N, respectively, and using the

copula function (C), the joint distribution Fs(s,FN(n is expressed as

follows:

P(S⩽ s,N ⩽ n) = FSN (s, n) = C½FS(s), FN (n)� (2)

where Fs(s and FN(n are the cumulative distribution functions

(CDFs) of the SPEI and NDVI, respectively.

In this study, the normal distribution was employed for the

SPEI’s marginal distribution. In previous studies, it was difficult to

achieve a consistent marginal distribution of the NDVI (Wen et al.,

2012; Zhao et al., 2019). Therefore, the Kolmogorov-Smirnov (K-S)

test and the Akaike information criterion (AIC) were used to select

the optimal marginal distribution from the logarithmic, gamma,

log-normal and normal distributions (Yu et al., 2018). Thus, to

model the response of grassland NDVI to drought stress, six copulas

(Joe, Frank, Gumbel, Clayton, Gaussian and student) were selected,
TABLE 1 SPEI wet and dry classification criteria.

Wet and dry
level

Extremely
Wet

Heavy
wet

Moderately
wet

Normal
state

Moderate
drought

Severe
drought

Extreme
drought

SPEI
value

SPEI >
2

1.5 <
SPEI
≤2

1 <
SPEI
≤1.5

−1 <
SPEI
≤1

−1.5 <
SPEI
≤−1

−2 <
SPEI≤
−1.5

SPEI≤
−2
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in which Gaussian and student were able to effectively resolve the

negative correlation that emerged in April (Grimaldi et al., 2016;

Zhou et al., 2018). Then, the optimal connection function was

selected using the maximum likelihood (MLE) method and the

goodness-of-fit test, and the best copula model was screened using

Cramérévon (Fang et al., 2019a).

2.4.2 Condition distribution of the SPEI and NDVI
Statistically, when drought occurs, the probability of grassland

NDVI declining to lower percentiles is denoted as conditional

probability P(S≦̸s,N≦̸n. The joint distribution and drought

classification can be used to derive conditional probability

equations and estimate the grassland NDVI under different

drought levels. In this study, we considered scenarios in which

grassland normalization values were lower than the prescribed

percentage in different degrees of drought (including moderate

drought (-1 < SPEI ≤ -1.5), severe drought (-1.5 < SPEI ≤ -2),

and extreme drought (SPEI < -2), as shown in Eqs. (3), (4) and (5),

respectively:
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P(N < n ∣−1:5 < S⩽−1) =
P( − 1:5 < S⩽−1,N < n)

P( − 1:5 < S⩽−1)

=
FSN ( − 1, n) − FSN ( − 1:5, n)

FS( − 1) − FS( − 1:5)
(3)

P(N < n ∣−2 < S⩽−1:5) =
P( − 2 < S⩽−1:5N < n)

P( − 2 < S⩽−1:5)

=
FSN ( − 1:5, n) − FSN ( − 2, n)

FS( − 1:5) − FS( − 2)
(4)

P(N < n ∣ S⩽−2) =
P(S⩽−2,N < n)

P(S⩽−2)
=
FSN ( − 2, n)
FS( − 2)

(5)

Eqs. (2)-(5) quantify the response of grassland NDVI to changes

in the SPEI. Grassland NDVIs below the 40th, 30th, 20th, and 10th

percentiles for moderate, severe, and extreme drought scenarios

were considered in the study.

It is worth noting that predicting the vulnerability of grasslands

to drought is more meaningful given the specific values of the
FIGURE 2

Copula probability model for the response of Xinjiang grassland to drought stress.
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drought index (P (NDVI < ndvi | SPEI = spei)). In this study, the

probability density function (PDF) formula was as follows

(Mazdiyasni et al., 2017):

fN ∣ S(n ∣ s) = c½fS(s), fN (n)� · fN (n) (6)

where c represents the chosen copula function, and fs and fN
represent the PDF versions of the SPEI and NDVI, respectively.

By calculating the PDF (S = s) under specific drought conditions

according to Eq. (6), the cumulative probability of the grassland

NDVI declining to a specific value (N<n) was derived and denoted

as P(N<n∣S=s.
3 Results

3.1 Spatial pattern of the
SPEI-NDVI correlation

The correlation between the grassland NDVI and SPEI at

different time scales (1-24 months) can determine the response

time of grassland to moisture changes. There is a time lag effect in

the vegetation response to moisture change, so the response time of

this study can be defined as the scale with the most considerable

SPEI-NDVI correlation. The largest correlation coefficients between

grassland NDVI and SPEI1-24 per pixel occurred over 12 months

(Figure 3). At this point, the SPEI-NDVI correlation showed a

distinct spatial pattern, and the year was divided into the growing

period (April-October), spring (April-May), summer (June-

August), autumn (September-October), and nongrowing season

(November-December and January-March).

Our study showed that in contrast to the growth season, the

spatial variability of the SPEI-NDVI correlations was lower in the

grasslands of Xinjiang. The SPEI-NDVI correlations showed obvious

spatial heterogeneity during the growing season, and the correlations

in the north were significantly stronger than those in the south. The
Frontiers in Plant Science 06
spatial differences were obvious throughout the growing season

(May-September) but not in April or October. The regional

boundaries of high and low SPEI-NDVI correlations from May-

September were basically consistent with the boundary of the “three

mountains and two basins” in Xinjiang. As shown in Figure 1D, most

of the semi-humid regions (annual precipitation greater than 400mm

and less than 800 mm) and semiarid regions (annual precipitation

greater than 200 mm and less than 400 mm) were in northern

Xinjiang. The correlation coefficients were higher in the Altay

Mountains and Tian Shan (semi-humid and semiarid regions) in

northern Xinjiang than in southern Xinjiang (semiarid regions).
3.2 Response time of grassland
to water activity

The response time of grassland to water activity (multiscale

drought stress) in this study was defined as the maximum scale of

the SPEI-NDVI correlation on each image element, while

representing the lag of grassland response to water. In the

nongrowing season, the response time of the Xinjiang grassland

was different. The grassland response time increased in January-

March and November-December compared to the SPEI-NDVI

correlation in different months (Figure 4). In the growing season,

the response time of grassland in most areas of Xinjiang, especially

the mountainous areas at higher elevations, to moisture variability

began to increase in April-May, with the longest response time in

May and a downward trend in June-October.

The above spatial patterns of responses at different time scales

indicated that the response time of grassland communities in the

semi-humid regions of Xinjiang to moisture changes was longer

than that in the arid and semiarid regions during the growing and

nongrowing seasons. While the nongrowing seasons of January-

March and November-December generally had an increasing trend

in grassland response times, the growing seasons of June-October

had a decreasing trend in response times.
FIGURE 3

Pixels with maximum correlation between 1982-2020 grassland NDVI and SPEI1-24 pixel by pixel; (p<0.1) are covered by a black cross.
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3.3 Probability of grassland decline under
different drought stresses

Grassland activity during the growing season was higher than

that during the nongrowing season, which largely determined the

grassland biodiversity, biomass or yield. However, assessing the

impact of drought in all 12 months of the year is not easy. A high

correlation between the NDVI and SPEI would better reflect the

grassland response to moisture changes and identify the most

responsive months of the grassland drought-affected growing

season (Zhong et al., 2021). This would represent the worst

scenario for vegetation loss at different degrees of drought.

Therefore, this study used the month with the highest correlation

coefficient for the corresponding season to analyze the response of

grassland to drought. The transcendental probability of the SPEI-

NDVI correlation was calculated for all grassland image elements in

the study area to determine the month that best represented the

corresponding season (Figure 5). Figure 5A shows that the SPEI-

NDVI correlation in April had a higher probability of exceeding a

given value compared to the SPEI-NDVI correlation in May, so

April was the representative month of spring. The same was true for

Figure 5B in summer and Figure 5C in autumn of the growing

season, so August and September were chosen as the representative

months of the corresponding seasons, respectively.
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Using Eqs. (2)-(5), the probabilities of conditions causing

grassland deterioration in three drought scenarios, moderate

drought, severe drought and extreme drought (i.e., -1.5 < SPEI ≤

-1, -2 < SPEI ≤ -1.5 and SPEI ≤ -2, respectively), were calculated. In

addition, the probability of grassland deterioration status due to

different droughts was comprehensively estimated to identify

drought-prone areas. This study focused on grassland NDVI

below the 40th, 30th, 20th and 10th percentiles. A lower NDVI

percentile indicates severe grassland loss and damage to

an ecosystem.

Figures 6–8 show the probability of vegetation condition

deterioration under the three drought scenarios during the

growing season in April, August and September. In April, the

probability of the NDVI falling below 40 percent varied little, as

moderate drought progressed to severe or even extreme drought

(Figures 6–8). Conversely, the probability of the NDVI falling below

40 percent tended to increase in August and September with

increasing drought levels. When considering a grassland NDVI

below the 30th, 20th, and 10th percentiles in April, August, and

September, respectively, it was further confirmed that August and

September showed a positive response in the probability of

deterioration of grassland NDVI with increasing drought, while

the response was not significant in April. This result also shows the

higher probability of a grassland NDVI decline during the growing
FIGURE 4

The response time of grassland to water activity (the SPEI time scale with the highest correlation between the SPEI and NDVI on each image element).
A B C

FIGURE 5

The SPEI-NDVI correlation coefficient exceeded the probability curves for Xinjiang grasslands in the growing seasons in (A) spring, (B) summer
and (C) autumn.
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season in areas with more severe water deficits when the grassland

vegetation is at a lower percentage, consistent with the results of

other regional studies (Liu et al., 2016; Won et al., 2021; Yuan et al.,

2022). Furthermore, region-wide, the probabilities of moderate,

severe, and extreme drought scenarios below the 40th percentile

were 28.7%, 27.5%, and 27.0% in April; 47.6%, 48.7%, and 49.2% in

August; and 47.6%, 48.6%, and 49.1% in September, respectively

(Figures 6-8).

When grassland vegetation conditions deteriorated to the lower

percentile (NDVI dropped below the 30th and 20th percentiles), the

mean probability difference in vegetation conditions increased to

-0.31% and -0.15% (NDVI ≤ the 30th percentile) and -0.15% and
Frontiers in Plant Science 08
-0.42% (NDVI ≤ the 20th percentile), respectively, for the three

drought scenarios in April; additionally, the average probability

variance increased to 0.59%, 0.67%, 1.4%, and 1.6% in August and

0.58%, 0.67%, 1.4%, and 1.6% in September. When considering the

worst grassland status (NDVI ≤ the 10th percentile), the average

probability of the Xinjiang grassland being in the three drought

scenarios in April was 6.5%, 6.4% and 6.3%, respectively, and in

August it was 13.6%, 14.9% and 15.4%, respectively. Moreover,

when extreme drought occurred in April, the probability of the

grassland NDVI decreasing to less than the 10th percentile was less

than that during severe and moderate drought. In contrast, the

extremes in August and September both resulted in the highest
A

B

C

FIGURE 6

Probability of grassland NDVI deterioration in spring under (A) moderate, (B) severe, and (C) ex-treme drought conditions.
A

B

C

FIGURE 7

Probability of grassland NDVI deterioration in summer under (A) moderate, (B) severe, and (C) ex-treme drought conditions.
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probability of a decrease in grassland NDVI below the 10th

percentile. When considering conditions where the grassland

NDVI was below a specific percentile (40th, 30th, 20th, 10th), the

difference in the probability of the NDVI for grassland increased

from -1.7%, -1.1% and -0.6% to -0.2%, respectively, under extreme

and moderate drought conditions in April. The difference in the

probability of grassland NDVI being between extreme and

moderate drought scenarios increased from 1.5%, 2.0% to 2.3% in

August and then decreased to 1.8%, with a similar situation in

September. Thus, probabilistic analysis quantitatively demonstrated

that grasslands were more likely to experience a significant decline

with increasing drought severity and would deteriorate to a point

where they made appropriate adaptation strategies to mitigate the

effects of drought (Wilcox et al., 2020). August was the period when

grassland vegetation was most responsive.

Areas vulnerable to water scarcity have long been a concern for

policy-makers. Probabilistic analysis of drought-prone and

vulnerable grassland areas may contribute to effective drought

prevention and mitigation. For this purpose, the probability of

grassland loss (NDVI less than the 40th, 30th, 20th and 10th

percentiles) was calculated based on the image pixel scale. The

probability of grassland NDVI decline was relatively high in the

northern (especially the Tian Shan) and southern (the Kunlun)

regions under moderate drought conditions (Figure 6A). The

drought-prone areas identified for these occurrences of moderate,

moderate and severe drought were essentially the same in April

(Figures 6B, C). As Figure 7 and Figure 8 show, the drought-prone

areas in August and September were generally the same as those in

April under the three drought scenarios, and the grasses in these

areas were more likely to fall into the lower percentile. The

difference is that the probability of decline in grasslands in

August and September in northern Xinjiang was more sensitive

than that in southern Xinjiang, where the Tian Shan and Altai

Mountains were drought-sensitive areas, and the Tian Shan was the
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area most sensitive to water scarcity. Therefore, the Tianshan

Mountain grasslands in northern Xinjiang and northern Xinjiang

were poor drought-tolerant regions during the growing season. In a

previous study, a vegetation response assessment of the Tianshan

Mountain grasslands in northern Xinjiang (Li et al., 2021) showed

that the Tianshan Mountain grasslands were highly sensitive to

water deficits, consistent with the drought-prone areas identified in

this study. In addition, the drought-prone areas identified in this

section showed a high correlation of the SPEI-NDVI in Figure 3,

demonstrating that areas with high SPEI-NDVI correlation

coefficients were susceptible to drought stress.
3.4 Probability of loss under drought
stress in different climatic regions and
grassland types

Grassland degradation under drought stress in different climatic

regions (arid, semiarid and semi-humid regions) was assessed from

the perspective of climatic regions (Figure 9). The mean probability

of grassland declining to a lower percentile when different degrees

of drought occurred in April was highest for grassland in arid

regions, while the mean probability was highest for semiarid regions

in both August and September. The difference between the

probability of grasses in the dry areas declining to the 30th, 20th

and 10th percentiles under moderate, severe and extreme drought

and the average probability in Xinjiang in April was 4.7%, 5.3% and

5.5%, 3.5%, 3.9% and 4.1% and 1.9%, 2.1% and 2.3%, respectively.

The difference between the probability of semiarid regions and the

average probability of Xinjiang in August was 8.0%, 9.3% and 9.8%,

6.2%, 7.5% and 8.0%, and 3.6%, 4.5%% and 4.9%, respectively. In

September, the differences were 7.1%, 8.3% and 8.8%, 5.5%, 6.7%

and 7.2%, and 3.2%, 4.0% and 4.3%, respectively. The semiarid

regions in August and September (summer) were more prone to
A

B

C

FIGURE 8

Probability of grassland NDVI deterioration in autumn under (A) moderate, (B) severe, and (C) ex-treme drought conditions.
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drought than they were in April (spring), including in Tianshan,

Altay and parts of Kunlun in northern and southern Xinjiang,

which were more drought-sensitive.

The probability of decline to the lower percentile under drought

stress was assessed for different grassland types (meadow, plain

grassland, desert grassland, alpine subalpine meadow and alpine

subalpine grassland) (Figure 10). When drought occurs, grasslands

are subjected to different degrees of drought stress, and the

probability that the NDVI will drop to a lower percentile varies

depending on the type of grassland. Among them, the probability of

meadows falling to a lower percentile in April was the highest, and

the probability of alpine subalpine meadows falling to a lower

percentile was the lowest, with the order of probability being

meadows > desert grasslands > plains grasslands > alpine

subalpine grasslands > alpine subalpine meadows. The highest

probability of decline to the lower percentile was found in August

and September for plain grasslands, and the lowest probability was

found for alpine subalpine grasslands, with the order of probability

being plain grasslands > alpine subalpine meadows > desert

grasslands > meadows > alpine subalpine grasslands.
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3.5 Climate influencing factors of different
seasons in grassland

The main climatic factors affected grasslands change with the

period of growth (Figure 11). The main climatic factor affecting the

growth of grasslands in April in spring was temperature, and these

sites were distributed mainly in the Tianshan, Kunlun and Altun

Mountains, accounting for 73.24% of the entire grassland, 6.67% of

the area affected by precipitation and 20.09% of the area affected by

evapotranspiration. The main climatic factor affecting the growth of

grassland in summer August was again temperature, and the sites

were mainly distributed in the Kunlun and Altun Mountains,

accounting for 48.10% of the entire grassland, 7.19% of the area

affected by precipitation and 44.72% of the area affected by

evapotranspiration. The main climatic factor affecting the growth

of grassland in September in autumn was evapotranspiration, and

the sites were mainly distributed mainly in the Kunlun and Altun

Mountains, accounting for 48.55% of the whole grassland, 23.86%

of the area affected by precipitation and 27.59% of the area affected

by evapotranspiration.
FIGURE 9

The grassland NDVI under drought stress (moderate, severe, extreme drought) in different climatic zones (arid, arid and subhumid regions) in April,
August and September was lower than the lowest, average and maximum probabilities of the 40th, 30th, 20th and 10th percentiles.
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3.6 Reliability validation of the
copula model

By comparing the NDVI conditional distribution with the

corresponding NDVI-SPEI paired observations from 1982-2020,

the model was validated for the probability derivation of complex

structures under drought conditions and the identification of

drought-prone areas. The NDVI distribution of the five grassland

types in Xinjiang in spring, summer and autumn (April, August and

September) was simulated using the conditional distribution

method of Eq. (6). Of all pixel sites in Xinjiang, five were

randomly selected for model validation: meadow, alpine and

subalpine grassland, alpine and subalpine meadow, desert

grassland and plain grassland. Figures 12A–I, K–O show the five

grassland types in April, August, and September, respectively, with

color shadows representing the PDF values for a given SPEI value,

and the PDF values are standardized. Most of the paired

observations were in the high-density area of the conditional

probability function. The results showed that the probabilistic

model of drought stress in Xinjiang grassland based on copula

was reliable.
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4 Discussion

4.1 Correlation and response time of
grassland with drought

The results of previous related studies showed that the SPEI-

NDVI correlations reflected different correlations and spatial

characteristics depending on the vegetation growth period (Zhao

et al., 2018; Zhou et al., 2018; Li et al., 2022). The NDVI was

positively correlated with the SPEI in grassland communities in

most areas of Xinjiang from November to December. Xinjiang’s

location in the heartland of the Asian continent has a significant

impact on its climatic conditions. The region is primarily influenced

by westerly circulation, which results in low moisture conditions. As

a result, the growth of grasslands is limited due to the scarcity of

water. (Yao et al., 2020). The negative SPEI-NDVI correlation

occurred mainly at some high latitudes (mainly the Altai

Mountains, the Tian Shan and the Kunlun Mountains). Lower

temperatures in late autumn (November-December) and winter

(January-March) reduced the enzyme activities required for

photosynthesis, respiration, and transpiration and reduced the
FIGURE 10

The grassland NDVI under drought stress (moderate, severe, extreme drought) in different climatic zones (meadow, plain grassland, desert grassland,
alpine subalpine meadow and alpine subalpine grassland) in April, August and September was lower than the average probabilities of the 40th, 30th,
20th and 10th percentiles, respectively.
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water demand for grassland vegetation growth; additionally, they

were the leading causes of grassland biomass decline in the high

latitudes of Xinjiang (Neuner et al., 2020). From March to May,

despite the low precipitation, the rising temperatures increased the
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soil moisture as a result of melting snow and ice in the mountains,

allowing grasslands in northern and southern Xinjiang and central

Tian Shan to recover (Duan et al., 2021). Therefore, when snow and

glaciers provided additional soil moisture, grassland recovery in
A B

DC

FIGURE 11

Distribution of climate influencing factors in Xinjiang grasslands, (A) distribution of impact factors in spring (April), (B) distribution of impact factors in
summer (August), (C) distribution of impact factors in September (autumn), (D) statistics on the distribution of climate influencing factors in different
growing periods.
FIGURE 12

Comparing the grassland NDVI (normalized between 0-100%) with the paired NDVI-SPEI (black points), (A–O) are five randomly selected pixel points
from five grassland types in April, August and September, respectively.
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spring was less dependent on precipitation. The same result was

reported by Yao et al. (2019), who, in their study on the influence of

hydroclimatic variables on the NDVI in Xinjiang, noted that soil

moisture varied more significantly in response to vegetation

dynamics, reflecting that the weaker NDVI-SPEI correlation in

spring was due to the availability of sufficient snow or glaciers for

soil moisture replenishment (Yao et al., 2019).

In addition, the negative correlation between the SPEI-NDVI in

January-June and August-October in the Altun Mountain

grasslands was due to the change in atmospheric circulation on

the Tibetan Plateau, while the third polar region changed the spatial

pattern of its stock water bodies. The strengthening of westerly

winds and weakening of the Indian monsoon led to an increase in

precipitation in the northern (Kunlun and Altun Mountains) inland

flow area and a decrease in precipitation in the southern outland

flow area (Yao et al., 2022). In relatively humid regions, a negative

SPEI during the grassland growing season (April-October) did not

mean that vegetation was short of water, as the water balance was

positive during periods of high precipitation (Figure 13). Therefore,

dry and wet conditions during the growing season of grassland

vegetation were not necessarily limiting factors, as seen from the

SPEI-NDVI correlations for the southern and northern regions.
4.2 Heterogeneity of climate zones and
grassland types in response to drought

The scale of vegetation response to drought varied depending

on the climatic regions and vegetation type in which it was located

(Zhang et al., 2017; Zhang and Zhang, 2019). Our study was only on

grassland vegetation, so the scale of grassland response to drought

varied mainly with the climatic regions in which grassland was

located. Grasslands in semi-humid regions take longer to respond

to moisture changes than do grasslands in arid and semiarid regions

in our study. The SPEI in semi-humid regions is negative, but the

water balance tends to be positive (Zhou et al., 2018), making
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grasslands in wetter areas less responsive to drought than those in

drier regions. The results also suggest that grassland strategies for

moisture changes in different regions may vary depending on the

climate regions in which they are located. Grasslands are limited in

water supply in different climatic regions (Cao et al., 2022; Liu et al.,

2022). Grasslands in arid and semiarid regions responded more

strongly to water deficits, possibly due to the negative average water

balance during grassland vegetation growth (Figure 13), and the

increased demand for water from grassland vegetation growth,

leaves, and roots led to shorter response times to water deficits, as

vegetation response time tended to be positively correlated with

water balance in the near-zero degree range (Vicente-Serrano et al.,

2013). Compared to arid and semiarid regions, the average water

balance vegetation growth periods were positive in subhumid

regions (Figure 13). Long-term positive water balance

accumulation also boosted soil moisture and decreased the

sensitivity of grassland development to short-term water shortage,

allowing grassland to adapt to long-term water deficiency. The

results were consistent with those of Fang et al. (2019b) in mainland

China and on the Loess Plateau.

The reason for the highest probability of grassland NDVI

declining in April in spring when the arid region is subjected to

drought is that the natural factor that has a greater impact on grass

in April in spring is the gradual increase in temperature, since

precipitation in the dry area is consistently low throughout the

growing season (Zhang et al., 2020). Drought in semiarid regions is

most likely to cause grassland losses in August and September of

summer and autumn, and the results were consistent with those of

Yuan et al. (2022) in Central Asia (Yuan et al., 2022). This result is

possibly due to the persistent high temperatures in Xinjiang at this

time of year and the fact that semiarid regions are more dependent

on precipitation than are semi-humid regions and appear to have a

greater demand for soil moisture from iceberg meltwater (Zheng

et al., 2021). In addition, spring warming leads to melting of alpine

snow and ice and increased soil moisture, whereas at higher

altitudes, the heat required for melting of snow and ice and
FIGURE 13

Mean values of growing season water balance in Xinjiang from 1982-2020.
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evaporation of liquid water further leads to lower soil temperatures

(Su et al., 2011). The microbial activity and root growth metabolic

capacity of herbaceous plants are affected by lower soil temperatures

(Ni and Li, 2019), which in turn reduces the water uptake capacity

of grassland vegetation. In addition, high or low air humidity can

cause stomatal closure of grasses, reduced transpiration and

photosynthesis, inability of grasses to transport mineral nutrients

well, and growth inhibition (Li et al., 2022).

In our results, meadows were more sensitive to drought in April

in the spring and less sensitive in the drier months of August and

September. This result is due to the presence of rivers in the main

distribution area of the meadow, as rivers can compensate for the

water demand of the meadow during drought (Figure 1B). Desert

grasslands are often water scarce and have evolved physiological

mechanisms capable of adapting to water-scarce conditions, such as

more efficient water storage systems and stronger roots, after a long

period of survival and adaptation (Guo et al., 2012; Lei et al., 2020).

The low sensitivity of desert grasslands to drought in the study

results is consistent with previous regional and national studies

(Huang et al., 2021; Bu et al., 2022). It is important to emphasize

that seasonal changes in vegetation also affect evapotranspiration

(Fu et al., 2023), and Figure 14 shows the seasonal changes in

evapotranspiration in response to different grassland types. In our

study, all five grassland types showed the same trend, with July

being the period of maximum evapotranspiration, differing from

alpine subalpine meadows where evapotranspiration was greatest.

In the drier month of August, the evapotranspiration of the

meadow decreased instead, which also indicates that the meadow

adopted appropriate strategies to prevent water loss during drought

(Yue et al., 2019; Li et al., 2020). Therefore, more attention was

given to plain grasslands and alpine subalpine meadows, which

have a higher probability of water loss during drought.
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4.3 Main influencing factors of drought
stress in grassland

In general, temperature, precipitation and evapotranspiration

are the main causes that directly control the exposure of vegetation

to drought stress (Ashraf et al., 2022; Zhao et al., 2022). Xinjiang has

long daylight hours and strong solar radiation (He et al., 2021).

However, as the vegetation growth period changes, its main

influencing factors subsequently change. In our study, the main

influencing factor in April (spring) was temperature (73.24%),

which was because most of the grasses in Xinjiang grow in

higher-altitude areas and need sufficient temperature to melt

snow and ice at the beginning of growth to provide the water and

heat needed for grass growth (Zhang et al., 2019). The main

influencing factors in August (summer) were temperature

(48.10%) and evapotranspiration (44.72%), which was due to the

low precipitation and persistent high temperature in summer,

resulting in increased evapotranspiration and long-term water

deficits in grasslands (Huang et al., 2017). The main influencing

factor in September (autumn) was evapotranspiration (48.55%),

which was because evapotranspiration became the main influencing

factor in the late growth period when grass vigor decreased along

with the ability to retain water (Du et al., 2015).

In addition to climatic factors, other environmental factors (e.g.,

elevation, slope and aspect) can influence the drought patterns in a

region (Kumari et al., 2020). Because elevation is a direct control

factor affecting temperature, slope orientation affects solar exposure

time and solar radiation (P. Zhang et al., 2022), both of which are

important factors affecting vegetation drought (Yang et al., 2022).

The only highly significant correlation (r = -0.52519) found in our

study was between elevation and the probability of meadow decline

to the 30th percentile of the land during severe drought, with a
A B
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C

FIGURE 14

Seasonal variation in evapotranspiration in different grassland types: (A) meadows, (B) plains grasslands, (C) desert grasslands, (D) alpine subalpine
meadows, (E) alpine subalpine grasslands, and (F) Total grasslands.
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smaller effect of slope and slope orientation on meadow drought

(Figure 15). This is because the NDVI representing grasslands in

our study used lower resolution (1/12°) GIMMS data that do not

capture the effects of slope and slope orientation on grassland

drought (Chen et al., 2021).

Moreover, most of the grasslands in Xinjiang grow in cold and

dry areas, and freezing and cold effects are also important factors

affecting the growth of grasslands (Wang et al., 2022). This part of

the grassland community is more homogeneous, and lower soil

temperatures, moisture and nutrients under freezing and cold

conditions limit the growth of grasslands, which in turn slow

photosynthesis and carbon cycling (Rixen et al., 2022). In

addition, there are limitations in our study; this study used

GIMMS NDVI data with long time series but low resolution

because it is more convincing to use a longer time when

considering the effect of climate change on vegetation. The

enhanced vegetation index (EVI) is also a better index for

monitoring vegetation (Wu et al., 2022). Under the condition of

better vegetation growth, the EVI can capture more vegetation

changes than the NDVI, but it has limited application in

mountainous areas (Kumari et al., 2021). Therefore, we prefer to

use the EVI to monitor vegetation when it is not limited by the

length of time and topographic conditions. In future studies, more

accurate remote sensing images, such as Sentinel, Landsat and

SPOT images or multisource remote sensing image fusion

methods, should be used to monitor vegetation activity.
4.4 Grassland activities to overcome water
deficits and surpluses

Grasslands under drought stress will adopt appropriate strategies

to mitigate drought and maintain their own growth and development

(Singh et al., 2020). The most important of these is the regulation of

photosynthesis, which is manifested by increasing the efficiency of

water use, using less water to complete the same degree of
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photosynthesis (Linderson et al., 2012), producing more

antioxidants to protect chlorophyll, etc., to reduce their own

oxidative damage (Baccari et al., 2020) and enhancing

photosynthesis to obtain more energy to regulate growth and

development. Regulation of stomatal conductance is also an

important strategy used by grasses to overcome drought (BiBi

et al., 2021). In the case of water deficit, the grass will reduce the

degree and number of stomatal openings and thus transpiration and

water loss, which at the same time will reduce the CO2 concentration

and reduce the efficiency of photosynthesis, resulting in the limitation

of grass growth (Nunes et al., 2020; Baca Cabrera et al., 2021; Israel

et al., 2022). Conversely, in water surpluses, the degree and number of

stomatal openings are increased, accelerating respiration and the rate

of water discharge to avoid root hypoxia and decay as well as the

accumulation of salts and toxins in the body (Mielke et al., 2003;

Pociecha et al., 2008; Nasrullah et al., 2022).
5 Conclusion

This study combined correlation analysis and cointegration

theory to quantify the drought stress vulnerability of grasslands in

Xinjiang from a probabilistic perspective. The response time of

grassland vegetation varied among climate zones, with grasslands in

humid regions having longer response times during the growing

season than those in semiarid regions. More severe grassland

drought led to a higher likelihood that a grassland would

experience significant vegetation declines and take appropriate

adaptation strategies to mitigate drought after vegetation

deterioration to a certain level. Compared with other months,

August was the most vulnerable period for drought in the

Xinjiang grasslands. The highest probability of drought

vulnerability was found in semiarid grasslands, as well as in

plains grasslands and alpine subalpine grasslands. In addition, the

main influencing factors were temperature in April and August and

evapotranspiration in September.
A B C

FIGURE 15

Correlation between elevation, slope and slope orientation and the probability of decline of grass-land NDVI to the lower percentiles under drought
stress: (A) DEM, (B) slope and (C) slope direction (as an example, the probability of falling to the 30th percentile under severe drought stress in Au-
gust, and the most severe drought was in summer).
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Moreno, J. I., et al. (2013). Response of vegetation to drought time-scales across global
land biomes. Proc. Natl. Acad. Sci. 110, 52–57. doi: 10.1073/pnas.1207068110
frontiersin.org

https://doi.org/10.1016/j.advwatres.2016.02.003
https://doi.org/10.1016/j.advwatres.2016.02.003
https://doi.org/10.3390/rs13224651
https://doi.org/10.1016/j.ecolind.2015.05.036
https://doi.org/10.1111/gcb.12010
https://doi.org/10.1007/s11356-021-13721-z
https://doi.org/10.1080/01431168608948945
https://doi.org/10.1007/s11284-017-1463-2
https://doi.org/10.1016/j.scitotenv.2021.145482
https://doi.org/10.1093/jxb/erab477
https://doi.org/10.1007/BF00296705
https://doi.org/10.1016/S0034-4257(03)00174-3
https://doi.org/10.1016/j.rse.2021.112781
https://doi.org/10.1029/2020GL088918
https://doi.org/10.3390/cli9070109
https://doi.org/10.1016/j.jenvman.2020.111144
https://doi.org/10.1016/j.agrformet.2021.108658
https://doi.org/10.1016/j.agrformet.2021.108658
https://doi.org/10.1016/j.envexpbot.2022.104889
https://doi.org/10.1016/j.agrformet.2017.08.005
https://doi.org/10.1016/j.agrformet.2017.08.005
https://doi.org/10.1016/j.geoderma.2022.115714
https://doi.org/10.1016/j.agee.2020.107077
https://doi.org/10.1016/j.agee.2020.107077
https://doi.org/10.3390/w14192978
https://doi.org/10.1016/j.agrformet.2011.09.019
https://doi.org/10.1016/j.gloplacha.2018.06.005
https://doi.org/10.1016/j.gloplacha.2018.06.005
https://doi.org/10.1038/srep35105
https://doi.org/10.1016/j.ecolind.2022.109064
https://doi.org/10.1016/j.ecolind.2022.109064
https://doi.org/10.1016/j.scitotenv.2018.10.295
https://doi.org/10.1016/j.agrformet.2019.107623
https://doi.org/10.1126/sciadv.1700066
http://ccc.atmos.colostate.edu/ relationshipofdroughtfrequency.pdf
http://ccc.atmos.colostate.edu/ relationshipofdroughtfrequency.pdf
https://doi.org/10.1016/S0098-8472(03)00036-4
https://doi.org/10.1016/j.agrformet.2016.02.005
https://doi.org/10.1016/j.agrformet.2012.09.014
https://doi.org/10.1016/j.agrformet.2012.09.014
https://doi.org/10.1007/s11269-008-9305-1
https://doi.org/10.1007/s40415-022-00841-0
https://doi.org/10.1016/j.envexpbot.2019.103882
https://doi.org/10.1016/j.envexpbot.2019.103882
https://doi.org/10.1016/j.jhydrol.2019.04.069
https://doi.org/10.1111/tpj.14552
https://doi.org/10.1080/00431672.1968.9932814
https://doi.org/10.1007/s11430-018-9363-5
https://doi.org/10.1007/s11738-008-0151-9
https://doi.org/10.1038/nature12350
https://doi.org/10.1038/nature12350
https://doi.org/10.1139/as-2020-0058
https://doi.org/10.1029/2007GL032487
https://doi.org/10.1029/2007GL032487
https://doi.org/10.1088/1748-9326/abc377
https://doi.org/10.5194/hess-15-2303-2011
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1073/pnas.1207068110
https://doi.org/10.3389/fpls.2023.1143863
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2023.1143863
Wang, Y., Fu, B., Liu, Y., Li, Y., Feng, X., andWang, S. (2021). Response of vegetation
to drought in the Tibetan plateau: Elevation differentiation and the dominant factors.
Agric. For. Meteorol. 306, 108468. doi: 10.1016/j.agrformet.2021.108468

Wang, C., Wang, A., Guo, D., Li, H., and Zang, S. (2022). Off-peak NDVI correction
to reconstruct landsat time series for post-fire recovery in high-latitude forests. Int. J.
Appl. Earth Obs. Geoinformation 107, 102704. doi: 10.1016/j.jag.2022.102704

Wang, T., Yang, D., Zheng, G., and Shi, R. (2022). Possible negative effects of earlier
thaw onset and longer thaw duration on vegetation greenness over the Tibetan plateau.
Agric. For. Meteorol. 326, 109192. doi: 10.1016/j.agrformet.2022.109192

Wellstein, C., Poschlod, P., Gohlke, A., Chelli, S., Campetella, G., Rosbakh, S., et al.
(2017). Effects of extreme drought on specific leaf area of grassland species: A meta-
analysis of experimental studies in temperate and sub-Mediterranean systems. Glob.
Change Biol. 23, 2473–2481. doi: 10.1111/gcb.13662

Wen, L., Yang, X., and Saintilan, N. (2012). Local climate determines the NDVI-
based primary productivity and flooding creates heterogeneity in semi-arid floodplain
ecosystem. Ecol. Model. 242, 116–126. doi: 10.1016/j.ecolmodel.2012.05.018

Wilcox, K. R., Koerner, S. E., Hoover, D. L., Borkenhagen, A. K., Burkepile, D. E., Collins,
S. L., et al. (2020). Rapid recovery of ecosystem function following extreme drought in a south
African savanna grassland. Ecology 101, e02983. doi: 10.1002/ecy.2983

Won, J., Seo, J., and Kim, S. (2022). A copula model integrating atmospheric
moisture demand and supply for vegetation vulnerability mapping. Sci. Total Environ.
812, 151464. doi: 10.1016/j.scitotenv.2021.151464

Won, J., Seo, J., Lee, J., Lee, O., and Kim, S. (2021). Vegetation drought vulnerability
mapping using a copula model of vegetation index and meteorological drought index.
Remote Sens. 13, 5103. doi: 10.3390/rs13245103

Wu, G., Chen, J., Kim, J.-S., Gu, L., Lee, J.-H., and Zhang, L. (2022). Impacts of
climate change on global meteorological multi-year droughts using the last millennium
simulation as a baseline. J. Hydrol. 610, 127937. doi: 10.1016/j.jhydrol.2022.127937

Wu,M., Manzoni, S., Vico, G., Bastos, A., de Vries, F. T., andMessori, G. (2022). Drought
legacy in Sub-seasonal vegetation state and sensitivity to climate over the northern
hemisphere. Geophys. Res. Lett. 49, e2022GL098700. doi: 10.1029/2022GL098700

Xu, H., Wang, X., and Zhang, X. (2016). Decreased vegetation growth in response to
summer drought in central Asia from 2000 to 2012. Int. J. Appl. Earth Obs.
Geoinformation 52, 390–402. doi: 10.1016/j.jag.2016.07.010

Xu,Y.,Yang, J., andChen,Y. (2016).NDVI-basedvegetationresponses toclimate change in
an arid area of China. Theor. Appl. Climatol. 126, 213–222. doi: 10.1007/s00704-015-1572-1

Xun, L., Zhang, J., Yao, F., and Cao, D. (2022). Improved identification of cotton
cultivated areas by applying instance-based transfer learning on the time series of
MODIS NDVI. CATENA 213, 106130. doi: 10.1016/j.catena.2022.106130

Yang, F., Duan, X., Guo, Q., Lu, S., and Hsu, K. (2022). The spatiotemporal
variations and propagation of droughts in plateau mountains of China. Sci. Total
Environ. 805, 150257. doi: 10.1016/j.scitotenv.2021.150257

Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., et al. (2022). The imbalance of
the Asian water tower.Nat. Rev. Earth Environ. 3, 618–632. doi: 10.1038/s43017-022-00299-4

Yao, J., Chen, Y., Zhao, Y., Guan, X., Mao, W., and Yang, L. (2020). Climatic and
associated atmospheric water cycle changes over the xinjiang, china. J. Hydrol 585,
124823. doi: 10.1016/j.jhydrol.2020.124823

Yao, Y., Fu, B., Liu, Y., Li, Y., Wang, S., Zhan, T., et al. (2022). Evaluation of
ecosystem resilience to drought based on drought intensity and recovery time. Agric.
For. Meteorol. 314, 108809. doi: 10.1016/j.agrformet.2022.108809

Yao, J., Hu, W., Chen, Y., Huo, W., Zhao, Y., Mao, W., et al. (2019). Hydro-climatic
changes and their impacts on vegetation in xinjiang, central Asia. Sci. Total Environ.
660, 724–732. doi: 10.1016/j.scitotenv.2019.01.084

Yao, J., Zhao, Y., Chen, Y., Yu, X., and Zhang, R. (2018). Multi-scale assessments of
droughts: A case study in xinjiang, China. Sci. Total Environ. 630, 444–452.
doi: 10.1016/j.scitotenv.2018.02.200

Yerdelen, C., Abdelkader, M., and Eris, E. (2021). Assessment of drought in SPI
series using continuous wavelet analysis for gediz basin, Turkey. Atmospheric Res. 260,
105687. doi: 10.1016/j.atmosres.2021.105687
Frontiers in Plant Science 18
Yu, K., Xiong, L., Li, P., Li, Z., Zhang, X., and Sun, Q. (2018). Analyzing the impacts
of climatic and physiographic factors on low flow distributions.Water Resour. Manage.
32, 881–896. doi: 10.1007/s11269-017-1844-x

Yuan, Y., Bao, A., Jiang, P., Hamdi, R., Termonia, P., De Maeyer, P., et al. (2022).
Probabilistic assessment of vegetation vulnerability to drought stress in central Asia. J.
Environ. Manage. 310, 114504. doi: 10.1016/j.jenvman.2022.114504

Yue, P., Zhang, Q., Zhang, L., Li, H., Yang, Y., Zeng, J., et al. (2019). Long-term
variations in energy partitioning and evapotranspiration in a semiarid grassland in the
loess plateau of China. Agric. For. Meteorol. 278, 107671. doi: 10.1016/
j.agrformet.2019.107671

Zeng, N., Niu, Z., Li, P., Zhu, X., and Ren, X. (2022). Resistance of grassland
productivity to hydroclimatic changes in the Tibetan plateau. Ecol. Indic. 143, 109351.
doi: 10.1016/j.ecolind.2022.109351

Zhang, R., Guo, J., Liang, T., and Feng, Q. (2019). Grassland vegetation phenological
variations and responses to climate change in the xinjiang region, China.Quat. Int. 513,
56–65. doi: 10.1016/j.quaint.2019.03.010

Zhang, P., Jiao, L., Wei, M., Wu, X., Du, D., and Xue, R. (2022). Drought timing
and severity affect radial growth of picea crassifolia at different elevations in the
western qilian mountains. Int. J. Biometeorol. 66, 2449–2462. doi: 10.1007/s00484-022-
02368-1

Zhang, Z., Ju, W., Zhou, Y., and Li, X. (2022). Revisiting the cumulative effects of
drought on global gross primary productivity based on new long-term series data,
(1982–2018). Glob. Change Biol. 28, 3620–3635. doi: 10.1111/gcb.16178

Zhang, Q., Kong, D., Singh, V. P., and Shi, P. (2017). Response of vegetation to
different time-scales drought across China: Spatiotemporal patterns, causes and
implications. Glob. Planet. Change 152, 1–11. doi: 10.1016/j.gloplacha.2017.02.008

Zhang, N., and Liu, C. (2014). Simulated water fluxes during the growing season in
semiarid grassland ecosystems under severe drought conditions. J. Hydrol. 512, 69–86.
doi: 10.1016/j.jhydrol.2014.02.056

Zhang, F., Wang, C., and Wang, Z.-H. (2020). Response of natural vegetation to
climate in dryland ecosystems: A comparative study between xinjiang and Arizona.
Remote Sens. 12, 3567. doi: 10.3390/rs12213567

Zhang, X., and Zhang, B. (2019). The responses of natural vegetation dynamics to
drought during the growing season across China. J. Hydrol. 574, 706–714. doi: 10.1016/
j.jhydrol.2019.04.084

Zhao, J., Huang, S., Huang, Q., Wang, H., Leng, G., Peng, J., et al. (2019). Copula-
based abrupt variations detection in the relationship of seasonal vegetation-climate in
the jing river basin, China. Remote Sens. 11, 1628. doi: 10.3390/rs11131628

Zhao, M., Liu, Y., and Konings, A. G. (2022). Evapotranspiration frequently increases
during droughts. Nat. Clim. Change 12, 1024–1030. doi: 10.1038/s41558-022-01505-3

Zhao, A., Yu, Q., Feng, L., Zhang, A., and Pei, T. (2020). Evaluating the cumulative
and time-lag effects of drought on grassland vegetation: A case study in the Chinese
loess plateau. J. Environ. Manage. 261, 110214. doi: 10.1016/j.jenvman.2020.110214

Zhao, A., Zhang, A., Cao, S., Liu, X., Liu, J., and Cheng, D. (2018). Responses of
vegetation productivity to multi-scale drought in loess plateau, China. Catena 163,
165–171. doi: 10.1016/j.catena.2017.12.016

Zheng, S., Zhang, B., Peng, D., Yu, L., Lin, B., Pan, Y., et al. (2021). The trend towards
a warmer and wetter climate observed in arid and semi-arid areas of northwest China
from 1959 to 2019. Environ. Res. Commun. 3, 115011. doi: 10.1088/2515-7620/ac39f7

Zhong, S., Sun, Z., and Di, L. (2021). Characteristics of vegetation response to
drought in the CONUS based on long-term remote sensing and meteorological data.
Ecol. Indic. 127, 107767. doi: 10.1016/j.ecolind.2021.107767

Zhou, X., Huang, G., Wang, X., Fan, Y., and Cheng, G. (2018). A coupled dynamical-
copula downscaling approach for temperature projections over the Canadian prairies.
Clim. Dyn. 51, 2413–2431. doi: 10.1007/s00382-017-4020-3

Zhou, Q., Luo, Y., Zhou, X., Cai, M., and Zhao, C. (2018). Response of vegetation to
water balance conditions at different time scales across the karst area of southwestern
China–a remote sensing approach. Sci. Total Environ. 645, 460–470. doi: 10.1016/
j.scitotenv.2018.07.148
frontiersin.org

https://doi.org/10.1016/j.agrformet.2021.108468
https://doi.org/10.1016/j.jag.2022.102704
https://doi.org/10.1016/j.agrformet.2022.109192
https://doi.org/10.1111/gcb.13662
https://doi.org/10.1016/j.ecolmodel.2012.05.018
https://doi.org/10.1002/ecy.2983
https://doi.org/10.1016/j.scitotenv.2021.151464
https://doi.org/10.3390/rs13245103
https://doi.org/10.1016/j.jhydrol.2022.127937
https://doi.org/10.1029/2022GL098700
https://doi.org/10.1016/j.jag.2016.07.010
https://doi.org/10.1007/s00704-015-1572-1
https://doi.org/10.1016/j.catena.2022.106130
https://doi.org/10.1016/j.scitotenv.2021.150257
https://doi.org/10.1038/s43017-022-00299-4
https://doi.org/10.1016/j.jhydrol.2020.124823
https://doi.org/10.1016/j.agrformet.2022.108809
https://doi.org/10.1016/j.scitotenv.2019.01.084
https://doi.org/10.1016/j.scitotenv.2018.02.200
https://doi.org/10.1016/j.atmosres.2021.105687
https://doi.org/10.1007/s11269-017-1844-x
https://doi.org/10.1016/j.jenvman.2022.114504
https://doi.org/10.1016/j.agrformet.2019.107671
https://doi.org/10.1016/j.agrformet.2019.107671
https://doi.org/10.1016/j.ecolind.2022.109351
https://doi.org/10.1016/j.quaint.2019.03.010
https://doi.org/10.1007/s00484-022-02368-1
https://doi.org/10.1007/s00484-022-02368-1
https://doi.org/10.1111/gcb.16178
https://doi.org/10.1016/j.gloplacha.2017.02.008
https://doi.org/10.1016/j.jhydrol.2014.02.056
https://doi.org/10.3390/rs12213567
https://doi.org/10.1016/j.jhydrol.2019.04.084
https://doi.org/10.1016/j.jhydrol.2019.04.084
https://doi.org/10.3390/rs11131628
https://doi.org/10.1038/s41558-022-01505-3
https://doi.org/10.1016/j.jenvman.2020.110214
https://doi.org/10.1016/j.catena.2017.12.016
https://doi.org/10.1088/2515-7620/ac39f7
https://doi.org/10.1016/j.ecolind.2021.107767
https://doi.org/10.1007/s00382-017-4020-3
https://doi.org/10.1016/j.scitotenv.2018.07.148
https://doi.org/10.1016/j.scitotenv.2018.07.148
https://doi.org/10.3389/fpls.2023.1143863
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Probabilistic assessment of drought stress vulnerability in grasslands of Xinjiang, China
	1 Introduction
	2 Material and methods
	2.1 Study area
	2.2 Normalized difference vegetation index and grassland type
	2.3 Standardized precipitation evapotranspiration index
	2.4 Methods
	2.4.1 Joint probability distribution
	2.4.2 Condition distribution of the SPEI and NDVI


	3 Results
	3.1 Spatial pattern of the SPEI-NDVI correlation
	3.2 Response time of grassland to water activity
	3.3 Probability of grassland decline under different drought stresses
	3.4 Probability of loss under drought stress in different climatic regions and grassland types
	3.5 Climate influencing factors of different seasons in grassland
	3.6 Reliability validation of the copula model

	4 Discussion
	4.1 Correlation and response time of grassland with drought
	4.2 Heterogeneity of climate zones and grassland types in response to drought
	4.3 Main influencing factors of drought stress in grassland
	4.4 Grassland activities to overcome water deficits and surpluses

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


