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Santalum album and their
expression analysis under
cold stress
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Sandalwood (Santalum album) is a high-valuemultifunctional tree species that is rich

in aromatic substances and is used in medicine and global cosmetics. Due to the

scarcity of land resources in tropical and subtropical regions, land in temperate

regions is a potential resource for the development of S. album plantations in order

to meet the needs of S. album production and medicine. The R2R3-MYB

transcription factor family is one of the largest in plants and plays an important

role in the response to various abiotic stresses. However, the R2R3-MYB gene family

of S. album has not been studied. In this study, 144 R2R3-MYB genes were

successfully identified in the assembly genome sequence, and their characteristics

and expression patterns were investigated under various durations of low

temperature stress. According to the findings, 31 of the 114 R2R3-MYB genes

showed significant differences in expression after cold treatment. Combining

transcriptome and weighted gene co-expression network analysis (WGCNA)

revealed three key candidate genes (SaMYB098, SaMYB015, and SaMYB068) to be

significantly involved in the regulation of cold resistance in S. album. The structural

characteristics, evolution, and expression pattern of the R2R3-MYB gene in S. album

were systematically examined at the whole genome level for the first time in this

study. It will provide important information for future research into the function of

the R2R3-MYB genes and the mechanism of cold stress response in S. album.
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1 Introduction

Santalum album L., an important plant belonging to the Class

Magnoliopsida, is well known for its medicinal value and valuable

carving wood. Unfortunately, owing to its high commercial value

and applications in cosmetics, religion, and medicine, the population

of S. album is gradually declining from overharvesting and illegal

trading. This worrisome decline in its population underscores the

need for effective in situ and ex situ conservation strategies. However,

owing to the influence of temperature and climate, the natural

distribution of sandalwood ranges from 30° north latitude to 40°

south latitude, starting from Indonesia in the east, reaching Juan

Fernandez Islands in the west, Hawaii Islands in the north, and New

Zealand in the south (Kumar et al., 2012). Low temperature is one of

the main abiotic factors that hinder the growth and geographical

distribution of S. album. However, there are very few studies on the

mechanisms of environmental adaptation of S. album, especially on

its mechanisms of adaptation to low temperatures. Therefore, it is of

great significance to explore the molecular genetic mechanisms of

cold stress for the protection and utilization of S. album.

The effects of low-temperature stress on plants are mainly

reflected in enzyme activity, membrane system, and cell

dehydration that lead to disorders in cell metabolism and even cell

death. The response of plants to cold stress at the molecular level is

primarily mediated through changes in gene expression, protein

levels, and metabolites (Li et al., 2018). The molecular mechanism of

cold tolerance has been studied in the model plant, Arabidopsis

thaliana, and other crop plants, such as maize, rice, wheat, tomato,

and barley (Sanghera et al., 2011; Jeon and Kim, 2013). The MYB

transcription factors (TFs), which are related to c-Myb, are involved

in plant growth and development, metabolism, responses to biotic

and abiotic stress, and other biological processes through interaction

with the basic helix-loop-helix (bHLH) TFs (Stracke et al., 2001).

The MYB TF MdMYB308L in apple was found to positively regulate

cold tolerance and anthocyanin accumulation by interacting with

MdbHLH33 and enhancing its binding to the promoters of MdCBF2

and MdDFR (An et al., 2020). In A. thaliana, the overexpression of

the Mallus baccata MYB4 (MbMYB4) gene enhanced the tolerance

of the transgenic plants to cold and drought stress and cold

resistance-related traits, such as the proline and chlorophyll

content, and the activity of peroxidase (POD) and catalase (CAT)

increased significantly in the transgenic plants (Yao et al., 2022a).

Many studies have shown that the MYB gene family is significantly

associated with cold stress and cold resistance (Wu et al., 2021; Dar

et al., 2022; Yao et al., 2022b). In A. thaliana, AtMYB15 negatively

regulates the expression of the c-repeat binding factor (CBF) gene,

leading to reduced cold resistance (Agarwal et al., 2006). Although

considerable progress has been made in research on cold stress in S.

album, the research has mainly focused on the physiological and

phenotypic responses, and studies on the molecular mechanisms are

limited (Zhang et al., 2017; Yan et al., 2019). Specifically, whole-

genome identification of the MYB gene family and its expression

pattern under cold stress has not yet been reported in S. album.

The MYB gene family plays an important role in plant

evolution. Generally, a gene family consists of a group of genes

from a common ancestor whose members share > 50% pairwise
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amino acid sequence similarity and contain a common functional

domain (Thornton and DeSalle, 2000). The MYB gene family

constitutes one of the largest TF families in plants. The members

of this family contain a unique conserved MYB domain, which is

composed of 1–4 tandem and non-repetitive R motifs. Based on the

number of MYB domains, the MYB genes can be classified into four

categories: 1R-MYB/MYB-related (1R motif), R2R3-MYB (2R

motifs), 3R-MYB (3R motifs), and 4R-MYB (4R motifs) (Dubos

et al., 2010). R2R3-MYB genes are the most abundant subtype in

plants; they contain two R structures (R2R3) at the N-terminal and

generally contain a transcriptional activation domain at the C-

terminal. They are involved in cell differentiation, hormone

response, secondary metabolism, and environmental stress. Yao

et al. performed genome-wide analysis of the R2R3-MYB gene

family members in ginger (Zingiber officinale Roscoe) and identified

120 segmental duplications in R2R3-MYB using gene duplication

analysis. Ten of the R2R3-MYB genes were significantly

differentially expressed under abscisic acid (ABA) and low-

temperature stress in ginger leaves (Yao et al., 2022). Zhang et al.

identified 69 R2R3-MYB proteins containing a conserved

functional domain in Cyclocarya paliurus, four of which were

found to respond to salt stress by regulating plant hormone

signals (Zhang et al., 2022). Yuan et al. (2021) identified 202

R2R3-MYB genes in the polyploid Saccharum spontaneum

genome sequence. They used collinearity analysis and found that

70% of the genes had experienced duplication events, suggesting the

contributors to the MYB gene family expansion. Four of these

R2R3-MYB genes actively responded to drought treatment in stress

expression analysis (Yuan et al., 2021). However, genome-wide

identification of 2R3R-MYB genes and their responses to stress have

not yet been reported in S. album.

Weighted gene co-expression network analysis (WGCNA) is a

data mining method used to analyze the gene expression patterns in

multiple samples, which can be used to analyzing the correlation

between genes, identifying modules with high phenotypic correlation,

and identifying hub genes in different modules (Langfelder et al.,

2008). Sharma et al. performed meta-analysis and WGCNA on 390

samples from 29 studies in A. thaliana and identified 6,120 and 7,079

differentially expressed genes (DEGs) under drought and cold stress,

respectively. They also found that 28% of the DEGs were common to

both drought and cold stress, and most of them showed a similar

expression pattern (Sharma et al., 2018). Using WGCNA at the

transcriptome level, Zeng et al. provided a potential regulatory

mechanism for cold stress and recovery of rice cultivars and

identified key candidate genes involved in cold tolerance, which

provided valuable information for cultivating rice strains with high

cold tolerance in the future (Zeng et al., 2022). Li et al. used time-lag

initiation of the two pathways and WGCNA in Arabidopsis to

demonstrate that vernalization was independent of cold

acclimation. WGCNA revealed three main networks involving

response of ethylene and jasmonic acid, chromatin modification,

and cold adaptation in response to prolonged cold exposure, which

provided a comprehensive overview of the global changes mediated

by cold stress and vernalization in Arabidopsis (Li et al., 2021). In the

National Center for Biotechnology Information (NCBI) database,

transcriptome datasets for 41 samples involving different tissues and
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abiotic stress were found for S. album. However, because the quality

of the reference genomewas not optimal, these datasets have not been

used effectively at present, especially for WGCNA analysis and

identification of related functional genes. Re-mining these

important data will help to identify the molecular genetic basis of

cold tolerance in S. album.

In this study, we performed whole-genome identification and

characterization of the R2R3-MYB gene family in S. album and

revealed the classification and evolution of 75 plants. Furthermore,

we performed transcriptome analysis and WGCNA of the RNA-seq

data under cold stress at four time points and identified key R2R3-

MYB genes responsive to cold stress. Our study provides a genome-

wide overview, identifies the expression pattern of R2R3-MYB

genes under cold treatment, and reveals the identity of key genes

for improving cold resistance and ex situ protection of S. album.
2 Materials and methods

2.1 Data sources

We obtained a chromosome-level reference genome sequence

of S. album. The reference genome size was 236.49 million bases

(Mb) and included 28,665 coded proteins. For genes with multiple

transcripts, the longest transcript was selected for subsequent

analysis. The transcriptome and phenotypic data following cold

treatments for 0, 12, 24, and 48h were obtained from a published

article (Zhang et al., 2017). A total of 12 RNA-seq datasets were

collected from the NCBI database under BioProject accession

number PRJNA320980, which comprised three replicates of four

time points of 0, 12, 24, and 48h at 4°C. The consistency of three

replicability at the same time point was acceptable as shown in the

previous research article (Zhang et al., 2017).
2.2 Identification of R2R3-MYB
genes in S. album

Genome sequence and gene annotation information for S.

album were acquired by our research group (unpublished data).

The hidden Markov model (HMM) of the MYB domain was

downloaded from the Pfam database (PF00249), and the S. album

MYB genes were searched in the protein database via an HMM

search using HMM files (E < 1 × 10−5) (Finn et al., 2011). Candidate

MYB protein sequences, CDS, and conserved domain sequences

were extracted using a Perl script (Supplementary File S1). The

candidate protein sequences were aligned with Pfam (http://

pfam.xfam.org/), SMART (http://smart.embl.de/smart/batch.pl),

and CDD (https://www.ncbi.nlm.nih.gov/cdd/) databases to

predict the conserved domains. There is a conserved DNA

binding domain (DBD) in MYB proteins, made up of 1–4

imperfect amino acid sequence repeats “R.” There are

approximately 52 amino acids in each “R”, forming every similar

folding architecture with three well-defined a-helixes. The helix-

turn-helix hydrophobic core was formed by the second and third

helices of each “R” with three regularly spaced tryptophans (W) or
Frontiers in Plant Science 03
other hydrophobic residues. MYB superfamily is divided into four

subfamilies based on the number of “R” in MYB DBD: MYB-related

subfamily gene with a single or partial “R”, R2R3-MYB subfamily

gene with “R2” and “R3”, 3R-MYB subfamily gene with “R1”, “R2”,

and “R3” as well as 4R-MYB subfamily gene with four “R1/R2” A

total of 154 MYB genes were ultimately identified in S. album, of

which 31 were clustered into 1R-MYB type, 114 into R2R3-MYB

type, two into 3R-MYB type, and the remaining seven genes could

not be clustered in any group with certainty. The online tool

ExPASy (https://web.expasy.org/protparam/) was used to analyze

the amino acid number, isoelectric point (pI), and molecular

weight of the R2R3-MYB proteins. Plant-mPLoc (http://

www.csbio.sjtu.edu.cn/bioinf/plant-multi/) predictor was used to

predict the subcellular localization of the R2R3-MYB proteins.
2.3 Phylogenetic analysis, classification
of R2R3-MYB genes, and gene
duplication analyses

Multiple alignments of R2R3-MYB amino acids were conducted

using ClustalW with the default parameters. A phylogenetic tree

containing MYB proteins of S. album and 75 other plants was

constructed using the maximum likelihood (ML) method in

MEGA7.0 (Kumar et al., 2016). The parameters were as follows:

Poisson model, pairwise deletion, and 1,000 bootstrap replications

(Edgar, 2004). The R2R3-MYB family of genes from 75 plants was

used as a reference for the classification of R2R3-MYB family

members in S. album.

Conserved motifs in the R2R3-MYB proteins from S. album

were analyzed using the online tool MEME (http://meme-suite.org/)

with the following parameters: maximum number of motifs = 20 and

optimum width = 6–100 residues (Bailey et al., 2009). Finally, the

conserved motifs and domains were visualized using the TBtools

software (Chen et al., 2020). The distribution of 114 R2R3-MYB

genes identified in the reference genome annotation information of

S. album was mapped to chromosomes and visualized using the

software MG2C (Chao et al., 2021). MCScanX is used to analyze

tandem and segmental gene duplications (Wang et al., 2012). All

R2R3-MYB protein sequences of S. album were compared against

themselves using BLASTP, with tabular output format (-m 8) and an

e value of < 1e −10. The BLASTP tabular file and a simplified S.

album gene location file served as inputs for MCScanX to identify

duplication types using default settings (Tang et al., 2014). Values of

nonsynonymous (Ka) and synonymous (Ks) substitution rates were

calculated using KaKs_Calculator software (Zhang et al., 2006).
2.4 Expression pattern of R2R3-MYB genes

All RNA sequence datasets from S. album leaves at the four cold

treatment time points were filtered using Fastp with default

parameters (Chen et al., 2018). The total filtered high-quality clean

RNA-seq data were mapped to the reference genome of S. album (not

officially published) using Hisat2 with default parameters (Kim et al.,

2019). The mapped reads with mapping quality (MQ) ≤ 30 were
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filtered using Samtools, and BAM files were sorted. StringTie (Pertea

et al., 2015) was used to count unique and normalized mapped reads

as fragments per kilobase per million (FPKM) mapped reads for each

gene with the parameter of “-B -e -G.” Transcriptome gene

expression data were visualized using ImageGP software (Chen

et al., 2022). The R2R3-MYB gene expression data are listed in

Supplementary Table S2.
2.5 WGCNA analysis and prediction of the
three-dimensional structure of key genes

To identify the core gene modules and the hub genes within the

modules related to cold stress, we performed a WGCNA

(Langfelder and Horvath, 2008). We evaluated 10,483 genes after

filtering total FPKM ≤ 100 at the four time points and three

biological replicates to test their availability and used the R

package termed “WGCNA” to construct a gene co-expression

network. Candidate power values were set from 1 to 30. The

threshold for scale-free topology model fit was set at 0.8.

Subsequently, we constructed an adjacency matrix to describe the

correlation strength between the modules and cold resistance-

related traits, which were malondialdehyde (MDA), superoxide

dismutase (SOD), peroxidase (POD) activity, soluble sugar

content, intercellular CO2 concentration, and respiration rate.

These phenotypic data were collected from the previous research

article (Zhang et al., 2017). Correlations between modules and cold

stress-related traits were calculated using a function in

“moduleTraitCor.” Finally, the genes in the modules with high

correlation with cold stress-related traits were extracted and

compared with the significant DEGs under different cold

treatments. Genes present in both DEGs and modules were

considered as the key genes associated with cold stress in S. album.

The spatial structure of genes determines their functions. The

functions and three-dimensional (3D) structures of the key genes

were predicted using the Swiss-Model website. From the database,

sequences with coverage greater than 50% were selected as

templates for structural prediction. The qualitative model energy

analysis (QMEAN) values of > 0.6 for predicted structures was

considered reliable.
3 Results

3.1 Identification and analysis of
physicochemical properties of
R2R3-MYB genes

Genome sequence and gene annotation information for S.

album were obtained by our research group (unpublished). To

determine the conserved sequence of the MYB protein in S. album,

the conserved domains of the MYB genes in S. album were

identified through alignment based on the classical HMM

(PF00249). Two comparison searches were performed and online

sites such as Simple Modular Architecture Research Tool (SMART),

Pfam, and National Center for Biotechnology Information-
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Conserved Domains Database (NCBI-CDD) were used to verify

the structures of the conserved domains in the candidate genes. The

remaining seven MYB genes could not be classified with certainty.

A total of 114 R2R3-MYB genes were named based on their

subfamilies as SaMYB001–SaMYB114 (Supplementary Table S1;

Supplementary File S2). These genes were distributed across 10

chromosomes. The physicochemical properties of the MYB

proteins were analyzed online using the ExPaSy tool. The results

showed that the 114 MYB proteins contained 169–1452 amino

acids, with a molecular weight of 18.36–159.44 kDa. SaMYB087

contained the lowest number of amino acids (169 aa) and

consequently had the least molecular weight (18.36 kDa). The

mean theoretical pI of all the R2R3-MYB genes was 7.03 (range:

4.71–9.58). The theoretical pI of 64 R2R3-MYB proteins was < 7,

indicating that these proteins were acidic, whereas that of the

remaining 50 R2R3-MYB proteins was > 7, indicating that these

were alkaline. The predicted subcellular localization of all the

proteins was nuclear, and only SaMYB049 was distributed in the

chloroplast and nucleus (Supplementary Table S1).
3.2 Phylogenetic analysis and
characterization of R2R3-MYB
genes in S. album

The R2R3-MYB protein sequences of S. album and 75 other

plants (Wu et al., 2022) were aligned using ClustalW program and a

phylogenetic evolution tree was constructed. Toward subfamily

classification of the R2R3-MYB proteins (Wu et al., 2022), the

114 MYB proteins in S. album were divided into 40 categories

(Figure 1; Supplementary Table S1): the S21 category in watchet,

with the largest number of eight R2R3-YMB genes in S. album and

the S22 category in cyan, with the second largest number of seven

R2R3-MYB genes in S. album. The number of SaR2R3-MYB genes

in each subgroup was close to that of R2R3-MYB genes in A.

thaliana. Interestingly, all genes in subfamily A were R2R3-MYB

genes in S. album, and no genes from any other species were

clustered with them, which indicates that Subfamily A may be

unique to S. album. Genes of the same subfamily exhibit high

homology and sequence similarity and may have similar gene

functions. The S21 subfamily harboring eight R2R3-MYB genes

in S. album is related to specialized metabolic processes, such as cell

wall thickening, seed oil accumulation, and phenylpropanoid

metabolism. The S22 subfamily, harboring seven R2R3-MYB

genes in S. album, is related to abiotic stress. The genes in the S1

and S2 subfamilies were related to abiotic stress, such as salt

tolerance, drought stress, and cold tolerance.

MEGA7 and WEBLOGO softwares were used to conduct

multiple sequence alignments and to characterize the conserved

regions in the 114 R2R3-MYB proteins in S. album. Figure 2 shows

that the R2 structure contains three very conserved tryptophan (W)

residues, and every twoW residues are separated by 19 amino acids.

The R3 structure contains two very conserved W residues: The first

W is replaced by phenylalanine (F), isoleucine (I), and leucine (L)

and the second and third W residues are separated by 18 amino

acids. The online software MEME was used to analyze the
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FIGURE 1

Result of phylogenetic analysis of R2R3-MYB proteins in S. album. Same color font of genes represent that they were in common subfamilies.
FIGURE 2

Results of conserved motifs and sequence alignment analyses of 114 R2R3-MYB proteins in S.album.
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conserved domains in R2R3-MYB proteins (Figure 3). Analysis of

the conserved motifs revealed that all R2R3-MYB proteins harbored

motif 1 (green box), motif 2 (yellow box), and motif 3 (pink box), as

shown in Figure 3A. All R2R3-MYB proteins in S. album contained

conserved MYB DNA-binding domains (Figure 3B). These

conserved amino acids and structures indicate that the R2R3-

MYB genes identified in our study are reliable.
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3.3 Gene duplication and chromosomal
location of R2R3-MYBs in S. album

The location of the R2R3-MYB genes was extracted from the

gene annotation general feature format (gff) file of S. album. The

results indicated that the 114 R2R3-MYB genes were unevenly

distributed on ten chromosomes (Figure 4): six genes in
A B

FIGURE 3

Conserved motif analyses of the 114 R2R3-MYB genes in S. album. (A) The left panel shows the results of conserved motif analysis. A total of 20
predicted motifs are represented by different colored boxes. (B) The right panel shows the conserved domains in the 114 R2R3-MYB genes with
different colors representing the different types of domains.
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chromosome 01 (5.26% of the total); 14 genes in chromosome 02

(12.30%); 16 genes in chromosome 03 (14.04%) with the most

genes; 13 genes each in chromosome 04, chromosome 05,

chromosome 06, and chromosome 07 (11.40%); 10 genes in

chromosome 08 (8.77%); and eight genes each in chromosome 09

and chromosome 10 (7.02%).

On one of the aforementioned ten chromosomes was a pair of

tandem duplicate genes, specifically distributed in chromosome 04

(SaMYB109 and SaMYB110). The two genes belong to Subfamily A,

and the distance between them was 8116 bp. Their nonsynonymous

rate (Ka) and synonymous rate (Ks) substitution rates were

analyzed, the non-synonymous mutation rate was 0.39, and the

synonymous mutation rate was 1.75. The Ka/Ks ratio was found to

be 0.22 (Table 1), which was less than 1, indicating negative

selection pressure. In addition to tandem duplication, MCScanX

was used to analyze fragment duplication events in the R2R3-MYB

gene family. The results showed that 33.33% (38/114) of the R2R3-

MYB members showed segmental duplication. The Ka/Ks values of

SaMYB103 and SaMYB017 were > 1 (1.17), implying that they

evolved under positive selection pressure. The Ka/Ks value of the

remaining gene pairs was < 1, indicating that they evolved under the

effect of purifying selection (Table 1). Thus, the analysis of
Frontiers in Plant Science 07
duplication events in the R2R3-MYB genes suggests that some

genes were produced by tandem and segmental duplication, and

these gene duplication events may be among the driving forces of

gene evolution.
3.4 SaMYB gene expression pattern under
cold stress

We collected transcriptome datasets corresponding to 6-

month-old S. album seedling leaves subjected to 4°C treatment

for 0 (0h), 12 (12h), 24 (24h), and 48 (48h) using three biological

replicates from the NCBI database generated in a previous study

(Zhang et al., 2017). After quality control assessments, a total of

7.62 Gb clean data was retained, Q30 of which accounted for over

91.25%. We used the Hisat2 alignment program to map the

qualified RNA-sequencing data on our reference genome

(unofficially published). The mapping rate ranged from 93.85 to

95.81%, with an average of 95.11%, which indicated that these

RNA-sequence data were reliable to quantify the global

abundance of R2R3-MYB gene expression following cold

treatment. The square of the Pearson’s correlation coefficient
FIGURE 4

Chromosomal locations of the 114 R2R3-MYB genes in S. album. The ruler on the left indicates the physical position of reference genome. The pair
of tandem duplicated genes is shown in red font.
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(r) was > 0.91 among the three biological replicates at each time

point, indicating both operational stability and reliability of the

experimental results. Of the 114 R2R3-MYB genes, 89 were found

to be expressed at least once time. The expression patterns of the

R2R3-MYB genes in S. album under different cold-stress

conditions were visualized using heatmap analysis. The results

showed that the expression levels of 31 R2R3-MYB genes were

significantly up-regulated (log2[fold change] > 1) at least one time

point of cold stress (Figure 5; Supplementary Table S2), whereas

that of 13 R2R3-MYB genes were significantly down-regulated at

least one time point of cold treatment. SaMYB078 and SaMYB100

were not expressed at 0h at 4°C. However, they were expressed at

12, 24, and 48h after cold treatment, which indicated that the two

genes may be involved in cold-stress resistance. Five genes

(SaMYB031, SaMYB068, SaMYB069, SaMYB004, and

SaMYB015) were highly expressed following cold treatment at

three different time points, whereas SaMYB114 and SaMYB058

were down-regulated at three time points of cold treatment

(Figure 5; Supplementary Table S2).
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3.5 Identification of key R2R3-MYB genes
related to cold stress based on WGCNA

WGCNA can be used to identify modules of highly correlated

genes, to summarize such clusters using the module eigengene or an

intramodular hub gene, and to relate modules to one another and to

external sample traits. Here, we used WGCNA to identify the hub

R2R3-MYB genes associated with cold stress. After removing genes

with a total FPKM ≤ 100 at four time points and three biological

replicates, a total of 10,483 genes were reserved for WGCNA.

Correlation coefficient cluster analysis of the expression levels of

12 samples revealed that the clustering among samples was

acceptable and there were no outliers (Figure 6A). Twenty

candidate power values from 1 to 30 were set for model fitting.

The results showed that, when the power value was 20, there was an

obvious inflection point where the topology model fit value was 0.8

and stable (Figure 6B). Therefore, we chose a power value of 20 for

module construction and clustering. Based on correlation analysis

and clustering according to the FPKM value of different genes, the
TABLE 1 Ka, Ks and Ka/Ks of replication pairs of R2R3-MYB gene family in S. album.

Duplicated gene pairs Non synonymous (Ka) Synonymous (Ks) Ka/Ks Duplicated type

SaMYB110 & SaMYB109 0.39 1.75 0.22 tandem

SaMYB003 & SaMYB002 0.17 0.85 0.19 segmental

SaMYB004 & SaMYB003 0.17 0.84 0.20 segmental

SaMYB005 & SaMYB001 0.25 1.19 0.21 segmental

SaMYB009 & SaMYB010 0.20 0.70 0.28 segmental

SaMYB012 & SaMYB014 0.07 0.66 0.11 segmental

SaMYB016 & SaMYB017 0.28 1.16 0.24 segmental

SaMYB029 & SaMYB033 0.24 1.21 0.20 segmental

SaMYB036 & SaMYB041 0.21 0.93 0.22 segmental

SaMYB044 & SaMYB045 0.12 1.04 0.11 segmental

SaMYB059 & SaMYB060 0.21 0.50 0.43 segmental

SaMYB063 & SaMYB064 0.19 0.92 0.21 segmental

SaMYB065 & SaMYB067 0.35 0.74 0.48 segmental

SaMYB066 & SaMYB067 0.36 1.79 0.20 segmental

SaMYB068 & SaMYB069 0.15 0.68 0.23 segmental

SaMYB072 & SaMYB073 0.32 1.79 0.18 segmental

SaMYB077 & SaMYB078 0.26 0.94 0.28 segmental

SaMYB081 & SaMYB078 2.08 NA NA segmental

SaMYB082 & SaMYB083 0.07 0.57 0.13 segmental

SaMYB084 & SaMYB085 1.61 1.94 0.83 segmental

SaMYB095 & SaMYB096 0.18 1.04 0.18 segmental

SaMYB103 & SaMYB017 2.07 1.77 1.17 segmental
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genes with high correlation were allocated to the same module.

Different genes were divided into 17 modules according to their co-

expression patterns, with different colors representing the different

modules (Figure 6C; Supplementary Table S3). For correlation

analysis between the trends in gene expression modules and cold

stress-related traits, the Pearson correlation coefficient (r > 0.5) and

P < 0.05 were set as thresholds. The MEred and MEgreen modules

were found to significantly positively correlate with changes in

malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase

(POD) activity, soluble sugar content, and intercellular CO2

concentration in response to cold stress, whereas they negatively

correlated with photosynthetic rate, conductance to H2O, and

respiration rate. MEblue was most significantly positively

correlated with the photosynthetic rate, conductance to H2O, and

respiration rate; the correlation coefficients were up to 0.9. The

MEblue module was most significantly negatively correlated with

MDA, SOD, POD activity, soluble sugar content, and intercellular

CO2 concentration. This indicated that the genes in these

significantly correlated modules were the core genes involved in

cold-stress response.

Further analysis revealed that the MEblue module contained

three (SaMYB014, SaMYB084, and SaMYB059), MEbrown

module contained one (SaMYB098), and MEred module

contained three R2R3-MYB genes (SaMYB015, SaMYB030,

and SaMYB081). The MEturquoise module contained five
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R2R3-MYB genes (SaMYB068, SaMYB085, SaMYB083,

SaMYB050, and SaMYB091). Combined with the expression

levels of these genes at different durations of cold stress, the

expression levels of three core genes were significantly different

under cold stress treatment. The expression level of SaMYB098

was 85.49 at 0h cold treatment, but decreased to 26.55 at 12h

cold treatment, and further decreased to 9.32 after 48h cold

stress, indicating that SaMYB098 may be negatively regulated to

cold stress. The expression of SaMYB015 in the MEred module

was low at 0h (FPKM = 3.18); however, it increased progressively

after cold stress treatment, and the expression levels at 12, 24,

and 48h were 7.73, 12.87, and 18.18, respectively. The expression

level of SaMYB068 in the MEturquoise module was similar to

that of SaMYB015 (Figure 7A). The 3D structure prediction

analyses of the three important genes using the Swiss-Model

online tool revealed that, although their structures were different

at the 3D level (Figures 7B–D, QMEAN Z-scores > 0.65), they all

harbored a classical R2R3-MYB binding domain. Therefore, it is

suggested that these three genes may participate in cold stress in

different ways. Overall, using a combination of gene family

identification, transcriptome data, and WGCNA analysis, three

core genes with differential expression significantly related to

cold stress were identified, which can provide important

information for the genetic improvement of S. album under

cold stress.
FIGURE 5

R2R3-MYB gene expression levels determined by RNA-seq at the four time points of cold (4°C) treatment. Expression profiles were normalized to
log10(FPKM). The color scale represents relative expression level from low (green) to high (red) values.
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4 Discussion

Among the many transcription factor families in plants, the MYB

family constitutes one of the largest transcription factor families. MYB

proteins regulate plant growth and development, primary and

secondary metabolism, and response to various abiotic stresses, such

as drought, cold, and salt (Dubos et al., 2010; Chen et al., 2019; Millard

et al., 2019). Genome-wide identification of the MYB gene family has

been performed in various plants, such as Arabidopsis (Matus et al.,

2008), Cucumis sativus (Li et al., 2012), maize (Dias et al., 2003), and

wheat (Gao et al., 2016). The members of the plant MYB gene family

contain 1–4 incomplete MYB repeat sequences and can be divided
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into four subfamilies based on the number of repeat sequences: 1R-

MYB type (containing one or two separate repeat sequences), R2R3-

MYB type (containing two adjacent repeat sequences), and 3R-MYB

type and 4R-MYB type (containing three and four adjacent repeat

sequences, respectively). Among these, the R2R3-MYB gene family is

most abundant in Plants (Jiang and Rao, 2020; Tombuloglu, 2020).

However, the whole-genome MYB gene family has not yet been

identified in S. album. In this study, the MYB gene family in S. album

was identified at the whole-genome level. The physical and chemical

properties, physical tree, preserved motifs, and gene duplications were

systematically analyzed. Consequently, 154 MYB genes in S. album

were identified, 114 of which were classified as R2R3-MYB genes. The
A B

C

FIGURE 6

Results of WGCNA based on the gene expression level and phenotypic data. (A) Results of sample clustering; (B) results of scale independence,
candidate power was from 1 to 30; (C) relationship of different modules and cold resistance-related traits. Numbers in the box represent the
correlation coefficient, and the number in the brackets represent the corresponding p-value. The color scale represents correlation coefficient from
1 (red) to -1 (blue).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1142562
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1142562
R2R3-MYB gene family in plants contains two R structures at the N-

terminal. The number of R2R3 genes in S. albumwas similar to that in

other plants, such as 125 in Arabidopsis (Stracke et al., 2001), 119 in

pea (Yang et al., 2022), 114 in moso bamboo (Hou et al., 2018), and

133 in white clover (Ma et al., 2022), indicating that the results for the

R2R3 gene family in S. album were reliable. The functions of R2R3

MYBs can be divided into three main processes: development and cell

differentiation, specialized metabolism, and stress response. Du et al.
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classified the gene family into 73 subfamilies based on their highly

conserved domain and motif composition (Du et al., 2015; Wu et al.,

2022). Through multiple sequence alignment and evolutionary

analysis, the 114 S. album MYB proteins were divided into 40

categories (Figure 1; Supplementary Table S1). Thirty-nine of the 40

subfamilies could be clustered with the corresponding subfamilies of

other plants. Only Subfamily A contained six genes (SaMYB108,

SaMYB109, SaMYB110 SaMYB111, SaMYB112, and SaMYB113),
A

B DC

FIGURE 7

The expression patterns of module genes and the protein structure prediction results of the three important genes. (A) color of the text in the x-axis
represents the corresponding module in same color in Figure 6. The y-axis represents the gene expression level; (B) the prediction result of protein
spatial structure of SaMYB098; (C) the prediction result of protein spatial structure of SaMYB01; (D) the prediction result of protein spatial structure
of SaMYB068.
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indicating that these genes may participate in specific biological

processes in S. album.

Gene duplication occurs through various mechanisms, such as

tandem duplication, gene transformation, horizontal transfer and

other translocations, hybridization, duplication, and doubling of the

whole segment of the chromosome during the recombination

process, resulting in effective doubling of the large-scale genome

sequence (Sankoff, 2001). Regardless of the origin, duplication of

genes in a genome can lead to increased expression of the gene.

Differentiation of duplicated genes may be subject to sub-

functionalization and produce neo-functionalization to enhance the

ability of plants to adapt to the environment and respond to various

stresses (Liu and Adams, 2007; Airoldi and Davies, 2012). In this

study, a pair of tandem duplicated genes was identified in the R2R3-

MYB gene family in S. album. About one-third of R2R3-MYB genes

have replication events, indicating that these genes may participate in

special biological processes in S. album. Nonsynonymous (Ka) and

synonymous (Ks) substitution rates are important indicators for

studying the pressures of gene selection, identifying deviations from

neutrality, and estimating the occurrence time of replication events

(Hurst, 2002; Echave et al., 2016). A comparative analysis of the

positively and negatively selected genes was performed based on Ka

and Ks, and artificial selection was found to be a major factor affecting

the gene evolutionary rate, compactness, expression level, and genetic

diversity in barley (Tao et al., 2022). Song et al. compared negatively

and positively selected genes in Arachis duranensis and Arachis

ipaënsis and found Ks to be a determining factor that affected the

selection pressure (Song et al., 2018). In 22 pairs of duplicate genes in

our study (excluding one pair [SaMYB110 and SaMYB109] with Ka/

Ks value > 1), the Ka/Ks value of the duplicated genes was < 1 (range:

0.11–0.83), which indicates that most of the R2R3-MYB genes in S.

album were subjected to purifying selection.

Although the non-MYB regions diverged in different plant species,

the two conserved MYB structures are a signature feature of R2R3-

MYB genes and include two main functional parts: a DNA-binding

domain at the N-terminal and a regulatory region at the C-terminal

(Wu et al., 2022). In this study, 114 R2R3-MYB genes harboring

highly conserved R2R3 sequences were identified in S. album

(Figures 2, 3), and the subcellular localization results showed that all

of them localized to the nucleus excepting SaMYB049 distributed in

the chloroplast and nucleus. These results are consistent with those

reported for other plants (Stracke et al., 2001; Wilkins et al., 2009),

indicating that the R2R3-MYB genes identified in this study are

reliable. Although the R2R3-MYB genes have highly conserved

sequences, they are functionally distinct. Some of them are essential

for plant development and cell differentiation (Oshima et al., 2013;

Liu et al., 2015), whereas some serve as key regulators of responses to

diverse environmental stresses (abiotic and biotic stresses), such as

drought, temperature, and salinity (Li et al., 2015). Some of them play

an important role in specialized metabolic biosynthesis pathways

(Stracke et al., 2001; Dubos et al., 2010). In this study, three key

candidate genes that are significantly related to cold stress were

identified through genome-wide identification of the R2R3-MYB

gene family, transcriptome analysis, and WGCNA. Comparison of

the 3D structure prediction revealed that they were significantly

different in their spatial structure (except for the conserved R2R3-
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MYB domain) and expression pattern, which indicates that they may

respond to cold stress in different ways. These three key candidate

genes may provide important information for genetic improvement

and research on cold tolerance in S. album.
5 Conclusion

R2R3-MYB genes play important roles in the growth and

development and abiotic stress of plants; however, there is no

relevant report in S. album yet. In our study, the R2R3-MYB gene

family of S. album was identified at the whole-genome pattern, and

its characteristics were analyzed and its expression pattern under

cold stress was studied. Three important candidate genes

significantly related to cold resistance were found by combining

transcriptome results and WGCNA results. These results fill in the

gap of R2R3-MYB gene family of S. album and provide great

significance for genetic improvement and molecular mechanism

research to cold resistance in S. album
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